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NATURAL FREQUENCIES OF A TIMOSHENKO BEAM:
Exact values by means of a generalized solution

Carlos P. Filipich, Marta B.Rosales y Vlctol- H.Cortlnez
Area de Estabi.Li.dad. Departamento de Int{eni.erta

Untversi.dad Naci.onaL deL Sur. ALsom 1253.
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EI presente trabajo trata la determinaci6n de las frecuencias
naturales de vibraci6n de una viga Timoshenko con un m6todo
alternativo al clasico. Se utiliza una soluci6n generalizada para
obtener los valores exactos de las frecuencias. La metodologia
esta basada en el usa de secuencias minimizantes construidas con
series de Fourier. El problema se reduce as1 a resolver una unica
y simple ecuaci6n. Se incluye un apendice te6rico con la
demostraci6n de la exactitud de los autovalores. Son presentados
ejemplos de vigas con varias condiciones de borde, resueltos
num6ricamente, y que muestran la convergencia del m6todo.

The present paper deals with the determination of the natural
frequencies of vibration of a Timoshenko beam with an alternative
method to the classical approach. Here a generalized solution is
used to achieve the exact values of the frequencies. The
methodology is based upon the use of minimizing sequences made up
of Fourier series. THe problem is then reduced to solve a single
simple equation. A theoretical appendix with the demonstration of
the exactness of the eigenvalue is included. Cases of beams with
various end conditions are numerically solved as examples,
show~ng the rate of convergence of the method.

The theory proposed by Timoshenko [lJ takes into account the effect of
the shear and rotary inertia on the transverse deflection. It applies
mainly to the case of short beams. Normally two differential equations
arise, involving the variables of the problem: the transverse
displacement y and the flexural rotation ¢. Many authors have dealt
with the subject. Lately Laura et al. have published a monograph [2J
reviewing the related work and containing an extensive bibliography.
Cortinez in [3J shows some results as application of the methodology
to the Timoshenko beam without theoretical analysis. The case of beams
of constant cross-section and for certain end conditions has been
solved by the classical approach yielding closed solutions. However,
the resulting characteristic equations are in general rather
cumbersome.

The methodology used herein was developed and applied
situations by Filipich and Rosales [4,5,6J. It consists
minimizing sequence of Fourier series to represent the
the problem under study, i.e. y and ¢. Afterwards
runctional of the problem (the La6raneean) is minimized
to the unknowns. The essential boundary conditions (Be)
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DY the entire sequence (unlike the Raleigh-Ritz method in which each
base function must satisfy the essential Be). The non-satisfied
conditions are taken into account, for convenience, by Lagrange
multipliers. In the present case, a single characteristic equation is
easily obtained. This methodology is far explained in [6] and its
foundation along with the corresponding demonstrations in [4].
Howeve~. a theoretical appendix addressed to the interested ~eader. is
included to provide the demonstration of some of the main assessments
made in the approach. The procedure is applied to beams with various
BC, diverse values of slenderness ratio and as well as shear
coefficient k. The latter is sometimes taken as 0.6666 [1] or 0.8333
(both in beams of rectangular cross-section). Rossi ~t at. have
analyzed its influence in [7].

The present approach provides a simple procedure to obtain the
characteristic equation. Furthermore other complexities such as
concentrated masses, intermediate supports, elastic boundaries,
varying cross-section. etc. can be handled without additional
difficulties.

Conceptually the methodology consists in choosing minimizing sequences
to represent the relevant functions of the problem under study, in
this case y and ¢. The complete sequence is required to satisfy the
essential (geometric) boundary conditions; when those conditions are
not satisfied identically by the sequenc~, use is made of an extended
functional with Lagrange multipliers. At the same time the sequence
converges in the mean to the classical solution. Afterwards the
procedure consists in writing the Lagrangean functional of the
prOblem; then the functions y and ¢ are replaced by their
representation in Fourier series. Finally an extreme condition is
placed upon the functional, condition which conduces to the exact
eigenvalues of the vibration.

In the Appendix II it is shown that the obtained results
approximations to the exact eigenvalues but the exact values
with the desired accuracy. The interested reader may
reference [8] the demonstrations of the necessary and
conditions, in order that the method leads toward the exact
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Let us now apply the above described procedure to the vibration
Timoshenko beam. First, the unknowns representing the
displacement vCx.t~ and the flexural rotation &Cx,t~ are written

of a
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in which the strain and kinetic energy
respectively, are included in Appendix I.
minimizing sequences (see Appendix II)
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for £; -+ 0 and <5 -+ 0 for 1"1-+ 00.

Now the geometric (essential) BC of the beam under study are imposed
':0 (3) and (4). In the case that one or more BC are not satisfied, use
is made -for convenience- of Lagrange multipliers yielding an extended
functional £, i.E.

N
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where NSBC stands for non-satisfied essential BC: N is the
NS3C and T. a,-e the Lagrange multipliers. In the next step

)

condition is imposed on the extended functional as follows
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manipulation, the frequency equation is obtained for each beam case,
as will be shown in the next section.

1. Free-free beam.
In this case there are no essential BC, then X=X.
derivation procedure (6) of the previous section
of five equations in {Bi.C,.D} is obtained. After
the following characteristic equation yields
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See Appendix I for further definitions. Furthermore
and even modes. the frequency equation may be written
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respectively. Equation (9) (or (11» yields frequencies
to the odd modes and equation (10) (or (12» to the even

corresponding
ones.

The numerical results obtained for the first four frequencies of the
free-free beam are depicted in Table I for the first four frequencies,
r/L = 0.05,0.10 and J<.= 0.50,0.85 anl;l1.00 (J<. = 1/><). It should be
mentioned that it is always possible to find a closed expression to
the summations involved in the frequency equations (diverse
combinations of trigonometric and hyperbolic functions). However, the
fast convergence of the sums as well as the speed of the computers do
not make it necessary.

Table I:
of a
v=0.3.

Values of the first four frequency coefficients in
free-free Timoshenko beam; N=10000 (5000

the case
terms) ;

J<. 0 0 0 0
1 2 9 4

r/L = 0.05
0.50 19.8636 45.8225 75.1703 104.6442
0.85 20.3517 49.0264 83.4221 119.8195
1.00 20.4602 49.7858 85.5024 123.8422
rlL = 0.10
0.50 15.8998 29.5351 43.9566 46.4790
0.8~ 16.8194 33.9617 51.8110 59.5283
1.00 17.0280 35.1035 54.1428 64.0625



2 Simply supported-free beam.
The procedure is analogous to the one described for the free-free
except that in this case the existence of an essential BC yields
O. The functional is then written in terms of z and o. After

M M

minimization w.r.t. (8. C) and some algebra manipulation
l l

following frequency equation is obtained
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where /( and 'P, are defined in the previous sub-section 1. The
numerical results are shown in Table II.

Table II: Values of the first four frequency coefficients in the case
of a simply supported-free Timoshenko beam; N=5000; v = 0.3.

Y< n n
1 2

r/L = 0.05
0.50 14.0068 38.4443
0.85 14.3632 41.1490
1.00 14.4428 41.7972
rlL = 0.10
0.50 11.4556 26.1610
0.85 12.2566 29.9548
1.00 12.4464 30.9605

67.0022
74.5785
76.5096

96.5597
110.8906
114.7359

39.7635
47.9874
50.3475

46.0809
58.9092
63.5424

3 Simply supported-clamped beam.
The essential BC of this case yield Co
non-satisfied BC (NSBC)

As was stated in (5), such condition is taken into account by
extending the functional
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The numerical results for various k. and r/L ratios are depicted in
Table III.

Table III: Values of the first four frequency coefficients in the case
of a simply supported-clamped Timoshenko beam; N=5000; u = 0.3.

k. n n n
1 2 3

r/L = 0.05
0.50 13.1294 35.4356 61.9113
0.85 13.8798 39.2289 70.8463
1.00 14.0573 40.2094 73.3124
r/L = 0.10
0.50 9.7589 22.9468 37.1218
0.85 11.1303 27.2748 45.1466
1.00 11.5057 28.5752 47.6252

90.1354
105.6079
110.0575

46.9708
59.7442
64.3683

4 Clamped-clamped beam.
Due to the non-satisfied BC the functional is extended
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where 1=1,3,5, ...,M; P=2,4,6, ... ,M and k.. Q as previously defined.
Table IV contains the numerical results.

Table IV: Values, of the first four frequency coefficients in the case
of a clamped-clamped Timoshenko beam; N=10000 (5000 terms); u=0.3.

k. n n n n
1 2 3 ..

r/L = 0.05
0.50 17.3246 39.0358 64.5615 91.7873
0.85 18.8886 44.5213 75.4728 109.0995
1.00 19.2801 46.0230 78.6436 114.3008
r/L = 0.10
0.50 11.7067 23.5807 37.4938 50.7726
0.85 13.9160 28.7170 45.9947 62.3184
1.00 14.5691 30.3603 48.7144 66.1329



add~essed by means of -what the autho~s call- a gene~alized solution
making use of Fou~ie~ se~ies. The eigenvalues found by means of this
methodology a~e exact and the theo~etical demonst~ation of this fact
is included in Appendix II. Th~oughout the pape~ use is made of
no~malized functions but obviously it is possible to dispense with the
no~malization. Fou~ cases of beams with dive~se suppo~t conditions
we~e conside~ed and nume~ical ~esults p~esented. The valued of M was
chosen to be 5000 because it yields satisfacto~y accu~acy. It should
be noted that this is not a Rayleigh-Ritz method. In effect, the
bounda~y conditions a~e imposed to the sequence and not to each base
function. As mentioned befo~e it is possible to find a closed
exp~ession to the summations involved in the f~equency equations
(dive~se combinations of t~igonomet~ic and hype~bolic functions).
Howeve~, the fast conve~gence of the sums as well as the speed of the
compute~s do not make it necessa~y. Fu~the~mo~e the compute~s find the
value of t~igonomet~ic and hype~bolic functions by means of summations
of finite numbe~ of te~ms.
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The Timoshenko beam of length L, constant cross-section A, moment of
inertia J and material with Young modulus of elasticity E and
t~ansverse modulus of elasticity G is governed by the following system
of differential equations

01(y" + 1/>') + Y 0: '" 0

-</>" + a
1
(y' + </>:> - Clz </> 0:



where y = yCx_' and ¢ = ¢Cx~ are the shape functions representing the
displacement and the fle~ural rotation of the beam (the classical
solution); 00 is the exact non-dimensional frequency of the beam.
Introducing X which depends on the shape of the cross-section, and r
the radius of gyration and the shear coefficient k the following
coefficients result

_ GAL2.1 1
c< c< r -.fC<. k =

• - £.1x 2 AL 2 L 2' X

In the present work one searches the eigenvalues and the
e1genfunctions of the vibration problem through the generalized
solution approach. The solution is found by making stationary a
certain functional, i.e. finding the extreme of the functional under
certain conditions (9]. The functional to be employed here may be
motivated by observing that the inner product of equation (AI.l) times
y plus the inner product of equation (AI.2) times ¢ equals zero, i.e.

-{["'.(y" + ¢'~ + Y o:],y} + {[-¢" + ,".(y' + ¢~ - 012 ¢ o:],¢j= 0 (AI.3)

which, after an integration by parts and the imposition of the BC, may
be written in terms of nOrms as

:e£y,¢,Oo) = Ii¢' 112 + 0l.IIY'+¢1I2 - 0: [llyll2 + "'211¢1I2] O. (AI.4)

Alternatively, as is usually found in classical
functional may be though as the Laeraneean F = U T
strain energy and T the kinetic energy,

mechanics
being U

in which p is the mass density of the beam and the exact dimensional
frequency A is related to the non-dimensional one by

A = .2.. / £.1 ° (AI.6)
L 2 pA o'

From Appendix I the governing
solution y and ¢ is

Ii¢' 11
2 + Ol.lly' +¢1I2

IIYll2 + Ct211¢112
let us now replace the functions y and ¢ by arbitrary functions z and
o e C. IIz' 112

< 00 and 110' 112 < 00, respectively. An eigenvalue expression
can then be written in terms of such functions as

the
the



110" Ilz + ex. Ilz' +ollz
Ilz IIz + cxzllollz

Additionally it is required that IlyliZ = 114>112
= IIzllZ = IloIIZ = 1 which is

always pos~ible by imposing. in each case, a new function which is the
ratio between the old function and its norm. Then both eigenvalue
expressions write respectively

(l~CXJ [IW II
Z

(l:CXJ [IIO'IIZ

Now let us work out expression (AII.5b) as follows

Oz= (l~CXJ {A + C4>·.o'~ + cx/cz.+O'~.CY'+4>'>J}

The second term of
equation (AII.6) is

the expression
found to be

C¢'·.o·~ = 14>'01> Co ,4>"~.
The boundary conditions in this equation vanish since
classical solution and 0 satisfies the essential BC. After
it in (AII.6) and regrouping one obtains

oZ= (l~CX) {A + [o.[CX~CY'+4>~-4>"J] - [Z.Cl~CY"+4>·_)J}

4> is the
replacing

Now making use of the set of differential equations of the vibrating
Timoshenko beam (Appendix I), the eigenvalue n results

applying twice the
oZ :S (1:cxJ {I A 1 +

triangular inequalityn: [ICy.z~1 + cxzlco.4>~/J}

Furthermore, due to the Cauchy-Schwarz inequality and the value unity
of the norms of the functions, the eigenvalue is bounded as follows



11Z~-y' 11
2

IIO~-</>' 11
2 < c,z 6 -+ 0 for M -+ 00 and 110,,,112= 1.

Also Ii¢' 112
= d, IIY'112 52, 110~112 N2, IIz~112 R2, IlzM-YI12

IloM-</>112< 1"'2, with &-+0 and 1"'-+0 when M-+oo. Additionally each
(ZM and OM) satisfies the essential BC. With these sequences the
A in the expression between curly brackets in equation
found to be

+ ~1 I{(Y'+</>~'[(Z~+OM~-(Y'+</>~)}'
Each term of the second member converges as follows

lIo~_</>'112 < 62 (AIL14)

11(z~ +OM~-(Y' +</>~11
2

= lI(z~ -y' ~ /12 + 110M_</>112
+ 2 [(z~ _yO XO

M
-</>~) ~

~ ,,2 + 1',2 + 2 c1"

[</>' , (o~ -</>' :JJ2 ~ II¢>' /12Ilo~ -¢>' /12 ~ d c,z

I{(Y'+¢>~'[(Z~+OM~-(y'+</>~)}I ~ I[Y' ,(z~-y'~) I + IY"(OM-¢>~I +

(AIL1S)
(AIL16)

Consequently,
lAw I ~ 62 + a1(c+r~2 + R 6 + a/c+r~(1+5~ = 'f) (AI I.18)

and 'f) tends to zero as M tends to infinity. Therefore IAwl -+ 0 as M
-+ 00. With these results and in view of equations (AII-4) and
(AII-12), the following relevant result is obtained

Then it is demonstrated that the eigenvalues found with the
sequences are exact, under the requirements that the
functions are minimizin9 sequences and satisfy the essential
conditions.
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