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[n this work wc in\'cstigatc numerically the conditions for the onset of a two-dimensional
\\'al'e mOlion on thc frcc surfacc of a horizontal thin liquid layer subject to a \"ertical periodic
accelCr.llion of \'el'}' small amplitudc and \'cry high frequency. '

En este trabajo in\'estigamos numcricamentc las condiciones para e[ desarrollo de un
'mm'imiento ondulatorio bidimensional en la superficie de una pelfcula Iiquida horizontal
somclida a una aceleraci6n peri6dica de muy pequeiia amplitud y muy alta frecuencia.

The stability of a liquid-air interface is a phenomenon primarily related 10 the atomization of liquids - an
important method to produce a large transfer area between a gas and a liquid, In chemical engineering,
liquid atomizers are employed in the execution of mass-t':8nsfcr operations in which a small average drop
size is required. Because the drop size is proportional to the in\'erse of the excitation frequency, it is
possible to produce \'ery small drops by means of ultrasonic atomization.

Faraday [1) was the first to notice that the free surface of a liquid becomes wa\'y when a \'ertica[
oscillation with a gi\'en frequency and amplitude is imposed to the container. He also reported tbat the
frequency of the surfacc wa\'es was one half the frequency of the forcing oscillation. Benjamin and
UrseJl [2J explained this subharmonic excitation of the surface waves analyzing the irrotational motion of
an idcal fluid when the amplitude of the imposed oscillation is infinitesimally small. From their results
they concluded that the systcm is always unstable under an imposed oscillation with a frequency equal to
twice the natural frequency of the system considered, even if the force amplitude is very small. This
unrealistic result is a consequence of the ideal behavior imposed to the liquid and of the elimination of
nonlinear terms in the mathematical formulation.

Ockendon and Ockendon (3) extended the analysis of Benjamin and Ursell [2] to small but finite
amplitudes and included nonlinear effects, and Miles [4] incOl}'orated linear damping attributable to
viscous effects. A number of experimental and theoretical studies ha\'e been carried out to study the
formation of regular patterns in system with large aspect ratio. Gu et aI., [5] studied 3-D nonlinear \\'a\'es
under \'ertical oscillations in the special case when only one spatial mode is strongly excited, and Virnig
et aI. [6] studied this problem experimentally; Milner (7), analyzed the influence of nonlinear interactions
between different waves on the s)mmetry of regular patterns and Miles [8] extended this last work. All
these ",ories deal with the equation of motion of an incompressible inviscid fluid, in which linear or
nonlinear damping terms for the amplitude are derived or evaluated.

The objecth'e of this work is to study numerically the dynamic behavior of a horizontal liquid layer
subject to ultrasonic vibrations. As a first step in the study of a three-dimensional problem, attention is
restricted to the stability of thin liquid films respect to two-dimensional perturbations. This restriction is
supported by experimental results [9] that show that the wa\'es are two-dimensional at lea.~twhen the
instability is incipient.



The numerical technique here employed is based on the finite clement method combined with a suilablc
parameterization of the free sllli"ace, This tcchnique was formerly developed by Ruschak [101 and
improved by Saito and Scri\'en [ll] and Kistler and Scri\'en 112] for simulating steady \'iscous free
surface 110\\S, Kheshgi and Scri\'en 113] studied steady viscous free surface /lOll' problems combining
this technique with the methodology proposed by Gresho et al. 114] for transient /lows,

The numerical results presented in this work show the e\'olution of a thin liquid film subject to vertical
oscillations for different values of the dimensionless numbers that characterize the system. Initially, the
liquid is supposed to be motionless and the free surface adopts a sinusoidal shape. We show the existence
of a critical amplitude of the imposed oscillation, for a fixed forcing frequency, beyond which a wavy
motion of the free surface arises.

A horizontal layer of an incompressible viscous liquid is subject to an oscillatory \'ertical acceleration
G.cos(wr) where Go is the amplitude and w is the frequency of the imposed force. The air abo\'c the
liquid is regarded as inviscid.

The liquid layer is extended on the horizontal plane (x,y) and its equilibrium height measured along the
y-coordinate is h•. Figure 1 shows the coordinate system adopted and the imposed boundary conditions.
u and v are the x- and y- components of the velocity vector, respecti\'ely; we suppose that the possible
wave motion can be described as a function of one spatial coordinate (x) and time.
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Figure 1: Schematic representation of the /low domain, boundary
conditions and coordinate system adopted

We impose an initially sinusoidal perturbation of amplitude E and wavenumber a, and we follo\\ the
temporal evolution of this disturbance. Ruid motion is governed by the physical laws of conservation of
momentum and mass. These equations are made dimensionless by means of the following scales: h. (the
mean film thickness) for lengths and .Jg/h. for time; g is the gravitational acceleration. Thus, the
equations expressing conservation of momentum and mass are

iJv 1 )- +v' V'v= -V'p +- V'·'t-(l- FcosQr g
iJr Re

V"v-O



In all cases considered here, the viscous stress,; is that of an incompressible Newtonian nuid:

,; = Y'v+ (Y'v) . The unit vector g is in the t1irection of the gmvitational force. p,r- is the
It

OJ'
- -- enters the fonnulation as a component of the gravitational field and it gives

the ratio between the external imposed forces and the gravitional forces, and Q - ;-. The liquid

density is p and its viscosity is It.

The Nal"ier-Stokes equation requires a boundary condition on every portion of the now domain. At solid
boundaries the non-slip condition is imposed,

where 11 is the outward pointing unit nonnal to the free surface and t is the unit tangent to the free,
surt"ace, = _P_- is the Weber number.

a

In the presence of a free surface. the now domain is an unknown function of time but the interface is a
material surface because mass is not transferred through it. The expression of mass consen"ation is the
kincmatic condition, that for a two-dimensional now in the plane (x.y) is

iih ah
v--+u- (5)at ax

where h - h(x,t), a function of time and one spatial coordinate only, is the local thickness of the liquid
film. .

The spatial discretization of the governing equations is based on the Galerkin/finite element method and a
suitable parameterization of the free surface [12]. The now domain is partitioned into a set of
quadrilateral elements; each element is limited by two straigth sides, formed by fixed spines of constant
x, and by tll'O cun'e sides which reOect the shape of the free surface. These elements are mapped
isoparametrically on the unit square with coordinates (S.l,), Os s,ll s 1, by means of the nine biquadratic
basis functions used in the expansions representing the components of the velocity,

X(S,l,) -

>{s",)-

}:xi<t>i(S'll) (6)
i

}:yi( t)<I>i(s,,,) (7)
i

where (xi,yi(I)) arc the coordinates of the nodes. The mesh adopted in this \\'ork has spines parallel to
the y- axis, therefore, the coordinates of the nodes located along a given spine have fixed values of x, a
fact taken into account when building the Jacobian matrix in the numerical code ([15]). In the
computational domain the free surface is a line of constant ll, (ll- 1) and it is approximated by the one-
dimensional specialization of the biquadmtic basis functions,
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YFS - 2: hi(1 )<1>i( ;'11 - 1) (8)
i-I

In equation (8), hi(t) are the coefficients of the gas-liquid interface parameteri7~1tion; they represent the
distance along a given spine from the x- axis to the free surface.

Mixed interpolation is used to approximate velocity and pressure fields. Thus we have,

~X,I) -

p(X,I) -

2: v'(I)<I>i(S,11) (9)
i'

2:l(t)\IIk(s.11) (10)
k

where v'(t) and pk(t) are unknown time dependent nodal \'alues and \IIk(r;,l1) are the four bilinear ba~is
functions defined on the standard square.

The residuals of the weighted equations of the momentum, mass and kinematic condition yield a set of
nonlinear ordinary differential equations. These residuals include the time derivatives of the \'elocity and
free surface location coefficients, whieh are Eulerian time derivatives. The tessellation generated by the
spine parameterization of the free surface constrains the nodes to move along a particular line in the space
(a spine) in order to follow the deformation of the free surface and this fact must be taken into account in
the evaluation of time derivatives ([13), [16]). Since any given node has fixed isoparametric coordinates,
time derivatives can be thought of time derivativcs at a fixed point in the (S,l1) space:

. ov .
v--+x'Vv
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In equation (11) x is the velocity of a point with fixed isoparametric coordinates and it is evaluated from
equations (6) and (7),

In order to transform the system of nonlinear ordinary equations into a set on nonlinear algebraic
equations, v and x are approximated by finite-differences. We proceed as follows,

- A trapezoid-rule corrector is used to approximate v and x in the weighted residuals of both, the
momentum equation and the kinematic condition.

- The set on nonlinear equations obtained is solved by means of one-step Newton's method ([14]).

-The second-order accurate Adams-Bashforth predictor is used to provide an accurate initial
approximation for Newton's method and an estimate of time discretization errOr [13]. The
discretization error is kept small in order to obtain a predicted initial approximation accurate
enough so that the required convergence is reached in just one Newton iteration. Pressure
coefficients are initialized with values corresponding to the previous time step.

- Following [171, the numerical scheme is started up with four backward-difference corrector steps
while a forward-difference predictor is used and the size of the time step is kept constant. This
procedure generates the information needed by the trapezoid-rule corrector and avoids the
oscillations that certain initial conditions can introduce when this second order corrector is used.

-From the fifth time step on, the Adams-Bashforth predictor and the trapezoid-rule corrector are
used. Beginning with the sixth time step. the size of the step is automatically adjusted according



to thc tactics proposcd by Grcsho ct al. [14). This adjustmcnt keeps the time discrctization error
within each stcp below a presetle\·cl.

We have evaluated two time steps. One, tH,., based on the norm of the velocity and the other,
tHh, based on the norm of the free surface coefficients. Thus, at the beginning of time step n+l,
we have

where K is the prescribed value of the norm of the error at time n+l and it is selected to hold
within bounds the total discretization error at each time step; ~~Iis the norm of the local time
truncation error, at time n, based on the velocity coefficients and evaluated according to [14] and,
similarly, 11)~1is the norm of the local time truncation error based on the norm of the free surface
location coefficients. Following [18], we have chosen

in order to attain accuracy in the calculations. Details concerning the time step selection are
discussed in [14].

As we have already mentioned in the introduction of this work, we are searching the conditions under
which it is possible to produce a wave motion at the air-liquid interface of a thin liquid layer, when the
dimensions of the system are large compared to the wavelength of the final pattern developed.

We have carried out computations in order to study the influence of the initial condition imposed to the
free surface andthe an1plitude of the external acceleration.

1) Influence of the initial condition.
At t - 0 we impose the following sinusoidal perturbation on the free surface:

Therefore, two parameters can be varied in order to study the influence of the initial perturbation: the
amplitude £ and the wavenumber Ct. We fix £ in a value large enough compared to the final wave
amplitude expected and vary a . The mesh is refined near the free surface in both tessellations. The
dimensionless numbers that characterize the behavior of the system adopt the following values:

Re - 98.99
We-J _ 7.14

F - 7251
Q - 1904

They result for the special case in which the amplitude (a.) of the imposed acceleration is equal to
2 x 1O-6m and its frequency (00) is 3 X 104 Hz; 11- 10'" Pa.s, p - 103 kg/m3 and 0 -70 x 10-3 N/m.

Our numerical results (that are not illustrated here) show that the behavior of the system depends on the
wavenumber of the initial excitation. In fact, for a l!: 5, the amplitude of the disturbance monotonously
decays until a final flat interface is achieved. Although results are not depicted here, the computations



performed predict the same behavior for largcr values of the wavenumber. (Numerical evaluations have
been carried out for a s 20).

For a = 3 , the amplitude of the initial disturbance decays but not in a monotonous way. In fact, when
I ••2.5 a ~mall increase in the maximum film thickness is observed. Nevertheless, our results suggest
that a motIOnless honzontal fIlm should be expected at larger values of time.

For a-I and a = 2, the amplitude of the initial perturbation increases. In order to determine if these
results are a consequence of the external vibration imposed, we have followed the evolution of the same
initially sinusoidal free surface when gravity is the only external force acting on the system, i.e. when
Re = 98.99, We-I = 7.14 andF = O. The numerical results obtained in this case (that are I'IOtdepicted
here) show that the amplitude of the initial disturbance imposed to the gas-liquid interface decays for any
I'alue of a; therefore, the dynamic behavior of the system is different whether or not a vertical periodical
acceleration is imposed to the liquid. When u s 2, the evolution of the free surface profile shows that the
wavenumber of the initial perturbation remains constant throughout the computations; from very simple
calculations it is easy to verify that the frequency of the growing perturbation is much smaller than the
frequency of the external force. Since we are interested in the description of surface waves coming from
a parametric excitation, i.e. waves of high frequency, we have not followed these computations for larger
values of time in order to determine if a time-periodic or an unstable solution results for these values of
the wavenumber. Instead we have studied the influence of the amplitude of the vertical acceleration on
the evolution of an initially small disturbance (u - 20).

The wavenumber of the initial perturbation imposed to the free surface is fixed in 20 and its amplitude, E,

is equal to 0.01. Liquid density (p) is equal to 103kg/1II3 , liquid viscosity (~l) is equal to 10-3Pa.s, the
surface tension of the gas-liquid interface (0) is fixed in 70 x 10-3 N/m, and the thickness of the levelled
film is 10-3

11I. All these parameters are kept constant in these computations. Changes in a. imply
changes in F; if a. increases so does F. To increase F under the aforementioned conditions, implies to
increase the strength of the imposed force respect to viscous, capillary and gravity forces.

The time evolution of the initial disturbance is shown in Figure 2. According to these results, there exists
a critical value of F beyond which a wave motion arises.

When F - 7251 (a. - 2 x 10-611I), the initial perturbation rapidly decays and a quiescent flat film is finally
obtained. The time-evolution of the velocity field for F - 7251, which is no depicted here, shows that
only near the free surface the motion of the fluid is important and that the fluid remains almost motionless
at a I'el)' short distance from it. Although surface velocities arc quite large for t -+ 0, they decay fast as
the film is being levelled.

Similar results are obtained for F - 14,502 (a. - 4 x 1O-6m) . When F - 21,753 (aD - 6 x 10-611I) the
amplitude of the initially imposed disturbance decays but the evolution of the film thickness does not
present a regular pattern at the beginning of the process. In this case, when a time-periodic state is finally
developed, the result is that the free surface adopts a wavy shape completely different to the initially
imposed one. The amplitude of the standing wave is smaller than the amplitude of the initial perturbation
and from simple calculations it is easy to verify that its circular frequency is about 95,OOOrad/s, a value
vel)' near to half of the frequency of the imposed acceleration.

If F is further increased (F-29,OO4(a. _8xlO-6m)) the system experiments a very short transient
during which the maximum film thickness increases and the initial sinusoidal shape imposed on the free
surface is also modified as it is illustrated in Figure 2. After this initial period, the disturbance evolves
until a time-periodic state is established. In this case the standing wave has an amplitude greater than that
Or the initial perturbation and its frequency is, again, approximately half of the frequency of the imposed
acceleration.
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Figure 2: Prediction of the time-evolution of the film thickness at x - O. for different values
of the amplitude of the imposed acceleratioll. Re - 98.99. We-' - 7.14 and Q - 1904.

Figure 3 illustrates the features of the time-periodic state developed in this case. Sequences of free
surface shapes depicted here show that more than one mode is excited in the time-periodic state. a resull
that agrees with theoretical results previously reported ([5], [7J. [8]). In this figure Et is the



dimensionless kinetic energy, £,/£,(0) is the ratio between the surface energy at time 1 and the surface
energy at the beginning of the computations. They are e\'aluated with thc following exprcssions
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Figure 3: Relcvant features of thc time-periodic state dcveloped for Re - 98.99, We -I - 7.14,
Q - 1904 and F - 29,004.

When F - 36,255 (a. - 10-51/1), the numerical calculations carried out in this work point out that a time-
periodic state is not attained in this case (see Figure 2). In fact, the sequence of frcc surface shapes
obtained (that are not illustrated hcre) shows that the initial perturbation imposed to the free surface
evolves into a number of irregular waves of high spatial frequency; the amplitude of some of these waves
grows without bounds and, finally, the film rupture is produced.

A schematic representation of the behavior of the liquid film under study is portrayed in Figure 4.
According to our numerical results, there exists a critical value of F (Fe) at which a time-periodic wavy
state bifurcatcs from the Oat steady-state. When F(Fe, disturbanccs of small amplitude decay while if



F)Fc• solutions approach a time-periodic state with amplitudes depending on the amplitude of thc
external force. The frequency of the dominant standing wave is about one half the frequency of thc
Imposed acceleratIon and secondary waves arc also detected. HOIve,"er, if F is further increascd the
amplitude of the disturbance grows until the rupture of the liquid film is produced. '
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Figure 4 Domain representation of the time-periodic states predicted by the finite element
solutions for Re - 98.99. We-1

= 7.14 and Q -1904.

The numcrical results reported in this work give a good qualitative description of the beha,·ior of a thin
liquid film subject to a vertical oscillation. The main assumption we have made is to suppose that waves
of small amplitudes are, at least whcn the instability is incipient, two-dimensional, a hypothesis supported
by experimental evidences. This is the first time. up to our knowledge. that a numerical solution of the
completc set of equations and boundary conditions is reported.

In agreement with experimental results. our results predict the existence of a critical value in the
amplitude of the imposed acceleration beyond which the motion of the liquid arises. They also show that
time-periodic solutions are possible in a range of values of this parameter. In fact, if the amplitude is high
enough. the system becomes unstable without passing through a time-periodic state.
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