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ABSTRACT

A finite element approach (or shape optimization in 20 (rictionless contact problem fOr two different cost.
(unctions is presented in this work. The goal is to find an appropriate shape (or the contact boundary,
performing an almost constant contact-stress distribution. The whole (ormulation, including mathematical
model for the unilateral problem, sensitivity analysis and geometry definition is treated ia a continuous (ann,
independently o( the discretization in finite elements. Shape optimization is performed by direct modification
or geometry through B-Spline curves and an automatic mesh generator is used at each new configuratioa
to provide the finite element input data. Augmented-Lagrangian techniques (to solve the contact problem)
and an interior-point mathematical-programming algorithm «(or shape optimization) are used to obtain
numerical results.

1. INTRODUCTION

Mechanical problems are, in general, strongly dependent on the domain a c «' in ••.hich they are defined.
This dependence is the cause o( one o( the main research branche in mechanica: shape optimization "ad
shape sensitivity analysis.
Due to its relevance, optimal shape design haa received special attention in the last years, when ,eal ap-
plications were possible due to development of powerful mathematical programming algorithms, efficient
numerical methods (such as Finite Elements) and their integration with solid modeling, visualization of
engineering data, automatic mesh generation and adaptivity.
Fellowing above considerations, our aim in this paper is to present a finite element approach (or an optimal
shape design (or the Signorini problem using two different cost (unctions: Totd Polea/id Eaerg, (Benedict
and Taylor (1981» and Reciprocal ERern (Haslinger and K1arbring (1993».
The presentation is or~ized as (ollows: In section 2 the, contact problem is intoroduced. The optimal shape
design problem is (ormulated in section 3 when! the shape o( the contact boundary, deined mathematicaJIy
by B-Splines curves, is taken &8 design variable. Sensitivity analysis is performed in terms of distributed
parameters, approach also known as "speed method" (ZoJesio (1981» (sectioa 4). III order to solve this
mathematical model (section 5), standard finite elements are used to approximate the contact problem and
sensitivity expressions. The finite element data (or contact and optimizatioa solvers are equiped by an
automatic mesh generator (Fancello et al. (1991» (section 6). Finally, the behavior of the contact str_
distribution associated. to each cost function is presented in sectiOll 7.

2. CONTACT PROBLEM

Consider a bounded region a in R 2 with the boundary f = feU f,U f u occupied by an e1utic homogeneous
body B submitted to surface tractions J over f I and body forces II over a. Displacementa •• take a prescribed
value ill ru (equal to zero (or simplicity) and the unilateral contact between 8 aad a fixed BUrface takes place
over fe (rG is the boundary o( a rigid (oundation .1).
Let T be the stress-tensor field, obtained by the derivative o( a function W with respect to the symmetric
gradient or displacements:

ow
T(u) = O(Vu)"

where C ill the fourth-order elastic tensor satisfying the usual assumptions or synunetry and strong elliptic; •.)'
Given a local orthonormal system (r, n) at each point z E re (tangential and outward unit normal vectolll
rHpettiv~ly), we eall tI •• = Tn· n the normal component of the rNCtion force deGnee! OIlre. Let s, s(z) ~ 0
for any z E fe, be the ini~ial gap between re and f. in the normal direction n.



yen) = {v E (HI(n»2 : v = 0 on f ••I,
K(n) = {v E Yen) :g(v);: v·n -8::;; 0 on fel,

where K(n) is the convex set of admissible displacements, i.e. compatible with the kinematical COD8traints
over fe and f ••.
Given the bilinear form an(-'·) and the linear form In('),

an(u,v) =L T(u). Vv' dn, In(v)=lb.vdn+l,·vdf,n r,

the solution of the Signorini problem without friction is given by the following minimization problem:
Find u E K(n) such that

where IK(n) is the indicator function of the convex set K(n).
Conditions for existence and uniqueness of solution of this abstract problem are thoroughly analyzed in
Panagiotopoulos (1985), Kikuchi and Oden (1988), Hlav8tek et al. (1982).

In shape optimization problems, the goal is to find an element n belonging to an admissible set 0 such that
minimizes (locally) a cost function ",(n) = .'T(n, u(n», with u(n) being the solution of a state problem (in
our case, the solution of the frictionless contact problem (3) defined in domain n).
We look for a uniform pressure distribution along the contact boundary, taking the boundary shape as a
design variable. This problem was thoroughly analyzed in Haslinger and Neittaanmiki (1988) where it is
shown that finding an appropriate cost function is not an easy task. One of the difficulties is the lack of
differentiability of the state problem (3) with respect to changes of the shape. Although in most linear
problems the mapping n. - u, is smooth, in contact problems is, «enerally, only Lipschitz continuous
(Sokolowski (1987», and the material derivative'; can be computed as a directional derivative. In order
to overcome this inconvenience we use two cost functions where no differentiation of the state relation is
necessary to calculate their sensitivity. The first cost function used in this paper (proposed originally by
Benedict and Taylor (1981» is the Total Potential EQergr evaluated at the equilibrium state:

"'l(n, u(n» = 1(W(u(n» - b· u(n» dn -1'· u(n) df .n r,

In Haslinger (1991), for a scalar Signorini-Dirichlet problem and in Klarbring and Haslinger (1993), for the
Signorini contact problem, it was proved that the minimization of this functional in certain admissible set
o and under some assumptions leads to a uniform distribution of the Dux on the contact boundary.
The second one, proposed and analyzed in Haslinger and Klarbring (1993), is given by:

"'2(n, u(n» = ~LT(z(n»· (Vz(n»' dO,



VM(O) = {v E (HI(O))' : v = 0 E flM}

with AI C f being an open subset of f such that f. nM =/: 0 and fun M = •.
We use a particular case of this functional, namely

:4 = / on f/ and Z4 = 0 on r.
flM = fu, i.e., M = r.Uf/ ~ VM(O) = V(O).

oo(z(O), v) = ( D'n(u(O»(v· n) df Vv E V(O) ,Jr.
and cost function tP, represents the Reciproctll Energy as shown in Haslinger and Klarbring (1993).
During the shape optimization procedure, changes of shape are performed by variations of the contact
boundary r. (keeping r. fixed) through a finite number of control parameters (design variables) Xi. This
implies that the initial gap 8 in the definition of K(O), depends on the control parameters Xi, i.e. 8 = 8(Xi).
Let X E R!" be the vector of design variables Xi. Thus, an optimal shape design for ClOntactproblems can
be stated as follows:
Determine X E R!" such that

0= O(X) E 0
tPi(O(X), u(O(X») ::s; tPi(O(i), u(O(i»)

an
0= {O(X) : K ::s; X ::s; X; meas (O(X» = ,81 > 0 ; IIaT II ::s; ,B,}

and u(fl(X)) is the solution of (3) at the domain fleX). The symbol 0 stands for the set of admissible
domains, where X, X ERn, ,81 ,,B, > 0 are given.
Three constraints are used to define 0; the first one ensures boundedness and domain non-dqeneracy, the
second preserves area and the third avoids spurious oscillations of the contact boundary r.. We should
remark that, for a good choice in the control parameters limits, this last constraint can be avoided in the
numerical treatment of the problem.

The objective of shape sensitivity analysis is the evaluation of how and how much a system changes its
behavior due to changes in shape of the body B. This change in shape can be simulated by a motion from
an original configuration to a "deformed" one through a known mapping:

z. = p(z,l) = z + IV(z),

fl. = P(O,I) = 0 + W(O) .

where ~' E (HI.CO(O))' is the direction of the domain variation. This means that, for a given direction V,
the variable ° is uniquely controlled by the parameter 1 E [0,6), 6 > O.
This treatment, also known as "speed method", has been introduced by Cea (1981), Zolesio (1981), and
widely discussed in Haug et al. (1986).
Let 0, be an element of the set 0, dependent on the parameter I. Let us call fl = 0,1,=0, If and u. the
solutions (,,(0) and u,(O,)) of the variational problem (3) defined in the domain 0 and 0, respectively.
With these assumptions we want to compute the material derivative of the objective function t/J at the
configuration 0:

riJ-riJ( ·V)- r t/J(O.,u,)-t/J(O,u)
- u, - •.!m, 1 .



Using this method, the expressions for the sensitivity of the two cost functions take the following forms
(Fancello et. a1., 1994):

~! = L(-T . ('\7 u'\7V)' + W divV) dO

-l(b.u+boudiVV)dO- [ (j.u+/.udivrV)dr
n Jr,

+1<Tn(V·n) dro
r.

tiJ2 = L C('\7z'\7V)' 0 ('\7z)' dO - ~ LC('\7z)'· ('\7z)'divV dO

+ ( <Tn(u)(V.n) dr - [ C('\7u'\7V)' . ('\7z)' dOire in- L C('\7u)' . ('\7z'\7V)' dO+ LC('\7u)'· ('\7z)' divV dO

-l(b.z+bozdiv~r)dO- [ (joz+/.zdivrV)dr.
n Jrl

It mllst be enforced that(u, ""n(u» is the solution ofSignorini problem (3), z = z(u) the solution of the adjoint
equation (9). Once again, we see that "'2 is once continuously differentiable as is has already mentioned in
Haslinger and Klarbring (1993).
The derivation of the constant volume constraint meas CO)= PI takes an analogous form:

meas CO) =L dO, ( meas (O»" = l V 0 n df = LdivV dO .

Up to this point the state problem, cost function, constraints, deri,oat"",; (sensitivity analysis) and even
geometry of the problem are independent of the discretization and call be considered as belonging to the
same abstract level. Following this insight, our aim in shape optimization is to control the geometry of 8 and
not specific nodes of a particular mesh. Thus, geometry is defined by topological entities where boundaries
are described by oriented straight lines, arches and B-Spline curves through a set of "control points". After
this, an automatic mesh generator provides an appropiate mesh, the set of boundary conditions and load
system.
As the boundary r. is defined by a B-Spline curve, any variation of the shape is performed by changing the
position of its control points. This defines a continuous velocity V, necessary for computing the material
derivatives (14), (IS) and (16).

5.1 ~esh (;eoeratioo.
In the automatic mesh generator (Fancello et aI. (1991», domain 0 is defined by key-points, lines, arches
and B-Spline curves. It is an unstructured frontal mesh generator (triangular elements with 3 or 6 nodes)
where size and distribution of the elements are controlled by the nodal values of a background finite element
grid generally formed by few elements. This technique, originally proposed in Peraire et al. (1987) has the
advantage that it provides an easy way to deal with adaptive generation. After an analysis and an error
estimation, the first mesh generated is now used as background grid having in its nodes the information or
the new siae of elements to be generated. We used linear triangular elements Corthe numerical examples or
this paper.

5.2 B-Splines curves.
The coordinates of a point in a B-Spline curve are given by the expression

2 n

%(~) = LLXf~:(~),
.=1 ;:=1

••.1 _ ('Pi) .•.2 _ ( 0 )
"'i - 0 ' Y". - "Pi '



where n is the number of control points, xt their coordinates, +t the blending functions and { a curvilinear
coordinate. Each control point influences only a portion of the curve proportional to the degree of the
polynomial functions 'P (quadratic in this paper).
The gradient of the coordinates with respect to the control-points coordinates xt are the blending functions
themselves, providing a natural way to define the velocity field V on the boundary described by the B-Spline
curve:

V;l(Z({» = [Vx~ z(O] = +t({)· (18)
In many situations it is useful to define, at a control point i, a preferential direction 'I in which the variation
of the boundary takes place. In this case, the degree of freedom of this control point is reduced, providing
only one design variable instead of two. The velocity V takes the form

2

V;·(z({» = EV;l(z({»,f.
l=1

Introducing in equation (14) any regular vector field V such that Vir. = V;l(z({» or Vir. = V;'(z({»,
we obtain the material derivative of .pI due to a variation of the coordinate xl or to a variation of the
coordinates XI in the direction 'I.
From this considerations it follows that if all control-points coordinates xf are design variables then m = 2n.
Otherwise, if all control points have preferential directions 'I we have that m = n, being m is the number of
components of the vector X of design variables.

5.3 F.E. approximation of the confact problem.
Denoting by I a the set of 9 indices i such that Zi e r. is a nodal point, the convex set K can be approximated
by:

Kh = {Vh e Vh : gi = g(Vh(ZI» ~ 0, i E I}.
We also call R~ the q-dimensional vector space, elements of which have non-negative components.
The finite dimensional counterpart of (3) can be written u:

Uh = arg inf J.(v.), (20)
".EK.

A p<llISibleway to solve the primal problem is to use penalty techniques. In this case, the indicator functiOll
is modeled by a regular penalty function p., (> 0 obtained from an augmented Lagrangian formulatiOll
(Bertsekas, 1982):

Uh = arg inf {h.(lI.) + P.(v.)},_.eV.
O~ A" ~ C,

P.(lIh, A,,) =iE {[max(O; All + !9(111(Zi»»)2 - AL}·
iE/ (

5.4 F.E. approximation of the shape optimization problem.
Using the F.E. approximation described in Section 5.3., we write the discrete expressions of cost functions
and their derivatives. In the case of the first cost function, (5), (14) and (16), are given by:

"11=:E I (W:-6.undO-E I / .• :dI',
.=1 Jn- -=1Jr;

';'11 = f {(-T:· (Vu1VV:)' + w: divV:)dO
.=1 Jn-
nd-E {(;"U: + 6·u' divV:)dO
•.=1)0-

-f f (j.u:+/.u: divrV:)dI'+ E f 11•• (V:·nl)dI',
•.=11" e=l Jr:



where "h E Kh solves (20) on Oh.
For the second one we recall that Zh is the solution of the approximated linear \'ariational problem

zh E Vh

an.(Zh,tlh) = J c:rnh(Uh)(tlh 'Rh)dr Vtlh E Vh,
re•

tP2h= f f. ~C(Vz,\)' ,(Vz.\)' dO. (25)
.=11n

nel

L
nel

~2h = L C(Vz,\VV':)'· (Vz.\)' dO _!L f C(Vz,\)'. (Vz,\)'divV: dO
e=! n· 2 e=1In-

+fl O'nHu~)(v':'R~)dr-f f C(Vu~VVh)'·(Vz,\)'dO
e=l r: e:::1 Jo-~L ~ ~~-L .C(Vu.\)' ·(Vz,\VVn'dO+ 2:1. C(Vu,\)' ·(Vz,\)'div~·dO
e=l n e=l n

-fL (b,z'\+b,z~divv':)do-fl (j'Z,\+!.z,\divrVndr.
c=l ~ e=l ~

Finally, the constraint,

nel

( meas (Oh»" = L l·vV,: dO,
e:::l 0'"

Now it is necessary to define Vh in Oh and a simple rule to do this is described as follows: at any nodal point
Zr the velocity Vh(zr) is given by

if the we take preferential directions 'lover the i-control points.
Roughly speaking, the above expression means that the velocity field Vh is equal to zero except in a one-
element layer along the boundary r c' This is a straight-forward form of defining Vh in the interior but not
the best in order to obtain accurate results. A layer with more than one element of thickness, will give less
errors in the integration process Masmoudi (1987).
Finally, the discrete optimization problem takes the form:

Find X E R'" solution of:
min "'h(X, Uh(X» ,

)(

M S Xi S Xi. i = I, ... , m.



where Xo is the initial value of the control points and Uh(X) is the solution of the approximated Signorini
problem at domain Oh(X).
If we replace the equality constraint of area for the inequality,

where no decrease of area is allowed, it was observed that the minimum is reached at a saturation point,
Le., the original constraint is satisfied. For this reason we decided to use inequation (31) instead of (30) in
numerical applications.
Hence, the structure of the general nonlinear optimization problem we need to solve is the following:

Find Z· E R" solution of:

min/(z) ,
"

g(z) ~ 0

where I: R" - R1 is an objective function and g: R" - Jr' defines the constraints.
There exist several methods for solving this problem (Luenberger (1973), Glowinski (1984», many of them
based on the recursive formula

where Zl:, ZI:+I are the design variables for k and k + 1 th iterations respectively, dl: is the descent direction
of the function I and tl: is the step to be done in direction dl:. In the present case we use the interior
point algorithm proposed by Herskovits (1991). In this method a feasible direction dl: is calculated using
the Karush-Khun- Thcker (KKT) first order optimality conditions. The algorithm generates a convergent
sequence of interior points with decreasing values of the objective function. Inequality constraints are
satisfied at each iteration while equality constraints are satisfied at the limit, together with the whole set
of KKT optimality conditions. During the different steps of the algorithm, evaluation of I,g and their,
derivatives with respect to the design variables is required. We will reproduce here a general procedure of
the algorithm but a complete description of it, including convergence results can be seen in Herskovitz (1991)
while some results of an implementation in Hevsukoff (1991).
A scheme of the computational procedure used to solve our optimal shape design problem can be cast as
follows:

O. Definition of geometric data, b.c., load system, control parameters,
1. Given an admissible initial point Xo. evaluate:

• Uh(XO). solution of the contact problem,
• "'h(XO. Uh(XO», meas (Oh(XO»,
• tbh(XO, Uh(XO», ( meas (Oh(XO»)" .

2. Activation of optimization algorithm. being necessary at point xl:, k = 1,2, ... ,(Mu:. Num. Iterations)
the evaluation of:
• Uh (X 1:). solution of the contact problem,
• "'h(n. Uh(XI:», meas (Oh(n».
• If necessary: "'h (XI:,UII(XI:», ( meas (Oll(n»)"

3. If convergence is achieved, STOP. Else. k = k + 1. GOTO 2.

6. NUMERICAL RESULTS
The aim of this section is to show two examples, the behavior of the contact stress distribution associated
to each cost function. In all these examples, the body force 6 is equal to zero and linear triangular elements
are used.

6.1 Example 1
Let liS have an elastic beam damped on the left and supported below by a rigid foundation :F (see Figure
1) Original configuration °and rigid foundation:F are given by:
O={(z,If)ER':O<z<4,O<If<I},



:F= {(z, y) E R2 : (y + r)2 + (z - 2)2 < r2}, r = 40.025 .
Material constants are E = 2150, /I = 0.29 and distributed force
/=(-5.18,-5.18), fj={(z,y)ER2:2<z<4, y=I}.
The initial shape produces a stress concentration over a narrow region at the center of the beam. The final

shapes for each cost function produce the normal stress distributions shown in Figure 1.
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6.2. Example 2
The Figure 2 shows the geometry of this example. The boundary f e and rigid foundation :F can be described
as fe={(z,y)ER2:O<z<4, y=O}; :F={(z,y)ER2:0<z<4, y<-0.0125z}.
Material constants are E = 2150, /I = 0.29. The boundary forces are
/=(0.0,-5.0), fj={(z,Y)ER2:O<z<6, y=2.5}.
The results obtained for the two cost functions are given in Figure 2.

The definition of geometry through geometric entities provides a great versatility on the characterization
and the control of the body shape. Moreover, this approach works as a natural "link element" between the
continuum formulation of sensitivity analysis and its approximation: given a configuration and a direction of
change in geometry, velocity V is completely defined, being independent of the finite element discretization.
Its corresponding discrete version Vh is just a consequence of a particular mesh. This approach is also powerful
in terms of software implementation since each module of the process (solid modeling, mesh generation,
analysis, adaptivity, sensitivity analysis, optimization algorithm) can be treated and, eventually, improved
as independent objects.
From the presented examples, it can be seen that the first cost function leads to a uniform contact pres-
sllre distribution, as it is known in the literature. However, for the second cost function, this property is
only reached for the second example. Our interpretation about this behavior is the following. Under the
adopted particular case, this cost function is nothing but the work of contact reactions if no other forces are
present. Thus, contact stress distribution obtained by the minimization of this functional is "weighted" by
the displacements this distribution produces along boundary re. BecaWleof the particular shape of the last
example, all the points on the boundary r. translate the same. Thus, the" weight" is constant, allowing
to reach an almost constant stress distribution. A possible alternative to improve tbis behavior is taking a
more general adjoint space VM, different from V. Unfortunately, with this attitude the differentiability of



cost function is lost and, as pointed in Haslinger and Klarbring (1993), non-smooth optimization techniques
are needed.
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