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ENERGY CONSERVING TIME INTEGRATION FOR MULTIBODY DYNAMICS
APPLICATION TO TOP MOTION
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The paper describes a second-order accurate energy conserving method to numerically time-
integrate the constrained equations of motion of multibody dynamics. The aspects of finite rotation
incrementation, energy conservation in presence of algebraic constraints and numerical implemen-
tation are examined in detail. The application is made to the classical problem of a spinning
symmetrical top in a gravity field to assess the numerical properties of the method.

It is a well known fact that the time integration of the second-order, index 2 difFerential- algebraic
equations (DAE) which arise in multi body dynamics may lead to numerical instability when using a
second-order accurate method of integration of Newmark type [I]. This situation can be attributed
to the defective character of the associated eigenvalue problem: the lugebraic constraints are indeed
responsible for the appearance of a set of infinite eigenvalues with multiplicity 2 which can be shown
to induce a weak instability in the acceleration response.

One way to control this instability is to modify the algorithm so as to obtain a small amount of
damping at high frequencies. A number of modifications of the classical Newmark time integrator
have been proposed to introduce high frequency dissipation while retaining second-order accuracy.
Worthwile mentioning methods of this type are the implicit algorithm of Hilber, Hughes and Taylor
(HHT) [2-5] and the Q - generalized method of Hulbert [8].

An alternate way to achieve stability is based on energy conservation. Indeed, it has been shown
that the average acceleration scheme exactly preserves the total energy of the system [9].

Simo and his co-workers have introduced energy preserving algorithms for unconstrained rigid

body dyn8.l1lics [6] and nonlinear elastodynamics [7]. The uneonditional stability results then from
the energy conservation in the system. A similar energy preserving scheme has been proposed



for nonlinear elastic multibody systems by Bauchau (10). In this scheme, the equations of motion
are discretized in such a way that energy is preserved in the structural parts of the system, while
the constraints are discretized in such a way that their work exactly vanishes. The combination
of these two features of the discretization guarantee the stability of the numerical integration for
constrained multibody systems.

The present contribution is much inspired Bauchau's work, the objective being to assess the numer-
ical efficiency of the energy conserving method for its later application to industrial problems and
its implementation in a general multibody dynamics code. The classical problem of the spinning
symmetric top in a gravity field is taken as a benchmark problem to formulate in a general manner
the dynamic equations of a rigid body under constraints, develop an efficient implementation of
the energy preserving scheme and verify the numerical properties of the resulting algorithm.

Particular attention is brought to the parametrization of the finite rotations and their incremen-
tation in time using the mid-point rule. An updated lagrangian point of view is adopted in which
the relative rotation between two successive instants is decomposed into two equal rotations which
are then expressed either in terms of the vector part of the conformal rotation vector, as proposed
in 0, or in terms of the vector part of Euler parameters. The representation in terms of Euler
parameters is finally adopted because of its even greater simplicity.

Energy conservation is imposp.d by expressing the balance of energr on one time step. It is shown
that : (i) the mid-point rule automatically guarantees the conserration of the total mechanical
energy, (ii) the nullity of the work produced by the constraint forces is achieved by imposing the
verification of the time derivative of the contraints at mid-point, which is somewhat equivalent to
reduce by one the index of the initial DAE system.

The resulting solution algorithm is expressed in terms of a non-symmetric iteration matrix which"
is straightforward to obtain. It is then applied to the problem of the spinning top in a gravity
field. The energy conservation property is well verified in this case, giving a remarkably neat
numerical solution of the problem. Most importantly, it is also experimentally verified, as it
could be expected from the energy conservation properly, that the drift of the constraints remains
negligible throughout the period of integration.

Spherical motion corresponds to the rotation of a rigid body about a fixed point in space. It is
characterized by the facts that the length of the position vector of a given point P attached to
the rigid body remains unaffected by the pure rotation, and that the relative angle between any
two directions attached to the body remains constant under the transformation. To describe it
into matrix form, let us define X the position vector of point P in the reference configuration, of
cartesian components [Xl X2 X3)T, and x the position vector of point P after transformation, of
cartesian components [Xl X2 X3)T.



The absolute velocity vector of point P is computed in the form

v=Rx=ROX

where 11 is the skew-symmetric matrix of angular velocities, defined by

[
0 -!l3 !l2]~ T'{}= R R = !l3 0 -!ll

-!l2!l1 0
The material expression of the angular velocity vector is obtained by extracting the vector part of
(4)

{}= vect(O)

The absolute acceleration of point P is obtained through further differentiation

a = R = R(O - OTO)X

The material expression of the angular acceleration vector is obtained by extracting the vector
part from the angular acceleration matrix

the symmetric term -OTO representing the centrifugal and Coriolis contributions to the acceler-
ation.

[
0 -683 682]

6e = RT6R= 683 0 -681
-682 681 0

The vector of material rotation increments (or virtual angular displacements) is obtained by taking
the vector part of (9)

The virtual velocities may be computed either through variation of (3) or through time differenti-
ation of (8)

6v= 6(ROX)= 6ROX+R60X = R(68n +6(1)X
d (11)

= dt(R69X) = 68X + R69X = R(069 +69)X
and therefore the virtual angular velocities are related to the time derivatives of the virtual angular
displacments by

60 = 69 - 690 + 069 (12)

The corresponding vector parts are simply related by



Let us adopt the center of mass of the top as the origin of the material frame, and its attachment
point as the origin of the spatial frame. The kinetic energy of the top may then be split into
translation and rotation contributions

JC = !OT JO + !miT i (14)2 2
where m is the mass of the top, i is the velocity vector of the center of mass expressed in the
spatial frame, J is the inertia tensor of the top measured in material axes and 0 is the material
expression of the angular velocity vector.

The angular velocity vector may be extracted from the skew symmetric matrix of material angular
velocities 0, the latter being computed in terms of the rotation opllrator R

Assuming that the reference for the potential energy is the origin of the spatial frame, the potential
energy may be expressed in the form

where g is the acceleration vector. For example, if the gravity is acting along the negative X3

direction, 9 = [0 0 9f and V = +mgx3'

Finally, let us denote by vector -X, the location of the top attachment point in material co-
ordinates. The center of mass is then constrained to verify at any time instant t the geometric
relationship

where ~ is a vector of lagrangian multipliers associated to the constraint. Its components may be
interpreted as the reaction forces at the attachment point.

it,
6 .c.dt=O

f,

Substtituting the explicit expression of the Lagrangian and performing the variation yields

1f•

[60TJO + biT mi + c5xT(~+ mg) + c5~T(x- RXg) - ~TbRXg] dt = 0
f,

where the variations of rotation operator and material angular velocities may be related to the
material expression of angular virtual displacements by (9) and (13). Substituting them into (20)
and performing an integration by parts yields

1f•

[c5xTmi + b8TJn]:~ + f, [c58T(-JO - run - XgRT~)

+c5xT( -mi + ~+ mg) + c5~T(x- RXg)] dt = 0



We get thus the motion equations in the differential-algebraic form

mx -.\ = mg

JO + OJO + XgRT.\ = 0 (22)

-x+RXg = 0
It is of interest to note that by defining the spatial and linear expressions of linear and angular
momenta

P = mil: h = RJO
the first two equations (22) may still be rewritten in the simpler form

Both equilibrium equations (24) are expressed at mid-point, and time derivatives are computed
using the trapezoidal rule

1
X(Pn+I - Pn) - An+l = mg

~(hn+l - hn) + xn+1An+l = 0

The special treatment to be applied to the constraint equation will appear naturally later on from
energy conservation considerations.

The linear momentum equation is next expressed at mid-point

1 m
Pn+! = 2(Pn + Pn+l) = h(Xn+I - xn)

2m
Pn+l = T(Xn+I - xn) - Pn

so that the discretized translation equilibrium equation may be put in the final form

2m 2
J;2(Xn+l - xn) -XPn - An+l = mg

The angular momentum equation is expressed likewise

1
hn+l = 2(hn + hn+d = lln+1JOn+l

- T· 1 T -
0n+l = Rn+iRn+! = XRn+l(Rn+1 - Rn) and On+i = vect(On+i) (30)

and the discretized rotation equilibrium equation takes thus the form

;2Rn+iJvect(R~+i(Rn+l - Rn» - ihn + Xn+iAn+i = 0 (31)



In order to define the configuration which is half-way between R" and Rn+b let us decompose
the rotation increment from Rn to Rn+I in the form of two successive equal rotations

Rn+t = RnG = Rn+1GT

and verifies the orthonormality properties

The matrix of angular velocities (30) may be put in the form

- ITT 2 1 T
On+l =;;G Rn(RnG - Rn) = ;;(G - G )

On+l = kvect(G - GT
) = ~vect(G)

Since G is a rotation operator, vect( G) has the property

vect(G)
D=----

IIvect(G)II

By making use of the above property, the discretized equation of equilibrium can be rewritten in
the form

Let us describe the relative rotation from Rn to Rn+1 in terms of its invariants D and t/> (D being
the direction of the rotation axis in frame Rn, and t/> being the amplitude of the rotation) :

R;Rn+1 = R(D,t/»

with the genera.l exprell:lion of the rotation operator



Supposing that the direction of the rotation is kept constant, (39) may then be split in two equal
rotations of the form

1
G = R(n, 2iP)

From eqn (40) expressed for (n, tiP) we note that the vector part of G is nothing else than the
vector part of Euler parameters

vect(G)=nsin~=e (42)

Euler parameters may thus be used to parametrize matrix G. Subst.ituting eqn (42) in the explicit
expression of R(n, tiP) yields

G = R(n, -21iP) = eoI + _1_eeT + e
1+ eo

iP
eo=cos2"

The representation involves only the three components el, e2 and e3, eo being computed by the
above relation.

From the expression of matrix G it is easy to reconstruct the expression of R in terms of Euler
parameters

which expresses the fact that the direction of the rotation remains unaffected by the half rotation ..

The angular velocities at mid point are very simply computed by

An alternative and also quite elegant way to perform the decomposition of the relative rotation
in two equal parts is to describe the rotation in terms of the conformal rotation vector, defined in
terms of Euler parameters as

4ei
ai=--

1+ eo

iP
a = 4ntan-

4
and the scalar part is expressed in terms of the modulus of the vector part as

a2
ao=2--

8



The representation involves only the three parameters aI, az and a3, ao being used only for sake
of simplification in the notation.

The expression of the rotation tensor is deduced from the expression (44) in terms of Euler param-
eters by the inverse transformation

ai
ei=--

4- ao

R(a) = ( 1)2 [(a~ - aT a)1 + 2(aaT + aoa)]
4 - ao

It is easy to verify that its decomposition into two successive rotations

G I [ _IT]
(4 _ ao) ao + a + 4aa

It also maintains the invariance of the rotation direction

T 2
2vect(G) = vect(G - G ) = (4 _ ao)·a

Finally, it may be shown that the material components of the angular velocity vector are obtained'
in the form

O= __2_Ga
(4 - ao)

The use of both Euler and conformal rotation parameters yields very similar expressions of the
discretized equations of rotational equilibrium. Substituting (46) and (57) into (31) yields

Because of their even greater simplicity to represent the mid-point rotation, the Euler parame-
ters of the half-rotation have been prefered to the conformal rotation vector for the numerical

implementation of the method.



In order to express the balance of energy on one time step, let us multiply the translation equilib-
rium equation by hV~+!, the rotational equilibrium equation by hO~+tR~ = 2veet(G)TR~ and
add both terms to compute the scalar quantity

Al =hv~+! (:2 m(xn+l - Xn) - ~Pn - mg)

h T(l 2)=2"(vn + Vn+l) xm(vn+l +vn) - xmvn - (xn+l - xn)mg

=(K:n+l - K:n)tr + (Vn+1 - Vn)

T (4 T 2 )A2 =hOn+! h2RnGJG vect(G) - Xhn

=20~+! (GJGTOn+! - R~hn)

l)T )T=2"(On + On+l J(On+l + On) - (On+l + On JOn

1 T
=2"(On+1 + On) J(On+1 - On)

=(K:n+l - K:n)rot

Vn+! = -Rn+!XgOn+! = +Rn+!On+!Xg (66)

The condition (66) corresponds to the time derivative of the initial constraint expressed at mid-
point. Owing to (27), it can still be rewritten



oCr", r., r>.) _ [So" 0
8(x, e,..\) - 5 55••

>." >..



Given:
Compute:

to = 0, Ro, 00

Xo= RoX,
Po = mvo,

Vo = RoOoX
ho = RoJOo

2. Time integration: while_tn < h do

(i) increment time:

(iii) iterate :

while (IIr",1I > f", .or. IIr.1I > f •. or. lirA II > fA) do

R..+l = Rn+! G
2

Vn+l = h(Xn+l - xn) - Vn , Pn+l = mVn+l

hn+l = X-Rn+!Jen+1 - hn , On+l = (Rn+1J)-lhn+1

In order to demonstrate the numerical properties of the energy conserving methodology and
algorithm, let us consider the problem of determining the trajectory of a symmetrical top in a. ,
graVItyfield.



R = R(X3' ¢) R(x~, 9) R(%~,.,p)

[

COS ¢cost/; - sin¢cos9sin.,p
= sin¢cos.,p + cos¢cos9sin.,p

sin 9 sin .,p

-cos¢sin.,p - sin ¢cos9cos t/.
-sin¢sin.,p + cos¢cos9cos.,p

sin9cos.,p

sin¢sin9 ]
- cos ¢sin9

cos9

where the (') indicates that the current frame is modified by the previous transformation. Angle
.,pcorresponds to the spin of the top about its rotation axis; 9 gives the inclination of the top axis
with respect to the vertical, and ¢ gives the azimutal position of the top axis in the horizontal
plane 0%IX2, describing thus the precession motion.

The inverse transformation from rotation operator to Euler angles (becoming singular when 9 = 0
or 11") is

t/; = tan-1(r31, r32)
9 tan-1(r31 sin.,p + r32 cos.,p, r33)

t/; = tan-1(r21cos.,p - r22sin.,p,rllcost/; - r12sin.,p)

The time derivatives of Euler angles are related to the material angular velocities by

[~] [~9 = cost/;
~ -aiD.Ecoa'

81D'

-~t/; ~1][~:3]
- co. ,veGa 9 ,U

.in'

Let us consider a symmetrical top with the following properties. Mass m : 5 kg, moments of
inertia: Jll = J22 = 0.8 Kgm2, J33 = 1.8 kgm2, distance from CG to origin (attachment point)
: L = 1.3m, gravity : g = 9.81m/ s2 (along negative %3axis). The initial position of the top is
described in terms of Euler angles: ¢o = 0,90 = ~rad, ¢o = O.

Two response cases have been considered.

In case 1, the top is simply dropped from its initial position with a spin velocity ~o = 50rad/s.
Both other angular velocities are zero (Jo = 80 = 0). In case 2, the top is thrown from its initial
position with a spin velocity ~o = 50rad/ s, a precession angular velocity of Jo = -lOrad/ s and a
zero nutation angular velocity (80 = 0).

Figures 1 and 2 display both computed responses in various forms and in terms of different kine-
matic and kinetic quantities, namely: (a) vertical displacement versus time, (b) three-dimensional
trajectory of the CG, (c) Euler angle 9 versus time, (d) Euler angle ¢ versus time, (e) time evolu-
tion of the kinematic constraints, (f) phase diagram of the non cyclic variable 9, (g) relative energy
variation E/Eo -1 versus time, (h) transverse angular velocity fh versus time. The total energy
of the system is obviously conserved during the period of observation of the motion as it could be
expected from the very design of the integration algorithm. All the time evolutions demonstrate
also that the periodic character of the motion is perfectly preserved, which can be regarded as
a direct consequence of the energy conservation property. Of interest also is the time evolution
of the kinematic constraints: despite of the fact that they are satisfied only in weak form, their

drift remains extremely small ( =:; 2.E - 7), observation which is a further consequence of energy
conservation.
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Figure 1: Re.spon.se 0/ .symmetrical top

Ca.se 1 : tiJo = ~o = 0 rad/"

Figure t : Re.spon.se 0/ .symmetrical top

Ca.se t: tiJo = ~o = -10 rad/"

The energy conserving method is a very effective approach to time-integrate the second-order DAE
(;quations arising in multi body dynamics since it provides a natural way to control the instability
induced by the kinematic constraints. When formulated in updated lagrangian form in terms of the
Euler parameters of the half rotation, it leads to a very simple form of the discretized equations.

FUrther aspects of the method such as automatic time stepping, the extension to flexible systems
and possibly the symmetrization of the linearized equations still have to be investigated in view of
the implementation in an industrial code.

Of further interest also is the generalization in the form of an energy decaying scheme as proposed

in [11].
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