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RESUMEN: Presentamos estimadores a posteriori del error adecuados para refinamiento automdtico
de mallas en la evaluacion numérica de la sensibilidad por medio del método de elementos finitos. Se
consideran los problemas de difusion (tipo Poisson) y de elasticidad, y se prueba la equivalencia entre
el error y el estimador propuesto. Se ezpone brevemente la aplicacion a la sensibilidad de forma.

ABSTRACT: We present a posteriori error estimators suitable for automatic mesh refinement in
the numerical evaluation of sensitivity by means of the finite element method. Both diffusion (Poisson-
type) and elasticity problems are considered, and the equivalence between the true error and the pro-
posed error eslimator is proved. Application to shape sensitivity is briefly addressed.

INTRODUCTION

In the last ten years or so, computational mechanics has evolved, from beirg essentially an analysis tool, to
an integrated part of the design process. Sensitivity analyses, which play a central role in the optimal design
of mechanical systems, are becoming standard and can nowadays be found even in some commercial finite
element packages (see, e.g., [6]). The recent World Congress STRUCTURAL OPTIMIZATION’93, held in
Rio de Janeiro (August 2-6, 1993), has been a clear example of the many relevant applications that can be
faced with current algorithms and computers.

The purpose of the present paper is to briefly present a posteriori error estimators specifically designed for
sensitivity analyses, which can be used to automatically adapt the mesh so as to increase the accuracy of finite
element computations. We will concentrate, in this first incursion into the problem, in error estimation for
the so-called direct method of evaluating the sensitivity, and the variations in the design will be restricted to
the choice of material parameters. Also, the governing equations considered are linear and time-independent.
Our scope, however, covers many situations of technological interest, such as steady thermal fields, torsion of
cylinders, and linear elastostatics. Error estimation in shape sensitivity analyses is also considered. Further
extensions, such as Kirchoff or Reissner-Mindlin plates in bending, are left for future work. Our conclusion
from this first work on error estimation in sensitivity analyses is that, if a suitable estimator is available for
the error in the solution itself, then it is not difficult to adapt it so as to estimate the error in the derivatives
of the solution with respect to the design parameters.
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AN ERROR ESTIMATOR FOR POISSON-TYPE PROBLEMS

Preliminaries

Let us consider first the following model problem

=V - (k(p)Vu(p)) = f(p) (1)

inside a domain Q with (polygonal) boundary d9Q. For simplicity, we will assume homogeneous Dirichlet
conditions on 9. The solution u(p), where p is a design real parameter, can be interpreted, e.g., as the
temperature. In this case, k(p), with known dependence on p, is the thermal conductivity and f(p) a source
term. An analogous equation appears in the torsion of a cylinder of arbitrary section and in electrostatics.
The variational formulation of (1) is: Find u(p) € H}(Q) such that

[ Hp)vup)-ve = [ ow vv e ni@) )
Q 0

where H}(Q) is the Hilbert space of square-integrable real functions defined over Q, with square-integrable
derivatives and zero trace on 89Q. In this way, we obtain a function u(p) for each p in some real interval. It
is known that, if k and f are smooth functions of p, so is the solution u itself. We will denote by #(p) the
derivative of the solution u with respect to p, which is again an element of H3(Q) and satisfies the following
variational equation

Lo vo= [ Lo [ %pvum-vo voe mim) ®

Higher order derivatives of u are obtained in the same way.

We now consider the finite element discretization of (2) and (3). Let Vj, be a finite-dimensional subspace of
H}(Q), and let us define as usual us(p) as the element of Vi which satisfies

| pvunm)- vo= [0 voew @
fe] Q

Denoting by #a(p) the derivative of u;, with respect to P, which is also an element of Vj, we get the following
equation for up(p)

L K(p)Viin(p) - Vo = /n j—f,u:)v— /9 g(p)vmp)-w Vv eV )

where dk/dp, df /dp stand for the derivatives of k and J (which in general will depend not only on p but also
on the space variables) with respect to the parameter p.

With the previous definitions, it is well-known [4] that, if V}, is a finite-element space and we consider a regular
family of triangulations 7j, parametrized with the diameter A of the largest element, then |u(p) - un(p)|;.0 =
O(h*), with & the order of the finite element approximation and |- l,0 the seminorm of H}(2). As shown
in [7] under weak hypotheses, a similar estimate holds for all the derivatives with respect to p; i.e., for first
order sensitivity, |4(p) — 4a(p)l1,0 = O(A*). It is remarkable that taking derivatives with respect to the
parameter implies no loss of accuracy in the spatial approximation.

A posteriori error estimation for 4,

The a priori error estimates presented above, being of global nature, cannot be used to locally refine the
mesh. After a first analysis, with a rough mesh 7y, a local error indicator 7y is needed, for each element X
in Tho, 50 as to decide which elements are too big to accomodate spatial variations in the exact solution and
then construct an improved mesh 7;;. As the exact solution is obviously not known, nx must only depend
on the already computed approximate solution, and on the data of the problem.
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For problem (4) several such indicators exist to determine elements where the difference u — uy is largest.
We consider here the Babuska-Miller-type [2] error indicator, given by

nk = xm/ IR+ 3 111/1 (K*Vu} - k~Vay] -nf? 6)

ledK
wher |K| is the measure of element K and [{| the measure of an edge ! belonging to the boundary 8K of
he supraindices + and — indicate the limits

FEx) = lir3+ f(x % sn) n: outward normal )

and R(u,) is the residual of the differential equation,
R(up) = V- (kVup) + f 8

It can be proved that 3", n% is equivalent to |u ~ u;.]f'n, and computer experiments have shown that nx
can be coupled with mesh-refinement or remeshing procedures so as to obtain improved meshes, in which
the error is more homogeneously distributed than in the original one.

Remark: It is quite usual to neglect the jump term along element edges in (6), and consider only the residual
term. This procedure can only be justified when the exact solution does not contain singularities [3, 8].
Let us now turn to the original contents of this section and build an a posteriori error indicator for 4 — .
We only sketch the main ideas here, a more rigorous presentation is included in Appendix A.

Consider problems (3) and (5), their left-hand sides are equivalent to those of (2) and (4), and thus one is
tempted to use some modification of the error indicator (6). To do this, we must first construct the differential
equation for %, so as to be able to evaluate its residual for (6). Also, the jump term k* Vu ~k~Vu, in
(6) arises because the differential equation contains the divergence of kVu. Integration by parts in (3)
immediately yields the desired result

-V (@il = V- (F@vun) + L) ©

At first sight, we are now in position to write down an error indicator £x for & — s, something like
2

=11 [ 1o+ T [ |(kwin+ jﬁv,‘h) -~ (kvins Z_:Vuh>‘] I
[{:729
Qin)= V- (ka,, + :_:v,,h) N %

and we would be almost right, but a closer look at the equation for 4, (Eq.5) reveals that it is not an
approximation to (9) but instead to

-V (V) = - (FETH0) + Lo (1)

where the approzimate solution u, appears in the right-hand side. This observation is quite natural: As
the exact derivative of the approximate solution ux(p) (+/(p) in Eq. 11) is not in general an element of Vj,
what we obtain as the solution of (5) is an approzimation to the derivative of the approzimate solution. This
difficulty can again be easily avoided, just because the difference between the right-hand sides of (9) and
(11) can be bounded by some multiple of |u — u|1,0, which can in turn be bounded by (¥, n}()l/ %, The
final result is that an adequate indicator for |i — @y, is (0} + £%)V/2. In other words, for the refinement
procedure one must use not only £k, related to &(p), but also the error indicator for the solution u{p) itself,
K-

Sensitivity of cost functions or constraints

In most cases, it is not the derivative 4 what matters but instead the sensitivity of some real objective or
cost function ¥. Also, in problems of optimal desngn, the derivatives of the so-called inequality constraints
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are needed during the optimization process. We are thus faced with a real function ¥(p,v), defined over
R x H{(f) (or some suitable subset), and we must evaluate its derivative with respect to p with v subject
to be the solution u(p) of the Poisson problem (1} or (2). We will denote by ¢ the composed function

¥(p) = ¥ (p, u(p)) (12)

In this paper we are dealing with the so-called direct method for evaluating ¥. Its derivation is straightfor-
ward: Differentiating (12) we obtain

¥(p) = Dy ¥(p, u(p)) + [D2¥(p, u(p))] - (p) (13)

where D; denotes the partial derivative with respect to the i-th variable, and
. def . 1 . .
(D2%(p, u(p))] - i(p) ¥ lim — (¥(p, u(p) + @il(p)) - ¥(p, u(p))]

It should be clear that D, ¥ is a linear function from H}(Q) into R. From (13) and (9) or (3) the desired
sensitivity ¢ is obtained. In the numerical realization, ¥ is computed using (13), with u(p) and u(p)
replaced by their approximations ux(p) and 7, (p).

A posteriori error estimation for sensitivity of cost functions

We now look for a suitable error indicator for 4, so that we can adapt the mesh and reduce the error |¢ - 'Z’hl-
Much of the work has already been done, we first use (13) to write

%(p) — ¥a(p) = D1%(p, u(p)) - D1 ¥(p, un(p)) + D2¥(p, u(p)) - &(p) — Do ¥(p, un(p)) - un(p)

The function ¥ is now assumed to be twice continuously differentiable, its second derivative with respect to
the i-th and j-th variables will be denoted by D?]-'II. Performing a Taylor series expansion we get

¥(p) - $a(p) = D3 ¥(p, un(p)) - (u(p) - us(p)) + DLY(p, un(p)): (in(), u(p) - un(p)) +

+ D2¥(p, un(p)) - (4(p) - in(p)) + h.o.t. (14)

where h.o.t. stands for terms which are of higher order in u—uy and @ — 4. Also, we have used the notation
D%, ¥:(v, w) to denote the application of the bilinear form D3, ¥ on the two elements » and w of H}(Q). It
is now clear from the previous equation that, as the derivatives of ¥ are bounded, if we reduce the error in
u and 4 we will automatically reduce the error in . So, in general, taking into account the actual form of
the cost function ¥ does not modify our indicator (nk + €4 )1/2.

If the error indicator (5% + £2.)Y/2 is used, and thus a sequence of meshes is constructed with increasing
accuracy for up and %4, no problem should appear with the accuracy of ¢. In fact, as proved by M.Masmoudi
using an argument quite similar to the Aubin-Nitsche trick (see [7]), in many cases |y — ¢u.l converges to
zero not with O(h¥) but with O(h?*), where k is the degree of the finite element space.

Remark: If the cost function ¥ can be written in integral form, i.e.

¥(w) = [ o(u,93)

where we have assumed for simplicity that there is no explicit dependence on the pafa.meter, then the leading
terms in the Taylor expansion of 4 — 4, are

9 =9n = [ [Digi = in) + Dag- (i - in) + Dlrgus(o - wa)+

+D§29:(Vuh, V(u=-up))+ szg (A V{u—up) + (v~ uh)Vuh)]

As a consequence, if in some region of the domain one of the derivatives Dhg, D2g, D},g, D%,g or D39
has a sharp peak, then the elements in this region should be refined to keep |1* — 44| under control. As
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an informal example, if g(u, Vi) = u™, with m a positive integer, then Dig = mu™ !, Dyg = 0, D?,g =
m(m — 1)u™~2, D%,g = 0 and D},g = 0. Thus, if m > 2 it could be necessary to refine the mesh in regions
where |u] (in practice |u,]) is large.

EXTENSION TO LINEAR ELASTICITY

The extension of the results of the previous section to linear problems in elasticity is straightforward. In
this case, we must deal with the following differential problem: Find u € [H}(R)]™ such that

R(u(p)) = div o(u(p))+ f(p)=0 (15)

o(u) = Mp) (div u(p)) 1 + 2u(p)e(u(p))

holds in the weak sense, where [H(Q2)]" is the space of square-integrable vector fields with square-integrable
derivatives and zero trace on the boundary, A(p) and u(p) the Lamé coefficients which could possibly have
spatial variations and depend on the parameter p, 1 the identity tensor, e{u) the strain (the symmetric part
of the gradient of u), and n the number of space dimensions.

The corresponding variational formulation is
[ o = [ s)-v vo e i@ (16)

and the approximate solution u,(p) is obtained restricting this variational problem to a finite-dimensional
subspace Vj, of [H3(Q)]".

We need also to construct a differential equation for the derivative %(p), namely (ommiting the argument p
for brevity),

daf _
dp ~
where it is assumed that u has been previously obtained from (15) and the only unknown is @. Turning to
the variational form of (17), it reads

Qi) = div (Adiv(2)1 + 2ue(w)) +V(3—:div(u)1 + 2%6(“)) + 0 7)

/a(ﬁ):e(v) =/ [ﬂ cv - E(u):e(‘v)] Yv e [H{Q)" (18)
Q a Ldp
where we have introduced the operator
def dX . dp
I(u) = dpd:v(-u)l + 2dpe(u)

The discrete problem to be solved in order to find the approximation i, to 4 is the restriction of (18)
to Vi, with u in the right-hand side replaced by u,. Higher order derivatives and its approximations are
constructed in the same way.

The a posteriori error indicator for u, again of the Babuska-Miller type, is

2 _ |1 2 + _ - 2
= 1K) [ 1R+ > [l = o) ] 19)
and the error indicator we propose for # is again (n% + £%)Y/? with
¢k = K| / QP+ Y 1 / [(o(in) + Z(ua))* = (o(in) + B(ua))™] n” (20)
K 18K ]

In Appendix B we include a mathematical result that éupports the use of these indicators for error estimation.
The proof is completely analogous to that of Appendix A for Poisson-type problems.




A _posteriori error estimation in sensitivity analysis 493

Once the error indicator has been constructed, previous considerations of concerning the evaluation of
derivatives of cost functions or constraints remain valid.

THE POTENTIAL ENERGY AS COST FUNCTION

One frequent design criterion is to minimize the total potential energy II(x), which for Poisson-type problems
is given by

) = Bw) - T = 3 [ k1va - [ u (21)

where E(u) is the “internal energy” and T'(u) the “work of external actions”. Let us show how the error in
this cost function and in its sensitivity can be estimated in terms of the indicators nx and £x previously
introduced.

Let e = u — uy, é = & ~ &;. We already know that

eia<C E k

KeTy

lefa<C Y (nk+&k)

KeT,
Now notice that

E(u) - E(un) = %/f;k (IVuf? - [Vupl?) = %/ﬂk(Vu— Vup) (Vu + Vay) =

=E(u—up)+ / kVeVuy = E(u ~ up)
Q
The last equality follows from the orthogonality of the error. We have then
E(w-Ew) =3 [ KVel < Clella < C 3 ok (22)

KeT,

Similarly, for T we have

T(u) - T(up) = / fe= / kVuVe = / E|Ve? < Clefig < € Z %
K e‘l'n

and thus

M(v) - Mws)l <C Y nk (23)
KeT,

Consider now the sensitivity of the potential energy. For IT we get

|E(w) - E(ws)| = < C(lelia +2leh.aléle) <

1 fdko 3 .
3 Qd—I’-IVe[ +/kVeVe

1 L
<C (‘elg,n + Elelg,n + '—"leﬁ,n) [(1 +at+— ) %+ GEK]
KE'I;-

() - T(um-l f(rer L)<

= / (kVeVé + kVéVe + ﬁVe*:Vrs)
Q dp

l/ (kVuVe + kVuVe + d—Vch)

<c Y [(1+a+ )n?{+ae}(]
K€ET
with o any positive number. In the derivation, we have used the property

/ (kVéVv+ g—lEVer) =0 Yv eV,
) dp
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We have thus proved that

-t 3 [(1ra+ L) rk+agi] (20

KeTy,

Notice that this results predicts that the order of convergence of I, to IT doubles that of Uy to tiy, in
accordance with the a priori estimates of [7). It does not seem possible to avoid the calculation of €x (and
thus of @) without stronger regularity assumptions on u. This is quite surprising since, as is well-known,
the evaluation of 1T does not require the computation of #.

Similar results can be found for linear elasticity.

SHAPE SENSITIVITY

We will show now how our error estimation procedure is to be used in shape optimization problems. Consider
a “velocity” field V' defined on @, such that the perturbations in shape to be considered are obtained moving
z € Qtoz+pV(z). The deformed domains will be labeled 2+ pV. We first define the family U, of solutions
of the Poisson problem

-V (,VU,)=¢q in Q4 pV (25)
Up=0 on 8(f2+pV) (26)

and now introduce u, as the translation of U, to 2 by

up(2) = Up(2 + pV(z))

It is well-known that u, satisfies the variational equation

/ K(G;1Vu,) - (G5! Vu)det(G,) = / qudet(G,)  Yw € HA(Q) (27)
0 o
where G, is the tensor
av;
(Gp);; = b +P5‘x—i

In shape optimization problems we need to evaluate du,/dp(p = 0) = 4. But, from (27), we can immediately
use the results of the second section, with k(p) (now a tensor) and fp) given by

k(p)
f(»)
dk/dp and df /dp are obtained by direct differentiation of these expressions. The error estimator of the

second section can thus be applied without change, and the theoretical results in Appendix A remain valid.
An a posteriori error estimator for shape sensitivity in elasticity can also be found analogously.

det(G,)xG; TG ! (28)
det(G,)g (29)

FURTHER REMARKS AND CONCLUSIONS

We have presented a posteriori error indicators for diffusion and elasticity problems, which can be used to
refine the mesh in finite-element sensitivity analyses. To our knowledge, this is the first paper presenting a
systematic approach to improve the accuracy in this kind of problems. Qur methodology applies also to any
linear problem for which a residual-based error indicator exists. The main steps to build the extra-term £x
to be added to the original error indicator nx are:

1. Write down the differential equation for .
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2. Replace, in the expression of the error indicator 7, the residual and jump terms so that the resulting
£k is consistent with the differential equation for u.

In nonlinear problems, as the differential equation for % does not in general contain the same differential
operator as that for u, a suitable error indicator (instead of 75 ) must be used in Step 2." Also, the algorithm
can be easily extended to handle more general boundary conditions that those analysed in this paper.

From the theory, it is clear that the relative weights of 7x and £x cannot be predicted. In fact, (nk+CEL P12,
with C arbitrary, would yield the same theoretical bound. We thus propose, as a practical algorithm, to
refine in those regions of the mesh where either ng or &1 are large (with respect to their mean values). The
remark in 2.4 should also be kept in mind.

We would like to finish this paper explaining why we have not included any numerical result. As our
exposition was kept at a general level, numerical applications will be reported in future papers. The point
is that it is quite trivial to show that the error indicator 77k is insufficient to conveniently adapt the mesh in
sensitivity analyses: Just consider the case f(p) = pfo, k(p) = ko for the Poisson problem, with Jo a given
function in L?(2) and ko a real number, and try to evaluate 4(0). It is clear that u(0) = u(0) = 0 and thus
Nk = 0 for every element K. Also, %(0) is in this case the solution of

—koAu(0) = fo

which is not in general an element of V, and thus ux(0), obtained from (5) will contain an error that is not
seen by ng. In fact, ng would say that any mesh is perfect!

Appendix A

In this appendix the rigorous proof of the equivalence between the true error and our error estimator is sketched,
considering Poisson-type problems. It is as usual assumed that the triangulations of Q are always regular (see [4]).

Theorem A1l (Error estimation for u;): With the definitions and assumptions of the second section, there exist
two constants C} and C; depending only on the minimum angle of 7; and on the bounds of k(p) = k(p,z) such that,

1 1
G Y nk)  <lu-wmhasC( Y nk)?
TeTh TeTh

Proof : The proof will not be given here because it is essentially identical to that in [9] ( see also 1).o

Lemma Al : For v € H} and v, € V; we have the following error equation,
Ja k(i — Wn)Vo + [ bV (u~ uy) Vv =

Yren JrQu—vn) + § Tecor 1l f; Jelv ~ va)
where J; = [(kVi + (dk/dp)Vur)* — (kViy, + (dk/dp)Vus)~] |,
Proof : Using the orthogonality of u — uj to Vj and integrating by parts in each element we have

Ja RV (s~ un)Vo + [ kV(u— up) V(v —v3) =

Lren Jr R(v = va) + § Tpeor [ [{(RVun)* ~ (kVur)~] - n(v - v)
and the lemma follows differentiating with respect to p.0

Theorem A2 (Error estimation for i,): With the definitions and assumptions pf the second section, there exist
two constants Cy and C;, depending only on the minimum angle of 7}, and on the bounds of k(p) = k(p,z) such that,

o Tk + &M <li-inha<Of 3 0k +e0)}

TeTh TeN

Proof : Let w € H} be such that

/ EVwVy = / fo—~ / EVup Vo Vv e H}
1] 1] e
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We proceed to estimate |t — w|i,q

ajt — wﬁ'n < / kV(u— w)V(e—w) = —-/ EV(u - ua) V(i — w) < Clu— ushalt — wlia
n Q
where a = infak. Using Theorem Al we have
} 3
li—wha<Clu-usha<C ( > 'ﬁ')
TeTh

On the other hand, in view of the relation
/lcV(w - 4p)Vep =0 Yo € Vi

we have that

alw-usla s [ Vw—in)+ Tlw=ia) - (v in)

n
where v’ is the Clément interpolated of v (5]. Now, integrating by parts, we have that
afw=irllas 3 [ Qlw—un) - (w-in)]- 3 [(Tur+ kVin) nl(w - in) = (w = in)']
Ten T teeT !

and using the usual properties of the Clément interpolation [5]
lls = wlleaqry < CITRNVull )

llu = wlllzaey < CIEITull gy
we obtain the right inequality of the theorem.

To prove the other inequality we follow the ideas developed by Verfiirth [9] (see also [1]). We use the error equation
of Lemma A1 with a particular choice of v € H}, and p € H}, satisfying,

frQe=1TNQN ey » YTET (A1)
Jodw =1tTenlldag . Ve (A.2)

and
[l < Cor (A.3)

It is not difficult to see that such v and ¢ exist. For example, if linear elements are used, ¢ can be taken as
a continuous piecewise quadratic polynomial vanishing at every vertex of the triangulation and v as a continuous
piecewise polynomial of degree three {in fact, quadratic augmented with local bubbles). We refer to [9] for the details.
Now, Lemma Al together with (A.1), (A.2) and (A.3) yields,

Ya=% /T (kVé + kVe) - Vv < Clleh a+ el T €31

TeT TeTn TeTn

and using the theorem Al we have,

. i
3 +€2) < Clleha + léla) { 3 +e%)}

TeTn TeT
which concludes the proof of the theorem.O
Appendix B

We now state without proof (as it is analogous to that of Appendix A) the equivalence of the true error and the error
estimator for elasticity problems.
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Theorem B1 : With the definitions and assumptions of the third section, there exist two constants C) and Cj,
depending only on the minimum angle of 7, and on the bounds of A and 4 such that,

af Y (nk +EA?()}4 Sli-mha+tl-uhagsCf Y (nk +&0))}
Tet Ten
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