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FLEXIBLE MULTIBODY ANALYSIS
USING IMPEDANCE AND/OR ADMITTANCE MODELS
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Analizamos varias formulaciones de superelementos para modelar miembros de mecanismos. En parti-
cular, se comparan los formalismos en impedancia y en admitancia, con detaUes sobre como formular
modelos para describir miembros flexibles en un sistema multicuerpos.

Several formulations of superelements for modeling mechanism members are reviewed. The impedance
and admittance formalisms are analyzed ana compared, with details on how to formulate models for
describing flexible members in a multi body system.

Multibody dynamics problems are highly nonlinear, the nonlinearities being due to the large relative
rotations between bodies. In fact, in many cases the deformation effects inside each body are small enough
to consider that its elastic behavior remains linear in a local frame. Then, we may say that in some sense
the nonlinearities are concentrated at the joints. This fact allows the development of methods for modeling
complex elastic mechanism members based on the linear expansion of the elastic displacements field in a
basis of deformation modes of the body.

Several authors have proposed forms of the component-mode method for analyzing multi body systems [1-
13]. Most of them used vibration modes to model the dynamics of flexible multibodies with the limitation
that the bodies are modeled by finite elements embedded in the mechanism analysis program. Ref. [4-6]
also included bodies whose flexibility effects are represented by modal superposition, but they were oriented
to the modeling of multibody systems in tree topology. Refs. [9,10] presented a multi body formalism in
which also static correction modes are included to account for effects of local deformation due to kinematics
constraints. In ref. [11], geometric non-linear effects are accounted for by partitioning the elastic member
into several linear substructures (or superelements).
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This paper is based on an implementation we have presented for flexible multi body analysis in references
[12,13J. The formulation is now extended to account for linear models describing the behavior of individual
flexible bodies using either impedance or admittance forms. All terms for the transient analysis are derh-ed
from information contained in the expressions of impedance or admittance matrices. The matrices could
have been derived either analytically [14,I.5J, numerically using a finite element code or they can come from
identification from experimental measures [16J. The dynamic analysis is made in the mechanism analysis
package [18], linking the body to the rest of the system by the selected joints. The degrees of freedom of the
superelement are the translations and the rotations at boundaries, plus a given number of internal mode
amplitudes.

The inertia is computed using a corotational approximation, in which the velocities interpolation is not
completely consistent with the displacements one. This way of computing the inertia has been chosen for
the simplicity of formulation and easy interfacing with linear descriptions of individual bodies.

Let x be the position of an arbitrary point P of the flexible body; we write it in terms of variables in a
local reference frame of the body:

where Xo is the position of the local reference frame, Ro is the rotation of the local frame about the global
one, X is the position of point P in the local frame and u is the elastic displacement of P measured in the
local frame (see figure 1).

After time-differentiating equation (1) , the virtual displacement, the velocity and the acceleration at point
P result:

Ox = Oxo + R06E>0(X + u) + Ro6u

* = *0 + Rono(X + u) + Rou
x = xo + Ro(n~ + Ao)(X + u) + 2Ronou + Roii

with {lo, Ao being the material angular velocities and accelerations of the local frame and 680 the variation
of angular displacements of the local frame [12,13,19]. Rotations can also be expressed as increments with
respect to a reference value, giving



From equations (1,3), we can then compute the r ••lative displacements and slopes inside the elastic body in
terms of absolute positions and rotations:

{ u} = {Rb(X - xo) - X)}
t/J (-'lio) 0 'li

Let us assume that the elastic displacements and slopes in the local reference frame of each frame are small
compared to the unity:

lIullITXTi ' 1It/J1I ~ 1

These requirements imply a geometric linearity condition in the local frame; that is to say, although the su-
perelement as a whole undergoes finite rotations in the three-dimensional space, the displacements in a local
frame remain small enough to assure the linearity of relations between local forces and local displacements.
Because of this assumption, we will be able to express the dynamic equilibrium equations at the local frame
using impedance and/or admittance formulations, which are inherently linear.

Local values of displacements and rotations at the boundary nodes of the body will be grouped in the vector
q/oc:

In order to connect the body to the rest of the system, we will use global positions and rotations. These
quantities, evaluated at the nodes of the body, will be grouped into the vector qab.:

where xo, 'lio give the reference position and rotation, and XB, 'liB group positions and rotations at the
boundary nodes.

Global and local values are related kinematically according to the nonlinear relations above (4).

Remarks

• The choice of the local ref ••rence frame is not unique. In this paper, we develop two different models:
one based on impedances and a second one based on an admittance model of the substructure. In the
former case we use a local reference frame rigidly attached to one node of the body, while in the latter
case we adopt a reference frame whose location and orientation is defined as coincident with the principal
axes for the (fixed) reference configuration.

Both frames above are attached to the reference configuration. Many authors have used floating local
frames coincident with the current principal axes, Le. Tisserand axes. They have the advantage of
fully uncoupling the nonlinear inertia of the body; however, they require a rather cumbersome algebraic
manipulation and the access to the global nonlinear stiffness and mass matrices .

• Because of the particular form of the nonlinear kinematic relations between local and global variables,
values at the boundaries should be given by triplets of positions and/or rotations at each node. Therefore,

the vector { ;: } is in fact an abbreviate notation for:

J {Xii} } T1{x;d
J {'liid}T}T1{'liid

At nodes ii, i2, ... of the boundary, only the translation degrees of freedom have been retained to form the
superelement, while at nodes jl,j2, ... only the rotation terms are conserved.



where q is a vector of displacements and rotations at a given set of nodes of the body, measured in a local
frame; and f is a vector of conjugated applied forces and torques. Vector q groups terms at a particular
node 0, which is taken as reference node, and terms q/oc eval uated at the boundary. The spectral expansion
of the impedance can be written:

Z( 2) K· 2M· 4~ Mi
W = - w - w L... w2 _ w2

i=l I

K" is the reduced stiffness matrix, M· the reduced mass matrix and Mi the set of modal gain matrices
(note that matrix K· is singular since the body is free). Modal gains are rank-l matrices, which can be
expressed in terms of the reactions hi produced at the boundary by the (clamped) eigenmodes <Pi

M _ hihT
I - wtJli

E.g. if the modal gains have been computed from a finite element mesh, they tak ••for expression hi = (KBl-

w~MBf)<pi, where KBf' Mal are the stiffness and mass submatrices corresponding to the boundary/internal
dofs partition.

By defining an appropriate set of additional variables y, the system (9) can be transformed into a second
order equation in w2• First replace (10) and (11) into (9) to give:

r

f=fo-Lfi
i=l

(K· -w2M") q

w4hihT q
wtJli(W~ _(2)

If we now define the modal amplitudes Yi in the form:

w2hT q
Yi = (w; _ (2)JliW;

{

(K· - w
2M")q + w2 t~;Yi = f

i=l •

Jli(W~ -(2)Yi - W2h~q = 0 i= 1, ... r
Wi

Finally, by taking the inverse Laplace transform (8 = jw), we obtain the following system of second order
ordinary differential equations:



with H = [~ ~ ~ ] , and yI = (Yl Y~

Remarks

• The matrices above take the same form as in the Craig-Bampton fond"usation method as "xpect"d .

• The local degrees of freedom will be partitioned into reference node valu"s qo and boundary values q10c'
The strain energy will be a quadratic function of the boundary displacements q/vc.

q,oc is the vector of displacements and rotations in the local frame at a given set of points of the body and ft"c

the vector of conjugated applied forces and torques. The truncated spectral expansion of the admittances
can be written in any of the following forms:

B r Bi., + Gr + L -.,--., ( 19)
i.I.J-

;:m+l
..,J[ - oN'·

where B is the rigid mobility matrix, G is the (restricted) flexibility matrix. Bj is the modal mobility
matrix, m the number of rigid body modes, T the total number of modes retained in the modal expansion
(including the rigid body modes). and Gr the residual flexibilit.y matrix. The rigid mobility matrix can be
expressed ill terms of rigid body modes in the form:

B = f tPitPT
i=l Pi

B. _ tPitPt. -
Jli

The residual flexibility matrix can be computed by subtracting the modal contribution to the flexibility
from the full flexibility as follows:

The rigid body modes can be considered as modes with null eigenfrequency (W[ = 0), therefore the alternat.l'
form of the truncated admittance can be rewritten

•. + ~ tPitPTf/oc
q/oc = Grl/oc LJ II .(w2 _ ' .2)

i=l rl I """"

tPtrloc
I'i(wl- w2)



Grf,oc + L f!>iYi
i=l

9 ] {floc}
diag (I'i (wl _ ..,2» y

Then, by making an inverse Laplace transform We get the following system of second order differential
equations:

Remarks

• For reasons that will become apparent when computing the strain energy of the superelement, we will
partition the modal matrix 9 into two parts: one concerning the rigid body modes 9 R and a second
one grouping the ela.tic manes 9 E. Then, equations (30) will be written in the following form, after
interchanging rows and columns:

• In order to correctly account for the nonlinear kinematic relations between global and local variables,
the rigid body modes will be recombined to the following (canonic) form:

[~ ~1]
[~ ~2]
[~ '~r]

where Xi gives the coordinates of node i in the reference frame and where the reference frame is selected
as coincident with the principal axes of inertia of the body (clearly, in this frame and using the canonic
expression of the rigid body modes, the terms JIR i are the total mass and principal moments of inertia
of thp. body').



• The mass and stiffness matrices described in this section take the same form as in the Mac Neal conden-
sation method. Note that the mass matrix has not full rank. The Ruhin suhstrnctul'ing method. in which
a full rank mass matrix is obtained, and which furnish better COli vergence properties, can be retrieved by
taking into account higher order terms in the development of the admittance (equation (19) ).

The energy of deformation of the body can be directly obtained as a quadratic form in terms of local values
of displacements and of the amplitudes of (elastic) modes:

11" = % { q/oc } T S { q/oc }
YE YE

with q/oc the nodal displacements vector at the boundaries measured in the local frame, YE the (elastic) mode
amplitudes vector and S the reduced stiffness matrix computed in either form accordiug to the procedures
outlined in the previous sections. Note that S is in fact the suhmatrix corresponding to th" vector of
local displacements q/oc and elastic mode amplitudes YE; clearly, the reference values amplitudes does not
contribute to the deformation energy.

By taking into account equation (5) which expresses the condition of small displacemeuts and rotatious in
the local frame, the variation of generalized displacements can be computed in terms of the variation of the
superelement degrees of freedom q as follows:

~ ~] {~~~) = T lq
o 1 leB

flYE

where flea,fleB are respectively the angular displacements variations at the reference frame aud at the

boundary nodes and where the vector of superelement degrees of freedom q = { ;:~. } embodies positions

and rotations at the global frame and modal displacements.

The internal forces vector of the superelement is then calculated as follows:

By differentiating the internal forces and by neglecting the derivatives of T, we arrive at the expression of
the stiffness matrix of the superelement:

The kinetic energy of the superelement can be computed from the velocities rotated to the material frame,
in a corotational approach:



Here, Ro gives the rotation at the reference frame, attached to the elastic body at node O. The translation
material velocities are computt'd by projection over the referen~e frame, while material velocities are the

true material velocities at the considered node. The vector { R~:o} is the vector of (material) \'elocities

at the reference frame, YE are the time derivatives of the internal (elastic) mode amplitudes, and { R~:B }
is the vector of (material) velocities at the boundary nodes of the superelement which when expanded can
be written in the form:

Note that at nodes il, i2, ... of the boundary, only the translation degrees of freedom have been retained to
form the superelement, while at nodes jl,j2, ... only the rotation terms are conserved.

Eqllation (38) is not fully consistent with the approximation we followed to evaluate the strain energy.
However, it leads to accurate results in accordance to the local linearity assumption. Even when the
flexible body suffers large rotations, the material velocities pattern does not change; then, the kinetic energy
expression continues to be valid when the system configuration changes.

Inertia forces are computed by differentiating the kinetic energy. Its first variation is :

8T = -8q· Giner

= -6q . (1(. M 1(.T q - 1(. (MW + W™ + UTM) 1(.T Ii)

nl; x'j; n~ Yk)
8e'b 6x~ 8e]; 8y~)

[Ho



Then, by differentiating the inertia forces with respect to the generalized accelerations ill the global fram"
q we get the superelement tangent mass matrix M.up :

The inertia forces also depend on the velocities q. In order to get full quadratic convergence rate. it will be
necessary in some cases to compute the gyroscopic matrix of derivatives of the inertia forces with respect to
velocities. This is a non symmetric matrix, which proved to be of value for impro\'ing con\'ergence in several
examples.

0 vuo

J
vuo v>j<o Vu 8

V= Vu B 0
V>j< n

1
{::~} 1
{

Vu n}
V>j<B

VE
We note that the pseudo-damping matrix C.up is formed by adding up two terms: a symmetric and a skew
symmetric matrices which are clearly identified in equation (14). We finally remark that in this formulation,
all contributions to the inertia terms (inertia forces Gin ••• maSS matrix M.up and pseudo-damping matrix
C.uP are evaluated directly from the reduced mass matrix M, the projection over the modal basis of the
finite element mass matrix. In this way, we can very easily interface the vibration analysis code and the
mechanism analysis module. It should also be noted that, contrary to what happened with the technique
we proposed in ref.[12J, it is not necessary to include all degrees of freedom at each boundary node but only
the triplets of positions and/or rotations.

Remarks

• Note that when using the matrices derived from the admittance model (~lac Neal substructuring
method), the mass matrix takes a particularly simple form. In this case, the inertia terms can be
simplified to the form:

M.up = M = diag(p;)

Coup n. [MUo - Ul;M - vj n.T
•.. .• '

skew symm.



The equations of motion we get by following the techniques described in the prf'ceding paragraphs, are time-
integrated using a particular implementation of tbe Hilbert-Hughes-Taylor algorithm to solve mechanism
equations. This implementation of the HIlT integrator has special provisions to treat large rotations and
the equations of constraint, and is fully described in references [12,20.2IJ.

The example we considered is an articulated·free beam, initially at rest, submitted to a time· varying torque
at its base. The beam is articulated to the foundation through a hinge joint (figure 2). The beam physical
properties are: length 141.42, mass density 7.8 x 10-3, cross section 9.0, moment of inertia 6.75, 'Young
modulus E = 2100000 and Poisson ratio 0.3 .
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Figure 3: Exact impedance model (10 modes)
Angular velocity at the Ixlse of the beam
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Figure 4: Approximate impedance model (IO modes)
Angular velocity at the base of the beam
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Figul-e 5: Approximate admittance model (10 modes)
Angular velocity at the base of the beam

The dynamic response was computed using the following substructuring models:

a) An exact impedance model derived using the procedure outlined in reference [14]. The reduced model
is formed by retaining translations and rotations at the two extremes of the beam, and by including 10
elastic vibration modes, resulting in a 22 degrees·of·freedom model.

b) An approximate impedance model computed using the finite element method (Craig·Bampton substruc·
turing method). The reduced model is formed by retaining translations and rotations at the base node,
and by including 10 elastic vibration modes, resulting in a 16 degrees of freedom model. The finite
element mesh used to compute the elastic vibration modes was formed by ten equally spaced beam
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Figure 6: Nonlinear finite elements model
Angular velocity at the base of the beam

elements.

c) An approximate admittance computed Croma finite element mesh (Mac-Neal substructuring method).
The reduced model is Cormedby retaining translations and rotations at the base node, and by including 10
modes (the 6 rigid body modes plus 4 elastic free vibration modes), resulting in a 16 degrees of freedom
model. The finite element mesh used to compute the elastic vibration modes was formed by ten equally
spaced beam elements.

Results obtained using the three models above were compared to those obtained using a model formed by
10 equally-spaced nonlinear beam finite elements (reference (22)).

Figures 3 to 6 display the evolution in time of the angular velocity at the base node for the different models.
We can appreciate that results are in almost complete accordance, both from the point of view of global
and elastic motion.

Several formnlations of superelements for modeling mechanism members have been reviewed and discussed.
We have placed emphasis into comparing the impedance and admittance formalisms, and into obtaining
models that describe the flexible members behavior in a multi body analysis from the information contained •
in either of the above mentioned forms.

The impedance or the admittance expressions could have been derived analytically, numerically or from
experimental measures. In particular, we have compared results from a simulation in which a single flexible
beam is modeled in three ways:

a) Using an spectral expansion derived from the exact expression of the impedance.

b) Using an spectral expansion derived from an approximate expression of the impedance (built upon a
finite element model of the beam).

c) Using an spectral expansion derived from an approximate eXpression of the admittance (built upon a
finite element model of the beam).

Results were finally compared to those obtained from a nonlinear finite element analysis of the same problem.

The methods we have obtained allow in either case an easy interfacing to existing vibration analysis codes,



without requiring the computation of extra-terms within thcm. This simple intcrfacing is obtained thanks
to a corotationa.l formulation of the inertia terms.
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