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In Computational Fluid Dynamics it is usual to find the problem of increasing the accuracy of a
solution without adding unnecessary degrees of freedom. It is therefore necessary to update the mesh
so as to ensure that it becomes fine enough in the critical region while remaining reasonably coarse
in the rest of the domain. Local a posteriori error estimators are the adequate tool for identifying
automatically these critical regions. They should use only given data and the numerical solution
itself.

In this work the Control Volume Finite Element Method (CVFEM) for the Conveetion:I)iffusion
equation is considered. This is a nonconforming method in the sense that the interpolant space for
the solution is not a subset of Hl. Despite of this fact, many years of numerical experiences have
established the excellent behaviour of this method in non-selfadjoint problems.

In the conforming case several approaches have been introduced for selfadjoint problems by using
the residual equations. In order to extend these techniques to the case we are dealing with, we have
considered the treatment of the consistency terms arising in the error equation and the convective
term wich is the no-selfadjoint part of the problem. Although some a posteriori error estimators for
this problem have already been presented in the literature, most of them lack rigorous mathematical
proof.

We present an error estimator that is a global upper bound of the true error under some hy-
potheses [11]. It has been included in a CVFEM code of our own. This code has been coupled
together with an automatic mesh generator in order to obtain an adaptive loop. Evidence of the ade-
quate behaviour of the adaptive procedure is given through numerical experimentation in well-known
benchmark problems.

Consider a polygonal bounded region n with boundary 8n in R2• The problem to be solved can be
put in the following form:
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We will assume that: a) the difusion coefficient k is bounded above and below by positive
constants; and b) the convecting field b is incompressible (V' . b = 0). It is also assumed that:
• en = I'D U rN

• I'D nrf = 0
• I'N C F E en : b· it "2 o} it outer normal

We will denote L2(R) and H1(R) the usual Sobolev spaces, equipped with the norms:

II U II£>= (k u2) 1/2
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Assuming 9 E H1/2(rD) we define:

H}; = {v E Hb : v = 91 in I'D}

Hko = {v E HA : v = 0 in I'D}
The weak formulation of the problem (1) reads:

find u E Hk such that B(u, v) = F(v) V v E Hl.,

B(u, v) == (kV'u, V'v) - (bu,V'v) + f b· it UVJrN
F(v) == (J,v) + f 92VJrN

The notation (.,.) stands for the internal product of L2 over n. The bilinear form B(·,·) is continuous
over H},o x Hi:" and coercive.

The existence and uniqueness of u that satisfies (2) for f E H1(n) follows from the Lax-Milgram
theorem [3J.

The CVFEM method proposed by Baliga and Patankar [4,5] for the convection-diffusion equation is
applied.

Consider a regular triangulation T for the domain 0. [3]. Let N; (1 ~ i ~ n) be the vertices of the
triangulation. Each vertex N; is associated with a region S; consisting of the union of all triangles
T E T having N; as a vertex.



From T, a dual mesh 8 is constructed. The elements of the dual mesh will be called control
volumes. The control volumes Oi are constructed joining the centroid of each triangle with the
midpoints of its sides, thus spliting each triangle into thTP-esubregions. Each vertex Nj is associated
with the control volume OJ E 8, 0; ~ S;, defined as the union of all the subregions converging to Nj•

The approximation space is defined as Vh = {v : v ITE CTVT E T and v is continuous at the
nodes} where CT = {¢> E C(T) : ¢> is exponential in the direction of the local mean velocity b..r;
linear in t.he normal direction and such that -V· (kV¢> - b¢» = Oin T}

The CVFEM approximation is:
Find Uh E Vh such that

[ (bUh-kVUh) ·iidl'J60i

uh(N;)
k,fdO
91(Nj) V N;E fD

In this section we introduce an estimator that bounds the energy norm of the error.

Consider a family {Tj} of regular triangulations in 0 [3] with it's associated numerical solutions
Uj and exact errors ej = U - Uj.

Let E[ be the set of all internal sides. For every internal side 1 we choose an arbitrary normal
direction ii. For a side lying on the boundary ii is taken to be the outer normal .

.For the sake of simplicity we assume that k, b, f and 92 are piecewise constant and that 91 is
piecewise linear.

For a side 1, J"n and J"t are defined as

if 1 E E[
if IE fD

if IE fN

1
[[k~ll, if IE E[

Jr t = 2 (i!fi - k~) if I E fD, 8t at I

o if IE fN

where 0 < ko ::; k(x, y) V (x, y) E 0 and IT ·TII denotes the jump through the side 1.

Let the norm 1 . 1 be defined as follows

I W 1=11 Vjw ilL>
where Vjw be the L2 vector defined by

VjWIT= V(w IT) Vw E H1(T), VT E Tj

Theorem: the following inequality holds

( )

1/2 b
lejl::;C ~71~ +m;: lied



The proof of this theorem can be seen in [11).
Remark: in order to have non-dimensional constants we introduce another norm, equivalent to

the L2 norm:

The result depicted above is valid, with some changes in the proofing procedure, for the con-
forming elements introduced by O'Riordan and Stynes [1]. The term corresponding to the tangential
jump is obviously null and must not appear in the estimator. This method is, however, not suitable
for adaptivity because of its structured nature.

For the method of O'Riordan and Stynes it can be proved [1) that the order of the £2 norm of the
error is higher than the order of the corresponding HI. Based on numerical experiences, we believe
that the same is true in our case. Nevertheless, with additional hipothesis, we can prove that:

Corolary: if 3 >.< 1 (>. may depend from h) such that

Pe 111 ej 111::; >. I ej I

c ( )1/2
lejl::;I_>. ~111'

Remark: if 111 ej 111 is of higher order than I ej I then>' = >'(h) and A(h) --> 0 when h --> O.

We will consider in this section numerical results obtained with an adaptive algorithm based on the
proposed estimator.

These convection-diffusion problems are solved initially on a uniform mesh TO'The mesh Tj+l at
the j + 1 ada.ptivity step, is obtained from the Tj by refining the elements l' of Tj such that:

111' ~ (TOL) *"Imar

where 1]mar = maX1'E'Tj1]1' and 0 ::; TOL ::; 1 is a used defined tolerance.

The selected triangles are splitted into 4, and the refinement is propagated to the neighbour-
ing elements according to the algorithm of Rivara [6). These procedure guarantees that, for every
refinement step j, the minimum angle of Tj is not smaller than one half the minimum angle of To.



The automatic refinement process was implemented as a loop of three programs: PUTCON,
TREX2D and ENREDO. PUTCON is a small user-defined program for adding boundary conditions
to a given mesh. TREX2D is an in-house Fortran codejlO] for sg!,xiIt!ttwo-di¥1ensional convection-
diffusion problems via the CVFEM method as proposedhy-Baliga'and Patankar [4,5]. It was modified
in order to evaluate the a-posterioti'etror estimations and output a list of commands for automatically
driving the grid generator EN REDO (Venere and Dari [9]).

This is a well known benchmark for convection dominated flows (see for example [7]). Consider a
square domain with Dirichlet conditions over the whole boundary. The temperature (u) is set to 1 at
the left and top sides, and to 0 at the right and bottom sides. It is convected by a uniform velocity
field v = (2,1). The diffusion coefficient is negligible.

The initial uniform grid TO has 32 elements (NEL = 32) and 25 nodes (NOD = 25). Two cases
were considered, using two different values of the tolerance TOL: a-TOL = 0.3 and b-TOL = 0.7.
Some representative grids and results obtained during the adaptive process are shown in figs. 3 and 4.
Internal and external layers can be seen. They require refinement in order to be properly simulated.

The plot of the global error estimator c; versus N EL can be seen in fig. 2. Information about
the evolution of the adaptive process can be found in. table 1.
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This benchmark takes into account the case of convection subjected to a recirculating flow, and can
be found for example in [8].

Consider a rectangular domain with the boundary conditions shown in fig 5. The temperature is
convected by a velocity field that can be analitically expressed as if == (2y(1 - x2), -2x(1 - y2». The
inlet boundary condition along -1:::; x:::; O,y == 0 is given by u(x,O) == 1 + tanh(20x + 10). On the
tangential boundaries the condition is u == 1 - tanh(lO). Natural boundary conditions are applied at
the outlet. The diffusion coefficient is negligible. The initial uniform grid TO has 64 elements and 50
nodes. As in the preceeding problem two cases were considered for the values of the tolerance TaL:
a-TaL == 0.3 and b-TOL == 0.7. Some representative grids and results are shown in figs. 7 and 8.

The plot of the global error estimator to versus N EL is shown in fig. 6 and the information about
the adaptive process can be found in table 2.

It. Step j NOD NEL to NOD NEL to
1 45 g4 0.274~ 45 64 r~! ~~g1~4b 8:H~ 1~~ 2~+ !,l1 3~ 3~~~ 8:8Mr ~~? jS1
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We have introduced a technique for constructing a posteriori error estimators for the CVFEM method
applied to convection dominated elliptic problems in two dimensions.

Our numerical computations show the good behaviour of the proposed estimator used as an error
indicator within an adaptive loop. The secuence of grids obtained in the numerical experiments
suggest that. t.he application of techniques such stretching and/or derefinement could considerably
improve the adaptive process.

The results of t.his work can be easily extended to other Petrov-Galerkin methods for which the
residual vanishes inside each element.
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