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RESUMEN

£1 presente trabajo trata la determinacién de las frecuencias
naturales de vibracién de wuna viga Timoshenko con un método
alternativo al clasico. Se utiliza una solucidn generalizada para
obtener los valores exactos de las frecuencias. La metodologia
estad basada en el uso de secuencias minimizantes construidas con
series de Fourier. El problema se reduce asi a resolver una uUnica

y simple ecuacidén. Se incluye un apéndice tedrico con la
demostracion de la exactitud de los autovalores. Son presentados
ejemplos de vigas con varias condiciones de borde, resueltos

numéricamente, y que muestran la convergencia del método.

ABSTRACT

The present paper deals with the determination of the natural
frequencies of vibration of a Timoshenko beam with an alternative
method to the classical approach. Here a generalized solution is
used to achieve the exact values of the frequencies. The
methodology is based upon the use of minimizing sequences made up
of Fourier series. THe problem is then reduced to solve a single
simple egquation. A theoretical appendix with the demonstration of
the exactness of the eigenvalue is included. Cases of beams with
various end conditions are numerically solved as examples,
showing the rate of convergence of the method.

INTRODUCTION

The theory proposed by Timoshenko [1] takes into accoumt the effect of
the shear and rotary inertia on the transverse deflection. It applies
mainly to the case of short beams. Normally two differential equations
arise, involving the variables of the problem: the transverse
displacement y and the flexural rotation ¢. Many authors have dealt
with the subject. Lately Laura et al. have published a monograph [2]
reviewing the related work and containing an extensive bibliography.
Cortinez in [3] shows some results as application of the methodology
to the Timoshenko beam without theoretical anaiysis. The case of beams
of constant cross-section and for certain end conditions has been
solved by the classical approach yielding closed solutions. However,
the resulting characteristic equations are in general rather
cumbersome.

The methodology used herein was developed and applied to different
situations by Filipich and Rosales [4,5,6]. It consists in proposing a
minimizing sequence of Fourier series to represent the functions of
the problem under study, i.e. y and ¢. Afterwards the governing
functional of the problem (the Lagrangean) is minimized with respect
to the unknowns. The essential boundary conditions (BC) are satisfied




Natural frequencies of a Timoshenko beam 135

by the entire sequerce (unlike the Raleigh-Ritz method in which each
base function must satisfy the essential BC). The non-satisfied
conditions are taken 1into account, for convenience, by lLagrange
multipliers. In the present case, a single characteristic equation is
easily obtained. This methodology is far explained in {61 and its
foundation along with the corresponding demonstrations in {43,
However, a theoretical appendix addressed to the interested reader, is
included to provide the demonstration of some of the main assessments
made in the approach. The procedure is applied to beams with various

BC, diversg values of slenderness ratio and as well as shear
coefficient R. The latter is sometimes taken as 0.66466 [1] or 0.8333
(both in beams of rectangular cross-section). Rossi et «al. have

analyzed its influence in (73].

The present approach provides a simple procedure to obtain the

characteristic equation. Furthermore other complexities such as
concentrated masses, intermediate supports, elastic boundaries,
varying cross-section, etc. can be handled without additional

difficulties.

THEORETICAL CONCEPTS

Conceptually the methodology consists in choosing minimizing sequences
to represent the relevant functions of the problem under study, in
this case y and ¢. The complete sequence is required to satisfy the
essential (geometric) boundary conditions; when those conditions are
not satisfied identically by the sequence, use is made of an extended
functional with Lagrange multipliers. At the same time the sequence
converges in the mean to the classical solution. Afterwards the
procedure consists in writing the Lagrangean functiocnal of the
problem; then the functions y and ¢ are replaced by their
representation in Fourier series. Finally an extreme condition is
placed upon the functional, condition which conduces to the exact
eigenvalues of the vibration.

In the Appendix II it is shown that the obtained results are not
approximations to the exact eigenvalues but the exact values of them
with the desired accuracy. The interested reader may found in
reference [B8] the demonstrations of the necessary and sufficient
conditions, in order that the method leads toward the exact solution.

PRACTICAL DETERMINATION OF THE EXACT EIGENVALUES

Let us now apply the above described procedure to the vibration of a

Timoshenko beam. First, the unknowns representing the total
displacement v(x,t> and the flexural rotation 9Cx,t> are written as
iAt iAt

VEX, D = yixD e : 8Cx, > = x> e {la,b)

where X are the sought frequencies. The governing functional ¥ is

E=U-T (2)

in which the strain and kinetic energy expressions, U and T
respectively, are included in Appendix . Let us now propose the
minimizing sequences (see Appendix II)
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where ﬁ\ = in/L. It is verified that "su—y I° < e and HaM—¢ © <« &

for €« — 0 and & — O for M — .
Now the geometric (essential) BC of the beam under study are imposed
to (3) and (4). In the case that one or more BC are not satisfied, use
is made —-for convenience- of Lagrange multipliers vielding an extended
functional &, i.e.

N

2 =7 - ETJ CNSBCO (5)
i

where NSBC stands for non-satisfied essential BC; N is the number of
NSBC and 7. are the bLagrange multipliers. In the next step an extreme
i

condition is imposed on the extended functional as follows

ar . oL _
I (S — = 0 (&)
L

with wi= (BLJa.D), i=0,1,2,...,M and j=1,2,...N. After some algebra

manipulation, the frequency equation is obtained for each beam case,
as will be shown in the next section.

TIMOSHENKO BEAM EXAMPLES: VARIOUS END CONDITIONS

1. Free-free beam.

In this case there are no essential BC, then ¥=£. 0On performing the
derivation procedure (&) of the previous section a homogenecus system
of five equations in {Bi.Ci,D} is obtained. After some algebraic steps
the following characteristic equation yields .

CKS_-251 -5 >+Kctos >@=0 (7)
12 21 2 11
in which ,
2 1 aZQ
K=1-0 a-sa; Z = -+ a -
z 1 3 2 3 cx1
M i+t M L+1 M .
c-1O"F -1 g, [1-c-15F,
s = —_ ' . s = —_—— ' . s = t
i [ cindp 12 cindZp 21 cind?p,
L= T=41 t [N § v
and 2 2
Foo= 20 re-1>t-17 6, = 29 15t
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o2
o = a - Qz _ 1
i L c. N2
crno [(m)zm -0%a ]
1 2
See Appendix | for further definitions. Furthermore considering odd

and even modes, the freguency equation may be written as

[KCS +S > - 21{1 -4 S ) + KcL 25> =0 (8)
I P I . 2 I
M M
2 2
where s =- 28 L. s = 22 L
I TI‘ i‘ P n‘ L‘P
(X)) pt (P L

with I = 1,3,5,... and P = 2,4,6,... Equation (8) may be factored,

vyielding
(1 - 4 SI) = 03 KL + 4 SP) -4 Z =0 (?,10)
or in an alternative notation
2 M
I+ 8o . 0 (1l1)
4 it
m (X)) e
2 M o &
22 ! 1-0f 2] -2 [f2-1-120 ]=0 (12)
“ 4 a 12 ] z
n i 1 1
P> i

respectively. Equation (9) (or (11)) yields frequencies corresponding
to the odd modes and equation (10) (or (12)) to the even ones.

The numerical results obtained for the first four frequencies of the
free-free beam are depicted in Table I for the first four frequencies,
r/L = 0.05, 0.10 and k= 0.50, 0.85 and 1.00 (k = 1/2). It should be
mentioned that it is always possible to find a closed expression to
the summations involved in the frequency equations (diverse
combinations of trigonometric and hyperbolic functions). However, the
fast convergence of the sums as well as the speed of the computers do
not make it necessary.

Table I: Values of the first four frequency coefficients in the case

of a free—-free Timoshenko beam; N=10000 {5000 terms);
v=0.3.
k Q [e] 9] 0
1 2 E] .
r/L = 0.05
0.50 19.8636 45.8225 75.1703 104.6442
0.85 20.3517 49.0264 83.4221 119.819%
1.00 20.4602 49.7858 85.5024 123.8422
r/L = 0.10
0.5Q 15.8998 29.5351 43.9566 44.4790
0.83 16.8194 33.9617 51.8110 59.5283

1.00 17.0280 33.1035 54.1428 64.0625
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2 Simply supported-free beam.

The procedure is analogous to the one described for the free-free bezam
except that in this case the existence of an essential BC yields D =
0. The functional is then written in terms of z, and O After the

minimization w.r.t. (Bl, C )Y and some algebra manipulation the
t
following frequency equation is obtained

M

2 4 — 2i+1
K[O( - 9_.] - o o+ FATIES St T = O (13)
1 1 4 E R
3 n c Lo
v=1 1
where K and @i are defined in the previous sub-section 1. The

numerical results are shown in Table II.

Table II: Values of the first four frequency coefficients in the case
of a simply supported-free Timoshenko beam; N=5000; » = 0.3,

k Q Q Q Q
L 2 3 4
rsL = 0.05
0.50 14.0068 38.4443 67.0022 96.5597
0.85 14.3632 41.1490 74.5785 110.8906
1.00 14.4428 41,7972 76.50956 114.7359
r/L = 0.10
0.50 11.4556 26.1610 39.7635 46.0809
0.85 12.2566 29.9548 47.9874 58.9092
1.00 12.4464 30.9605 50.3475 63.5424

3 Simply supported-clamped beam.

The essential BC of this case yield Co = O and D= O as well as a
non-satisfied BC (NSBC)
M
}: B_l =0 (14)
i=o
As was stated in (5), such condition is takemn into account by
extending the functional
M
=¥ -1 ZBi (15)
1=0

The minimization is performed w.r.t. (Bo. BL' C ., T} and the frequency
t

equation yields

M
1 Q
ax*? 3 ;= 0© (16)
1 [(irt) +a_)<]0 - o
Y . 1 1
where K is defined in section 4.1 and
Q2
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The numerical results for various k and r-L ratios are depicted in
Table III.

Table III: Values of the first four frequency coefficients in the case
of a simply supported-clamped Timoshenko beam; N=5000; v = 0.3.

k [¢] [¢] Q Q
1 2 3 <+

rst = 0,05

0.50 13.1294 35.4356 61.92113 ?0.1354
0.85 13.8798 39.2289 70.8463 105.6079
1.00 14.0573 40.2094 73.3124 110.057S
r/L = 0.10

0.50 7.7589 22.9468 37.1218 465.9708
0.85 11.1303 27.2748 45.1466 59.7442
1.00 11.5057 28.5752 47 .6252 64.3683

4 Clamped-clamped beam.
Due to the non-satisfied BC the functional is extended

M—
e =2 -7 ZB'L (17)

1
with i = 0,1,2,...,M. Two fregquency equations are obtained, one for
the symmetric modes and another for the anti-symmetric ones,

respectively, i.e.

M
_2 -~ =0 (18)

[Ciﬂ') +a K]Q -

1 1

(1)
M
aiz *2 z — z = ° (19
2 [Cirz) +a‘K]Q -

where 1=1,3,5,...,M; P=2,4,6,...,M and k, Q as previously defined.
Table IV contains the numerical results.

Table IV: Values, of the first four frequency coefficients in the case
of a clamped-clamped Timoshenko beam; N=10000 (5000 terms); v=0.3.

I3 Q Q Q [¢]
1 2 3 4

rs/L = 0.05

0.50 17.3246 39.0358 64.5615 91.7873
0.85 18.8886 44.5213 75.4728 109.0995
1.00 19.2801 46.0230 78.6436 114.3008
r/L = 0.10

0.50 11.7067 23.5807 37.4938 50.7726
0.85 13.9160 28.7170 45.9947 62.3184
1.00 14.5691 30.3603 48.7144 66.1329

CONCLUSIONS

The solution of the vibration problem of the Timoshenko beam has been
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addressed by means of ~what the authors call- a generalized solution
making use of Fourier series. The eigenvalues found by means of this
methodology are exact and the theoretical demonstration of this fact
is included in Appendix I1I. Throughout the paper use is made of
normalized functions but obviously it is possible to dispense with the
normalization., Four cases of beams with diverse support conditions
were considered and numerical results presented. The valued of M  was
chosen to be 5000 because it yields satisfactory accuracy. It should
be noted that this is not a Rayleigh-Ritz method. In effect, the
boundary conditions are imposed to the sequence and not to each base
function. As mentioned before it 1is possible to find a closed
expression to the summations involved in the freguency equations
(diverse combinations of trigonometric and hyperbolic functions).
However, the fast convergence of the sums as well as the speed of the
computers do not make it necessary. Furthermore the computers find the
value of trigonometric and hyperbolic functions by means of summations
of finite number of terms.
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APPENDIX I: FUNCTIONAL
The Timoshenko beam of length L, constant cross-section A, moment oOf
inertia J and material with Young modulus of elasticity £ and

transverse modulus of elasticity 6 is governed by the following system
of differential equations '

a(y” + 4" +y Q: =0 (A1.1)

" * - 2=
@+ aly + - 90 =0 (AI.2)
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where y = y(x> and ¢ = ¢(x> are the shape functions representing the
displacement and the flexural rotation of the beam (the classical

solution); Q@ is the exact non-dimensional frequency of the beam.
o

Introducing x which depends on the shape of the cross-section, and r
the radius of gyration and the shear coefficient Kk the following
coefficients result

o = GAL ; o, = J H L= Y ; k=1
1 Elx 2 42 L 2 X
In the present work one searches the eigenvalues and the

eigenfunctions o©of the vibration problem through the generalized
solution approach. The solution is found by making stationary a
certain functional, i.e. finding the extreme of the functional under
certain conditions {9]. The functional to be employed here may be
motivated by observing that the inner product of equation (Al.l) times
y plus the inner product of equation (Al.2) times ¢ equals zero, i.e.

—{[a (9" + @'> + vy Qz],y} + {[~¢“ aly P~ o P nz],¢}= 0 (AL1.3)
1 < 1 2 o

which, after amn integration by parts and the imposition of the BC, may
be written in terms of norms as

R L e N W | M AR TV I R TS S
Alternatively, as 1s uwsually found in classical mechanics the
functional may be though as the Lagrangean ¥ = U -~ T being U the

strain energy and T the kinetic energy,
1 2 GA 2 1 2 2 2 2
U= ET o)t 2R el b T o= 2 ea® v® + o7 et AL

in which p is the mass density of the beam and the exact dimensional
frequency N is related to the non-dimensional one by

_ 1 EJ
A = = -3 % (A1.6)

APPENDIX II: THE FOUND EIGENVALUES ARE EXACT
Demonstration:

From Appendix I the governing functional in terms of the exact
solution y and ¢ is

Eiy.4,0,7 = |97 *r oy o] F- ol [IvIF ¢ e lof*] <0 carr
and conseguently
» 2 » 2
P L R MRS
o = H (AII.2)

IVIE + o, o)

let us now ;eplace the functions y and ¢ by arbitrary functions 2z and
oet, 2| <« wand fo' | < w, respectively. An eigenvalue expression
can then be written in terms of such functions as
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s u2 R 2
P R EARd|
= 3 p (AII.3)
2™ + o, fod
It follows from Rayleigh's principle that
n:soz. (AI1.4)
D . . . 2 2 2 2 . .
Additionally it is required that [v[[" = {&]" =llz|® =]o|® = 1 which is
always possible by imposing, in each case, a new function which is the
ratio between the old function and its norm. Then both eigenvalue
expressions write respectively
w2 1 k2 s 2
8 = [D_az] ["¢ 12+ a v el ] (AIL.5a)
2 1 T , 2
o?= [Tm—z] ["cr i+ a =" +o) ] (ALI1.5b)
Now let us work out expression (AI1.S5b) as follows
o?= [i‘i‘Tz] {A +CP LoD+ oz1[Cz'+cr).Cy’+¢)]} (AT1.6)
where 4 = ”o’—¢‘"z + a1n52’+a3—fy’+¢)ﬂz LR A A S
+ ai{(y'+¢),[(z'+a)—(y'+¢)]}. (AIT1.7)

The second term of the expression between the curly brackets in
equation (AIl.&4) is found to be

€¢rio> = {¢rofl- Co L. (AII.8)
The boundary conditions in this equation vanish since ¢ 1is the
classical solution and o satisfies the essential BC. After replacing

it in (All.6) and regrouping one obtains
2_ (L , e _ ppt
n-= [TIE_] {A + [o.[al(y +PpO - ]] [z.a‘(y +@ )]}. (AII1.9)

Now making use of the set of differential equations of the vibrating
Timoshenko beam (Appendix 1), the eigenvalue ? results

2 1 2
= >
a [1+a2] {A +a [dy,2> + aZCa.er} (AI1.10)
and applying twice the triangular inequality
2 1 2
" =< [l+a2) {lA’ + Qo [](y.z)] + a2[60,¢)|]}. (AITI.11)

Furthermore, due to the Cauchy-Schwarz inequality and the value unity
of the norms of the functions, the eigenvalue is bounded as follows

o < 14l w»r):> (ATI.12)

Consider now minimizing seguences zM and oM which satisfy




Natural frequencies of a Timoshenko beam 143

"zg—y'"z < £2 £ — 0 for M — ® and "zuuz = 1
R - 2 2z _
"ou 2 ) & — 0 for M — ® and "ouﬂ 1.
L2 _ a2 L p2 2 L n2 _ a2 L 12 = 2 a2 z
Also fer | = @ |y " = % Jo I =~ Jz 10 = RS fz,-v]® < 9%,

"0M~¢"z < yz, with 830 and -0 when Msw. Additionally each sequence
(2M and oM) satisfies the essential BC. With these sequences the term
A in the expression between curly brackets in eguation (AIL1.&6) is
found to be

4,0 = o2 I° + o llczyro,0-Cy +@d|® + |l¢" . Cor e o1]| +

+ » P AYME Y )
e {Cy +¢),[Czu+ou) Cy +¢,]} (AII.13)
Each term of the second member converges as follows
v _ae 42 . g2
"oM 3 " < & (AII.14)
2 2 2
, P = SN - 2 -y’ - <
"(2u+au) Cy’ +¢2 | "CzM v o+ “oM " + 2 [CzM v )COM P>1 =
= 2+ 32+ 2 oy (AII.15)
v .:_-~2< ,2,_,2<22
[ ,CUM @'o1" £ |o I “aM | = & ‘ (AII.16)
l{(y'+¢),[Cz;+on)—(y’+¢)1}| < ][y‘.(z;—y')]| + ]y'.(ou—¢)l +
|¢.Cz;~y’>| + |¢.Cau~¢)| =g + poCl + 5O (AIT.17)
Consequently,
|Au! < &%+ a‘(z+r)2 + R & +‘ﬂ(£+7)(1+$) =7 (AII.18)
and n tends to zero as M tends to infinity. Therefore 'Aul — 0 as M

— . With these results and in view of equations (AIl-4) and
(AII-12), the following relevant result is obtained

2 2

Q — 0 as M — o (AII.20)

M °
Then it is demonstrated that the eigenvalues found with the minimizing
sequences are exact, under the requirements that the selected
functions are minimizing sequences and satisfy the essential boundary
conditions.







