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Space-Frequency Domain Approximation of Waves in Dispersive Media

JUAN E. SANTOS*

Abstract. A finite element iterative domain decomposition algorithm is used to simulate the
propagation of waves in bounded viscoacoustic media with absorbing boundary conditions at
the artificial boundaries. For each frequency, the space-frequency iterative domain decompo-
sition formulation leads to the solution of a collection of non-coercive elliptic problems with
Robin type boundary conditions being employed to transmit information between subdo-
mains. Numerical examples showing the implementation of the procedure are also presented.

1. Introduction. The attenuation and dispersion of waves travelling in rocks and other
solid materials has been observed both in field measurements and laboratory experiments.
The analysis of the attenuation and dispersion phenomena is important because yields
information about rock properties such as porosity and saturation levels. The mathe-
matical models developped to represent this phenomena are usually formulated in the
space-frequency domain As examples of materials presenting this behaviour we can men-
tion sedimentary rocks and fuid-saturated porous solids. The former is usually modeled as
a linear viscoelastic material with frequency-dependent coefficients in the constitutive rela-
tions [21,15,16}. In the latter, dispersion and its related attenuation was first described by
Biot [1, 2, 3, 19, 20] by using frequency dependent coefficients in the constitutive relations
and in the mass and viscous coupling coefficients associated with the relative flow between
fluid and solid. The inclusion of the dispersion terms in the dynamic equations leads to a
non-coercive elliptic system of differential equations in the space-frequency domain which
in general does not have a corresponding closed integro-differential form in the space-time
domain. Even in the linear viscoelastic case, in which such integro-differential descrip-
tion exists, the addition of the associated absorbing boundary conditions at the artificial
boundaries of the model generates non-linear terms in frequency which do not have an
equivalent closed differential form in the space-time domain. Consequently, it seems to be
natural to define and analyze numerical algorithms to find approximate solutions to such
mathematical models in the space-frequency domain rather than in the the space-time
domain. Later an approximation to the inverse Fourier transform can be used to obtain
the desired space-time solution. This approach has been used by the author and some
of his colleagues to treat wave propagation phenomena in viscoacoustic and viscoelastic
bounded media; see [10,9, 17,7,11]. In this work we will consider a model problem describ-
ing the propagation of pressure waves in a two-dimensional bounded dispersive medium.
For a given frequency, an iterative finite element domain decomposition procedure is used
to solve approximately the equations of motion in the space-frequency domain. Once the
solution is known in the range of frequencies of interest, (defined in terms of the source
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amplitude spectrum), an approximation to the inverse Fourier transform was employed to
recover the space-time solution. For some other domain decomposition procedures defined
to solve elliptic partial differential equations we refer to [5,6,8,12,13,14].

The organization of this paper is as follows. In §2 we present the differential model and
state an existence and uniqueness result. Also we present an equivalent hybrid domain
decomposition formulation of the original problem and the associated space discretiza-
tion using a finite element procedure. Finally in §3 we show the results of experimental
calculations.

2. The Differential Model and the Iterative Domain Decomposition Formula-
tion. Let £ = (0,1)? and I' = Q. We will consider the following problem. Find #(z,w)

such that

i) A(z,w)i(z,w)— V- (%(J)Vﬁ(z,w)) = f(z,w), z€, weR,
(2.1) A

ii) 9—1‘% + iwa(z,w)i(z,w) =0, z€l, weR

In (2.1), 1i(z,w) represents the Fourier transform of the pressure u(z,t), p(z) is the density,
and A(z,w) = —w?/K(z,w) where

. KR(z)
K(z,w) = K/(z,w) + iKi(z,w) = """
(B) = Koo o)+ i) = gy = n )

is the complex bulk modulus of the viscoacoustic material. The real and imaginary parts
of K(z,w) are related to the quality factor Q(z,w) by the equation

K; 1 ¥(z,w)
(2.2) K1 _=w)

K. Q(z,w) B(z,w)
where the coefficients 8(x,w) and y(z,w), which are associated with a continuous distri-
bution of relaxation times, are given by (see [15,16])

. C@), 1+wr? A sy w(n = 7).
(23) Blz,w)=1- o In T5oi? 7(z,w) = C(z) tan T+ ot

71 and 77 are given angular frequencies such that the quality factor Q(z,w) is approximately
equal to a constant Qm(z) in the range 17! < w < 7;7'. The constant C(z) satisfies the
relation

(2.4) C(z) = 2/(7Qm(z)).

Equation (2.1.11) is a first order absorbing boundary condition. Its derivation can be
found in [16]. The complex coefficient a(z,w) in (2.1.ii) can be written as

a(z,w) = M(z,w) — iN(z,w),
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with M(z,w) and N(z,w) being given by

1/2
M(z,w) = C.(2(Ct + C¥)~'/? [1 +(1+ (C.-/Cr)‘)m] ,

2 -1/2
N{(z,w) = %(2(0} +Ci)) [1 +(1 +(C.~/C'r)‘)mJ ,

and

Cr(z,w) = Ko(z,w)/p(z),  Cl(z,w) = Ki(z,w)/p(z).

The argument given in {9} can be employed to show that there exists a unique solution
(z,w) of (2.1).

Next, we formulate a domain decomposition procedure to find the solution #(z,w)
of (2.1). Let 7M:1:N=2 be a nonoverlapping partition of Q into rectangles Qje, j =
1,...,Ng, k=1,...,N,,, and set

a‘Q]k = U ;kv
s=L,R,T,B
where I"Jlfk, I‘ﬁ, I‘ﬁ and I‘}-; denote the left, right, top and bottom boundaries of the rect-
angle i, respectively.
Let us introduce the Lagrange multipliers

. = —= Thik o = B
(2.5) Tk T onT}, s=L,RT,B,
for all interior boundaries T'j) such that I';xNI' = ¢. Then, a hybrid domain decomposition

formulation of (2.1) can be stated as follows: for all pairs {j, k}, find (Tjk, Ajx) € HY Q) x
H—l/z(aﬂjg) such that

~ 1. . o
(2.6) (4355 0)a + (—Vu,-k,w) + (i %50, o)
14 2 P
+ D (el =(fodan, v € HY (D),
s=L,R,T,B
2.7 = Ak +iB5fie = M ye +iB5Tjx-, on T, s=L,RT,B,
where

$"=R, fors=1L, s*=L, fors=R,

(2.8)
s*=T, fors=3B, s"=B, fors=T.
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and

(29) {] 7L }—.{J—l }"} on r;k? {J‘)k.}={]+171"} on F]kv
{J'vk }=(]’ _1} onr}k‘ {j"k‘}={juk+1} onrik

Equation (2.7) is a Robin boundary condition, with ﬂ)k = ﬂ].‘. being a complex constant
such that Re(B;,) > 0 to insure existence and uniqueness of the solution of the local
problems in each QJL (9, 16}.

It can be shown is easy that (2.6)-(2.9) is equivalent to (2.1). Also, (2.6)-(2.9) leads
naturally to the following iterative finite element procedure. To simplify, we treat only the
case in which the partition of £ defining the finite element space coincides with 7Ne1:Nea,
Let

h={‘P€CO(ﬁ):‘r”|ﬂjh EP],](ij), lSjSNz” ISICSN,Z},

where Py ,1(Qx) denotes bilinear functions on £, and let

(2.10) Vh=V'au, Wh= > Pu(Tu)
s=L,RT,B

with P;(T'};) denoting linear functions on T},
The 1terat1ve finite element domain decomposxtlon procedure is defined as a follows.

Choose ( h ,(,\'fk’ Y=L, RTB) € V}j xW}), arbitrarily. Then, compute ("" ek (/\h 2 Ye=L,RT,B.

VJ'; X ij as the solution of the equations

(2.11)
~ 1. agn
(AT A, L 0)ag + (_vu_','.,""+l,V¢) + <zw9‘—u;~';‘ +l,<p>
p Qi P r
+ D ('\;‘L""H,‘P)r;, =(fie)a;, » €V,
s=L,R,T,B
(2.12)

AberH =g alntt — DRt +ifaNL], onTh, s=L,RT,B.
3. Numerical Examples. The domain ) was taken to be a square of side length 1 m

with the partition 7¥=1'V=2 consisting of squares of side length k = 1/N,,. The source
function f(z,w) was the Fourier transform of the function {18}

8.1) flz,t) = =28t - to)c_i('—“)’&(zl —z15)8(z2 — z24), t20,

with € = 8f2, to = .8/ fo, fo being the main source frequency; f(:c,w) was filtered linearly
between w, = 40 kHz and w* = 50 kHz. The iterative domain decomposition procedure
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(2.11)~(2.12) was employed to compute the appzoximate solution fi;'k at a finite number
of frequencies between zero and w*, and the time domain solution was obtained using an
approximation to the inverse Fourier transform. The constants Qn, 71, and 73 in (2.3)-
(2.4) were chosen to be 100, .1591 10° msec, and 10° msec, respectively, so that Qw) = Q.
in the range [fi, f2] = [107° kHz, 10° kHz).

Figure 1 shows a snapshot of the real part of &fk(z,w) at 10 kHz for a homogeneous
medium with N;, = N,, = 101 and with the point source located at the center of
2. The meditm was chosen to have density p = 1 gr/em® and relaxed bulk modu-
lus KR = 10" dynes/cm? [4], so that the reference wave speed at zero frequency is
ve(z) = /KR/p = 1 km/s. The solution shown in Figure 1 was compared with another
solution to a standard finite element discretization of (2.1) computed as described in (9]
A perfect match between the two solutions was observed.
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Figure 1. Real part of Q;k at 10 kHz. Homogencous medium
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The next two experiments were performed to test the behavior of (2.11)-(2.12) for in-
homogeneous media. First, we chose a layered model consisting of a layer {(z1,z2) :
4 < z; £ .8} having a reference velocity v. = 2 km/s and with the reference velocity
ve being 1 km/s in the remainder of Q. The source was located at (z,,z2,) = (.5,.01);
Nz, = N, = 101. Figure 2 shows a snapshot of the solution at the frequency 10 kHz. The
change in character of the solution across the change in the material properties is clearly
observable.

Finally, Figures 3-4 show time domain snapshots of the solution at .4 and .6 msec for
a corner model consisting of a region {(z1,z2) : .66 < z; < 1} with a reference velocity
ve = 4 km/s. In the remainder of §2, the reference velocity v, was 2 km/s. The source,
with a main frequency fo of 20 kHz, was located at z,, = 22, = .1; N, = N, = 120.
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Figure 2. Real part of G;‘k at 10 kHz. Layered model
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Figure 3. Snapshot of the space-time solution at .4 msec

Figure 4. Snapshot of the space-time solution at .6 msec
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