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A review of stress computation methods is presented for finite element displacement models. 1bey
include an original stress smoothing method. called "averaging + extrapolation". based on the idea
of "optimal stress extrapolation points"; it is valid for general two dimensional meshes composed
of iso-parametric elements of degree up to three. 1be smoothed stress field is used to derive an a
posteriori error estimator measured in the energy norm. Numerical examples in plane elasticity are
presented to show the reliability of the error estimator and to introduce its use in adaptive meshing.

For displacement models. stress computation is the most important post-processing operations. The methods of stress
computation can be classified into three main types according to their order of complexity [I]:

1. direct computation;
2. direct computation followed by smoothing. including averaging, extrapolation. fining. projection. iteralion and
other post-processing operations;
3. indirect computation by using specially constructed test functions, called extraction functions.

Methods of type I) and 2) are simple and straightforward. 1bey are available in most finite element softwares.
Methods oftype 3) are recent and not yet generally available. While the laner methods require somewhat more work
in the post-solution phase than methods of type 1) and 2). the additioitaI work is more than compensated for by the
high efficiency of these methods. allowing the use of mostly fewer degrees of freedom to get required levels of
accuracy.

In the following paragraphs, the direct computation procedure will be defined. A review of the methods of type 2)
will be given. For more details on the methods of type 3), see [2].

The finite element solution u, of a displacement model is represented by the following relation:
u, ••Nq

where u. is the displacement field, N the matrix of shape functions and q the nodal displacement vector.
The finite element strain field is easily derived:

where L is a differential operator. B •• LN is the strain-nodal displacement matrix. The direct finite element stress
field is computed by using the following formula

0, ••Ha, •• Tq (3)



The global nodal displacement vector q is obtained by solving the following system of equations
Kq •• g

The finite element stress field cr. directly computed from (3) is generally discontinuous across element interfaces.
It does not satisfy the equilibrium conditions neither in the interior nor on the boundaries of the structure. It is
reliable only at the global level, in a certain mean sense.

Stress smoothing has long been a source of difficulty in the analyses based on displacement formulation. A review
of stress smoothing methods used in the early finite element applications can be found in [3]. Even now the problem
has not yet been solved with full satisfaction. Some stress smoothing methods. which are or have been largely used
in the practice. will be presented below.

In many circumstances, such as in graphical representation of finite element stress fields and in estimation of
discretization error, it is interesting to obtain a continuous stress field that is expected to be more precise than the
direct one. This can be achieved in two steps.

First, the key point of the method is to estimate the stresses at certain points} () •• I ..... m.o')' They are generally
chosen as nodes corresponding to a degree q which may be different from p, degree of the shape functions of the
finite element model. This allows to define s : the vector of estimated nodal stresses.

Secondly, by using a standard finite element interpolation, estimated stresses at any point can be evaluated by the
following formula

For most commercial finite element programs. stresses are only evaluated at the Gauss points used in the numerical
integration of elemental stiffness matrices. In general, these programs output also the element mean stresses deri ved
from the Gauss points. Such element mean stresses are superconvergent in a mean sense.

An easy and cheap way of obtaining a smoothed stress field is to calculate the mean stresses at a node from the
mean stresses of the surrounding elements. Because of its simplicity and low cost, the method of simple elemental
averaging is still used in most commercial finite element programs. The smoothed stresses at boundary nodes are
generally highly under- or over-estimated. However, it is generally in these portions of structures that greater
attention has to be paid by engineers.

Another stress smoothing method, which is a little more expensive than the preceding one, consists in averaging
element nodal stresses from the stress tensor evaluated at node} of element e. Stresses at such points are generally
not calculated in the commercial programs but can be routinely obtained in the post-processing phase. The resulting
smoothed stress field is generally more precise than the one obtained by the method of simple elemental averaging.

This method. called the simple nodal averaging method, is still less precise for boundary nodes. For non-uniform
meshes it is not very reliable because it does not consider the size of the surrounding elements.



This method is a special case of the more general projection method characterized by the following property:

L(O - a.)Tp dO. = 0 (6)

where P is a stress projection matrix. and 0. the domain of the structure. For the method of simple nodal averaging.
the projection matrix is composed of nodal Dirac functions.

The finite element method is a procedure of minimizing the global stress error measured in a weighted ~ -norm.

The stress field a. is obtained by the following minimization procedure

Minimize la - a.l~ ••L(a - a.)'H -I(a - a.)do. (7)

•
where a is the exact stress field. I-IH is the ~ -norm of a field weighted by the matrix H -I. TIlis interpretation
of the finite element method leads to a natural way of determining the nodal stresses of a smoothed stress field: the
vector s can be obtained by substituting a with 0 in (7):

Minimize 10 - a.l~ (8),
TIlis is called the inverseftnite element method, which can be rewritten in a stress projection form with P = H-1M:

~-~~~~ ••O 00
The above projection form can further be transformed into a linear system of equations of dimension m.od 'no' whereno
denotes the total number of stress components:

F = LM TH-1Mdo. d •• LM TH-1a.do. (II)

TIlis procedure of estimating the nodal stresses is in fact a generalized global least squares method where the inverse
stress-strain matrix is taken as a weighting matrix. When this matrix is diagonal. the system (10) is reduced tono

sub-systems, each of them containing only m••• equations. Here the inverse finite element method is identical with
the global least squares method presented in the following paragraph ..

Similarly to (8), another possible way of determining the vector s is:

Min~mize la - a.l~ ••L(a - a.)T(a - a.)do. (12)

Or. in a stress projection form with P •• M:

L(o - a.)'Mdo. •• 0 (13)

TIlis is called the global ~ -projection method of stresses, which leads to "0 linear systems of equations of

dimension m•••• each for one stress component:

TIlis method. first proposed in [4) under the name of conjugate stress method, seems the first stress smoothing
method different from the methods of simple averaging. The smoothed stress field was initially called consistent
stress field, since the matrix A is similar to a consistent mass matrix used iti the dynamical analysis of structures.

The global least squares method is cheaper but its accuracy is not lower compared to the inverse finite element
method, since generally the stress-strain matrix is diagonally dominant. However, a global stress smoothing method
is nol suitable for post-pro<:essing. This is why Oden and Reddy have later proposed to use it only for regions of
high stress gradients [5).



Hinton and CampbelI have independently implemented the above method but they have systematically chosen the
stress smoothing functions of degree one time lower than that of the displacement shape functions [6]. Such choice
is not convenient for elements of degree one.

One way to improve the efficiency of the global least squares method is to use the lumped form of the matrixA

of (14), as in dynamic analysis. The lumped form of A. denoted by A • is diagonal so that the determination of the
nodal stresses is reduced to simple divisions. This is called the lumped-mass method. For 6-node triangles. special

lumping procedures should be used to avoid zeros in the diagonal of the matrix A.

Note that. for a mesh composed of linear elements. the lumped-mass method is identical with a method of nodal
averaging of stresses weighted by element volumes. Moreover, if the mesh is uniform. the lumped-mass method
is identical with the method of simple nodal (elemental) averaging. Numerical experiments have shown that the
lumped-mass method cannot be more reliable than the methods of simple averaging.

Hinton and Campbell [6.7] have also proposed an ~-projection method but at an element level:

Minimize l(t - 0",1; (1\)' i a I •... , n,j,
1(0) .., ,

This leads to a continuous stress field inside each element. characterized by the set of nodal stresses s(Q). Then,
the simple nodal averaging procedure is used to obtain a smoothed stress field at the global level. Generally the
smoothed stress field is of degree one time inferior to that of the displacement shape functions.

For 8-node parallelograms, the minimization procedure (15) is identical wilh a procedure of linear extrapolation of
stresses sampled at the 2 x 2 Gauss points. which are also the superconvergent points for the stresses. In this special
case, the nodal stresses can be evaluated by the following formula

'1
1+.;3/2 -1/2 1-/3/2 -1/2

do

Sl -1/2 1+{3/2 -1/2 1-.;3/2 d: (16)..
s, 1-.;3/2 -1/2 1+{3/2 -1/2 d/.I
s. -1/2 1-/3/2 -1/2 1+.;3/2 dov

where cr~(Q;)( I = 1,lI,lll,IV) are the finite element stresses at Gauss point I. In the authors' opinion. this
formula can be safely used for general 8-node quadrilaterals.

The local ~ -projection method has been found to be more reliable than the global one especially for elements of
degree 2 [8].

Loubignac, Cantin and Touzot have proposed a quite different method of constructing a continuous stress field by
an iterative procedure where the smoothed stress field tends to satisfy the nodal equilibrium conditions. The
procedure is summarized as follows [9]:

I. solve the problem by the classical method to obtain the nodal displacement vector q (e) and the direct finite

element stress field O"~')as indicated by (3) and (4):



2. define nodal slresses by the method of simple nodal averaging as in § 1.3.2;
3. interpolate the stresses from these nodal values to obtain a continuous stress field Ct ;
4. evaluate the nodal equilibrium residuals of Ct:

6g = g - LdiVCtdQ

Normally, K -1 and g are available as finite element results. So, the solution of the residual equations is
straightforward and cost effective. In the authors' opinion, the convergence is generally fast and 2 to 6 iterations
are normally used. It is possible to speed up the convergence by using imposed surface traction on the
corresponding boundaries.

It seems that the convergence depends strongly on the averaging procedure. Another difficulty in the procedure is
the choice of a suitable stopping criterion.

The same authors later showed that this iterative procedure is equivalent to the solution of the same physical
problem by using the classical finite element method with a modified set of shape functions [10]. It derives from
a parent formulation that can be solved without iteration. The parent formulation contains the sum of two stiffness
matrices. One is produced by the customary finite element shape functions. The other is produced from finite
difference expressions for slrain gradients that are not contained in the shape functions [I I]. Because the parent
formulation leads to a stiffness matrix whose bandwidth is larger than the classical one and the connectivity table
relating elements and nodes is more complicated, it is more efficient to use the iterative procedure.

Numerical experiments with finite element methOd show that for some classes of problems the displacements are
more accurate, sometimes even exact, at the nodes of the mesh. This property is often designated as the nodal
superconvergence of displacements [12].

Based on the property of nodal superconvergence of displacements and by using a method of Taylor series
expansion, superconvergent points of Slresses can be found inside, or at the boundary of, each element.

Zienkiewicl and Zhu have proposed a stress smoothing method based on a superconvergent patch recovery
technique [8]. In this technique, stresses are evaluated at the superconvergent points of each element. Then, for each
nodal point, the approximate stress values sJ are determined by a local least squares fitting from Stresses at a set
of nearest superconvergent points of the surrounding elements. This set of points is called stress recovery patch of
the node. The construction for such patches for boundary nodes requires particular treatments. It seems that this
method is not yet applicable for meshes composed of different types of elements, because they have different Slress
recovery patterns. It has been improved in fl3] by adding equilibrium conditions.

By introducing the nodal superconvergence assumption of the finite element displacement field, it is possible to find
in each element some interior or boundary points, where the directly evaluated stresses can be used to estimate the
stresses at some boundary points of the element by a procedure of weighted averaging, the weights being only
related to the distances between these points. The points where the slresses are sampled are called optimal stress
eXlrapolation points. For structural boundary nodes, some special extrapolation schemes are used to obtain better



This method, called "averaging + extrapolation", has been initially used for one and two dimensional elements [14].
It can be easily extended to three dimensional [15] and plate bending elements [16].

Most of the stress smoothing methods are listed in Table I, with their main characteristics. Of course, the list is
not exhaustive but intends to represent all the possible methods. The following items are presented in the table:

authors:
degree:
level:
theory:

who probably have first proposed or implemented the method;
degree of the stress smoothing functions;
level of the stress smoothing procedure;
the main base of the smoothing procedure.

method authors degree level theory

inverse F.E.M. Ainsworth, Craig any global projection

global ~ -projection Oden, Brauchli, Reddy p global projection

global ~ -projection Hinton, Campbell p-l global projection

local Lz -projection Hinton, Campbell p-I local projection

lumped-mass method ZienIdewicz, Zhu p local projection

iterative procedure Loubignac, Cantin, Touzot p global nodal equilibrium

patch recovery ZienIdewicz, Zhu p local superconvergence

averaging + extrapolation Beckers, Zhong p local superconvergence

The exact discretization error can be measured in many norms, such as energy norm, ~ -norm of stresses, etc. For
20 problems these norms are equivalent, and the energy norm:

1e,IE E IO"-O",IH" [L(0"-0",)TH-1(cr-0",)r (21)

is the most meaningful one. For this reason the energy norm will be used as a standard error measure. The above
absolute error can be used to define a global precision measured in the energy norm:

T\ •• IO"-O",IH •• le,IE (22)
IcrlH lulE

which is more suitable for practical use than the absolute error. These definitions also can be used at the element
level.



According to (2 I), a smoothed stress field ~, when it is sufficiently reliable, can provide a natural way to estimate
the exact error: by substituting the exact stress field CI with the smoothed one, an estimated global error, denoted
by E, is obtained:

The corresponding estimated global precision is then:

1~-CIlIH E
1'\ " -;::====== '"-;::====

bCIll~ + I~ -CIll~ bCIll~ + E
2

A structure that contains different materials can be subdivided into sub-structures and the stress smoothing procedure
is performed for each of them.

To check the quality of an error estimator, several criteria can be used. First, the estimated error should tend to zero
as the mesh size reduces to zero, this is the consistency criterion:

lim E ,,0 (25)
.->0'

Secondly, it is to be hoped that the ratio between the estimated and the exact errors, denoted by a, and often called
"effectivity index"

be bounded, this is the equivalence criterion:
o < a"". $ a $ a~", < 00, 'tI h

A still stronger requirement is that the estimated error be asymptotically exact or convergent
Iim a ,,1

.->0

This is called the criterion of asymptotical exactness. If am;'" and a ••••••are both close to unity, the error estimator

is said to be globally reliable. If am;'" > I the error estimator is conservative. If am•• < I it is an optimist one.

A globally reliable error estimator may not necessarily be reliable at the element level. To measure the local
reliability of an error estimator, a "uniformity index" can be introduced. It is denoted by SD, defined as the standard
deviation of the elemental effectivity indices:

SD ~ [_1_ £(e_ay}f1. (29)
ne1e i-1

where e denotes the mean value of the elemental effectivity indices. A small value of SD means that the error
estimator is locally reliable.

Today, few error estimators can satisfy all these criteria, especially the criterion of asymptotical exactness. But, often
the violation of this last criterion does not necessarily lead to unacceptable results, because numerical solutions are
always obtained with a certain level of accuracy. The error estimators are then required to be sufficiently reliable
only for a given range of precision. For the range of 1% $ 1] $ 10% and for conventional meshes, if

0.8 s; e $ 1.2 and 0 $ SD $ 0.2, the error estimator can be said to be sufficiently reliable.



A sufticiently reliable error estimator is a key factor in an adaptive process when the purpose of the analysis is to
obtain a prescribed global precision. The adaptive process stops when the estimated error level is smaller than the
user prescribed one, denoted by i1:

However, the exact precision may be far from the estimated one, since:
I-

" • i"
It follows that, for a conservative estimator, the prescribed precision is satisfied but with excessive refinement. On
the contrary. an optimist error estimator may lead to a solution not satisfying the prescribed precision.

In the past, many people suggested to use the finite element solution of degree p+ 1. denoted by U••,.I' to estimate
the error of the solution of degree p. Le.,

6 = IU.".I - u.l£ (33)
Iu - u.l£

Although this method is not practical, it can be shown that the error estimator does satisfy the equivalence criterion
(27) and, when the exact solution is sufficiently smooth, satisfies also the criterion of asymptotical exactness (28).

Indeed, the error convergence law for a uniform refinement of the meshes is [I]:
Ie.1£ S C,h minO..pl

where A. > 0 is the stress singularity order of the exact solution, C, is a constant independent of the mesh size,
but depending on the degree of the elements and 'On the exact solution. When the mesh size is sufficiently small.
the inequality sign in (34) can be replaced by an equal sign.

where Cp> C"I' This leads to the following bounds by the triangle inequalities of a norm:

Iu - u.l£ - Iu - u.".II£ S 1u."+1 - u.l£ S lu - u.l£ + lu - u.,,+II£

First case: the solution is quite singular. This corresponds to A. :s; p, then
C Co < I - --!.:!. < lim 6 < I + --!.:!. < 2 (37)
C,.-.o Cp

so that the error estimator is bounded. Second case: the solution is relatively smooth. This corresponds to A. > p,
then

In a similar way. using the finite element solution of a more refined mesh, denoted by u.n' to estimate the exact
error produces the following bounds to the effectivity index:

(
1 J;nlA.,1 ( I JinIA.PI

0<1-_ <lim6<1+_ <2
2 '-+0 2

Thus, the error estimator using the solution u~ is equivalent to the exact error. and is more reliable for smoother

exact solutions and for elements of higher degree.



Error estimatiOll and adaptivity

2.4. Survey of error estimators based on smoothed stress fields

Due to its simplicity of implementation and interpretation. error estimation based on smoothed stress fields has been
largely used in engineering analysis. Many methods of stress smoothing have been numerically tested to show the
reliabiliy of the derived error estimators (Table II). But. strict mathematical proof of the asymptotical exactness
and the equivalence is established only for a few methods.

typical triangle: nodes quadrilateral: nodes
method

references 3 6 10 4 B 9 12 16

simple nodal [21] y

averaging [23] y Y Y Y

[17] Y Y Y

[20] y y

global L, -projection [22] Y Y Y

[B] y y y y y y

[IB] Y Y Y Y

[20] Y Y
local L,-projection

[B] y y y

Loubignac-Cantin- [20] y Y

Touzot [23] y Y Y Y

[20] Y Y
lumped-mass

[IB] y Y Y Y

superconvergent patch [B] y y y y y y y

recovery [23] y Y Y y

averaging +
[IB] Y Y y Yextrapolation

In [17]. it has been demonstrated that. if the smoothed stress filed is obtained by the inverse finite element method
(7) and satisfies in addition the boundary prescribed traction, then the global effectivity index of the derived error
estimator is bounded:

where Ct(u) and Cz(u) are two constants depending only on the exact solution. 11. a and K are positive constants. A

is the L1-oorm of the equilibrium residuals derived from the smoothed stress field:
A D Idiv(t + flL, (41)



3. If the residual term A2 is converging faster than the estimated error I" - (J.I~. the asymptotical convergence
of the error is guaranteed. This may be true when the exact solution is somewhat smooth and when uniform meshes
composed of elements of odd degree are used. But. for elements of even degree. the residual term is generally
dominant and it will not be expected that the estimated error be asymptotically exact.
4. It is not efficient to use the smoothing functions whose degree is much higher than that of the displacement shape
functions. The choice of q = p is the most efficient while maintaining the requirements for convergence.

The above theoretical result is easy to extend to the case of the error estimator where the smoothed stress field is
obtained by the global ~ -projection method, which is different from the inverse finite element method only by a
weighting matrix. By using an eigenvalue analysis, it can be shown that both methods are equivalent and the
following bounds can be obtained for the error estimator based on the global ~-projection method

A••••A.,;.'"
l-C1(u)hf-P+l

where A•••• and A••" are the greatest and smallest eigenvalues of the stress-strain matrix respectively. Relations (40)
And (42) show that both error estimators should give very similar results of error estimation.

The lumped-mass method is a simplified version of the global ~-method thus may not be a.~ymptotically exact.

The global and local ~ -projection methods of Hinton-Campbel1 correspond to q = P - I ,thus they cannot be
expected to be asymptotically exact.

The Loubignac-Cantin- Touzot procedure reduces the residual term of the smoothed stress field. For elements of odd
degree, the residual term is generally negligible compared to the estimated error, so that the use of the Loubignac-
Cantin- Touzot procedure can only give marginal improvements to the reliability of the error estimator. But, for
elements of even degree, the residual term is generally dominant and the Loubignac-Cantin- Touzot procedure could
improve the reliability of the error estimator.

Numerical examples show that the methods based on the superconvergence assumption lead to more reliable error
estimates than those based on the stress projection. But, the asymptotical convergence is not always observed,
especially for elements of degree higher than one.

To examine the reliability of the error estimator based on the smoothed stress field obtained by the procedure
"averaging + extrapolation", 4 numerical examples with increasing order of stress singularity have been analyzed
(Table III, Figures I and 2). The convergence of the reliability measures of the error estimator is shown in Figures
3 to 7. The successive meshes are obtained from the initial ones by uniform refinement.



Error estimatioo and adaptivity

Table J1/: Characteristics of the numerical examples

Problem Data Exact solution

a) Rectangular beam
Iu•••••. 875',

E = 3,107
, V = 0.3, t = I a = 0

subjected to bending plane stress < = 46.875(2 - 0.5)'7)and sheoUingforces
O.5lal~ = 0.0398333

U - 1-~ !.""'. .._. J · .2..<"".
b) Hollow infinite plate • r7 2 2'"
subjected to E = 1000, v = 0.3 I I 3ay = -- _cos28 - cos48 - _cos48
unidirectional uniform plane strain r7 2 2'"
pressure 't..,. = -.2... 2.sin28 + sin48J + .2..sin48

r7 2 2'"
O.5Ial~ = 0.00769365

c) L-shaped domain E = I,v = 0.3, t = I
O.5lal~ '" 15566.460plane stress

d) Crack problem in E = I,v = 0.3, t = I
O.5lal~ '" 8085.7610linear elasticity plane stress

Note that problem a)
[18] and problem b)
[I, 8] have analytical
solution, so that the
effectivity indices and
uniformity indices can
be exactly evaluated.
For problems c) [19,
20, 8, 18] and d) [18]
the exact strain
energies are estimated
by the dual analysis
method and the
Richardson's
extrapolation by using
highly refined uniform
meshes, so that only
the global ellectivity
indices can be
approximately
evaluated.

+b•
cd



In the following figures, symbols 0 , " and <> represent pure quadrilateral, pure triangular and general meshes,
respectively. Solid, long dashed and dotted lines represent elements of degree one, two and three, respectively.
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In these examples, the results show that the error estimator using a smoothed stress field obtained via the technique
of averaging and extrapolation has the following characteristics:



finite clement solutions are less superconvergent.
2. For elements of degree 2. it is less reliable for
smooth exact solutions (Figure 3) than for more
singular exact solutions (Figures 5 and 6). For a
smooth exact solution. the finite element
displacement field does not exactly interpolate
the exact one. So. the stress field smoothed by
the procedure "averaging and extrapolation" is
only an approximation of the exact stress field.
1bis leads to an over-estimation of the exact
error for elements of degree 2. For a singular
exact ~olution, the over-estimation due to the
superconvergence assumption is balanced by the
under-estimation due to the singularities.leading
to a good estimation of the global error.
3. It can be unreliable for very coarse meshes.
For a single element mesh. it is impossible to
smooth the stress field. For a mesh with a single
element layer, the stress extrapolation schemes 0.60
cannot get sufficient information.
4. Its convergence is not guaranteed for any
problem or mesh. especially for elements of
degree higher than I.
5. It is sufficient! y reliable for meshes of usual
levels of refinement The global effectivity
indices range generally from 0.6 to 1.4,
depending on elements type and degree.
6. It is applicable for general meshes composed
of elements of degree up to 3. More specifically,
it can be applied to curved-edge elements. Note that some methods -of error estimation can only be applied for pure
triangular or pure quadrilateral meshes. Methods related to the equilibrium defaults of finite element solutions cannot
generally treat curved-edges elements.
7. Its evaluation is very cheap. The boundary conditions of the physical problem are not required. The computation
of the stresses at the optimal extrapolation points refers to a standard post-processing operation. The smoothing
operation of stresses includes weighted averaging and polynomial extrapolation. The integration of the estimated
element error is similar to that of the element stiffness matrix.

2 3
Figure 5 : [-shaped domaill
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4. ADAPTIVITY ILLUSTRATED BY THE TEST OF A HOLLOW DAM

The structure shown in Figure 7 is modeled as a plane strain problem [19]. The goal of the analysis is to obtain
a solution whose global prescribed precision in energy norm is about 3 %. Different mesh refinement strategies will
be used and their efficiency compared."

Because the initial precision is already high (8.8 %), and because elements of degree 2 are used, no intermediate
mesh is needed. The final mesh, that ensures the prescribed precision, is shown in Figure 7. It contains many fewer
elements and D.O.F. than does the one composed of elements of degree 1.

precision ( % )
30.0

1~:8
8.07.0
6.0
5.0
4.0

3.0

1.0
100

The uniform mesh refinement strategy was also tested. All the convergence curves are shown in Figure 8. For
unifornl refinement, the asymptotic convergence rate is dominated by the most severe singular order of 0.273. It
also shows that the most economical way of obtaining a prescribed precision of 3 % corresponds to the adaptive
refinement strategy using elements of degree 2. It requires only 2 analyses and a final mesh with only about 5,000
D.O.F. On the opposite, if uniform refinement strategy and elements of degree I are used, about 7 analyses are
needed. and the final mesh would contain more than 500,000 D.O.F.

Using smoothed stress fields to estimate the discretization error of finite element solutions is one of the most widely
used methods. It is the simplest method from both the implementation and evaluation points of view. But, the
reliability of the derived error estimator depends on the quality of the recovered nodal stresses. For this purpose,
methods based on the superconvergence assumption of finite element solutions are preferable to those based on the
stress projection. The stress smoothing procedure "averaging + extrapolation" has been found to be quite suitable
for error estimation. Moreover, it offers a continuous stress field that is generally of better quality than the finite
element stresses. This continuous stress field can be directly used for visualization.
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