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An incremental and piecewise nonlinear finite element approach is
developed for the large displacement large strain regime with
partiCUlar reference to elastic-plastic behavior in metal structures
A large displacement, small strain formulation (as applicable to
problems of structural stability) is obtained from this theory by
assuming that changes in lenght of line elements and relative
rotations are negligible when compared to unity. A consistent Updated
Lagrangian formulation is derived from the energy balance equation in
reference to propper configuration. Differences between the existing
formulations and similar ones in the literarure are found to be in
specific geometric nonlinear terms in the final incremental equation
as well as in the definition of the load increment vector. A complete
formulation for the eqUilibrium of a thin walled member of arbitrary
open cross-section is used and a complete displacement fied (axial
and transversal) is developed including higher order terms. A more
restricted approach under the hypothesis hypotesis of linearized field
of displacements is adopted in order to show an application and a new
stiffness matrix for geometrically non-linear incremental analysis of
three dimensional beam-column with bisymmetrical, thin walle~, ,I-type
cross section is presented. Corrections in the element matrix are made
to propperly consider: the behavior under finite rotations. The
formulation implemented in a computer program uses the Newton-Raphson
scheme for nonlinear incremental analysIs.

Much previous research has been conducted to obtain the governing
differential equations for beams and beam-columns in three dimensions
based on consideration of equilibrium, virtual work, or total potential
energy. Studies in the literature consider only some effects as
uniform torsion 121, whilst others 161 113J studied both uniform and
nonuniform torsion. Several other effects have been taken into account
such as the effect of initial imperfections, constitutive
nonlinearities and geometric nonlinearities, the latter being due to
larqe displacements. The most commonly used nonlinear material is the
elastic-plastic model, for which the linearity of the incremental
stress-strain law forms the basis of the equations. Its most direct
application is in the incremental type ~olution, where the solution
is built up as a series of linear increments. Geometric nonlinearities
were first included by means of incremental qeometric stiffness
(initial stress stiffness matrix). The earlier results were obtained on
basis of eqUilibrium at nodes. The derivation of the initial stress
stiffness matrix was finally placed on a firm basis by the use of the



Lagrangian or Green's strain. Hore recent analysis has stabilished the
importance of additional terms wich take the form of an initial
displacement matrix in the incremental solution. The inclussion of this
matrix is very important even within the small straIn approximation.

PROCEDURE

The development of the equilibrium equations for a three dimensional
beam column of thin-walled open cross section requires that attention
be given to:

(1) Basic assumptions
(2) Kinematics of a section and equilibrium equations
(3) stress-Strain relationship.
(4) Generalized forces and displacements
(5) Selection of shape functions

And for analyses of spatial structures composed by non-collinear
members, an additional requirement of kinematic continuity that must be
sa tl sf i ed [2J, [5):

(6) Finite Rotations

c~ The beam-column has a general open cross section and no distortion
of the cross section occurs appart of warping (rigid transversal
body assumption).

Cbl Effects of transversal stresses are negligible.
(el For transversal displacements we wi1] consider moderate rotations

hypotesis.
cd> For axial displacements we will consider:

C" Transversa] displacements are much larger than the longitudinal
ones.

I••, The thin-walled beam element is composed by individual plate
elements.

,••0 The shearing strain in the middle surface and in the plane
normal to the individual plate elements is neglected.

KINEMATICS OF A SECTION AND EQUILIBRIUM EQUATIONS
Hipotesis of Large Rotation in Flexure

In large displacements and small strains, it is important to know the
order of magnitude of the rotation of the cross section caused by the
coupling of bending and torsion. In order to deal correctly with
approximations and error estimations, we begin to consider the complete
set of the field of displacements caused by large rotations,
considering all the terms without approximations. The complete
development of the field of displacements obtained from Vlasov's theory
for a general thin-walled open-cross section beam (Figure 1), can be
found in reference [7).



The displacements in the interior of the element considering large
rotations are:

ux(x/y/z) u (x) y ( u' (x) sin pIx) + u I (x) cos pIx) 1x '" y -z [ U I (x) cas pIx) - u' (x) sin pIx) I - W (y/ z) p' (x)
'" y

u (x/y/z) u (x) - (z - z ) sin pIx) (y - y )( I - cas p( x) )y y " "u (x/y/z) u (x) + (Y -- y" ) sin pIx) - (z - z )(1 - cos p( x) ) (1)
'" '" "

Where y-z Is the principal axis of the cross section, ~(y/z) is the
sectorial area and 1" is a measure of the warping of the section.
With this set of displacements, we can now deal with the hypothesis of
moderate rotations.

We shall assume that the rotations about the normal to the midplane
are small and of the order of magnitude of the strains, while the
rotations of the normal are moderate. These assumptions are consistent
with the real features of these strutures which exhibit a large
in-plane rigidity and some transver3e fleXibility. In mathematical
terms, the assumption of small strain means

we will disregard the terms
pIx) p'(x) u'(x) pIx) p'(x) u'(x)

y IE

With this last assumptions, the field of displacements reduces to:
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Hipothesis of linearized field of displacements
It is shown that the choice of this hypotesis represents an simplified
and particular case of a variety of nonlinear refined thin-walled beam
theories. In the light of the present theory, these approximate
variants may be derived in a unified manner and related to each other
in the basis of order of magnitude considerations, which accordingly
makes it possible to clarify the range of validity of this hypothesis.
It Is also shown that under coherent assumptions and constraints, the
present use of linearized field of displacements reduces the hard work
of deal with a complete set of field displacements and a stress-straIn
relationships. Several authors (61/ [81/ (91 have adopted the
linearized field of dIsplacements directly and not as a simplified
hypothesis through the complete field of displacements.

Taking the relations ( 4) as a basis, we have:

u,,(x/y/z) u (x) y u' (x) - z u' (x) w(y/z) p' (x)x y '"Uy(x/y/Z) u (x) (z - z ) pIx)y "u",(x/y/z) u (x) + (y - y••) pIx)
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Equilibrium Equations for Thin-Walled Beam-Columns
In the following development one may consider the motion of a beam
element in a st~tionary Cartesian co-ordinate system, as shown in
Figure 2. There are three configurations to consider: Co the initial or
undeformed, Cl is a current deformed and known deformed state, Cz is
the neighbouring unknown deformed state. In the present development we
will use the notatIon of Bathe [31: left subscript denotes the
configuration in which the quantity is measured; left superscript
denotes the configuration in which the quantity occurs. Quantities wIth
no superscript denotes increment between configuration 1 and 2.

The principle of vIrtual displacement may be used to write the
equIlibrIum requIrements for any stress fIeld. Using CartesIan tensor
notation, neglecting body forces, and expressing the internal work as
the product of the associated components of the KIrchhoff stress
tensor, ai.j,and Green's strain tensor "'ij, the prIncIple of vIrtual
dIsplacements may be written in the deformed configuratIon 2 as

J 1+6l9 .. 6 l+6l", .
t l J t l JlV

where ~ is the expressIon of the external total virtual work, 9 is the
2nd PIola-KIrchhoff stress tensor and'" is the Green-[.agrange strain
tensor. An incremental decomposition of these tensors is:

l+6l9 1 l+6l 1
1 i.j Ti.j lSi.j; 1 "'i.j "'i.J+ l"'i.j

where 1 and 1 the Cauchy and Green-Lagrange tensors In CcT "' . .areL J L J
Due to equation (6 ) we can see that

1+t.l
6 "'. 0 l"'i.j E .. 1ei.j+ 1Tfi.j, j 1 LJ



are the linear and nonlinear components of the strain tensor.If we use
the constitutive tensor to relate the strain tensor to the 2nd
Piola-Kirchhoff, then we have

that is linear in displacements
configurations I and 2 is very
equation in the form

Ui. If
small

the time
we can

increment between
rewrite the last

I C.. e 6 e
l\Jrolra lij

lV
ldV t I lT l j 6l 7)i j ldV

lV

in which high order terms have been dropped.
It is usually more efficient to evaluate all magnitudes and
local co-ordinate system and then perform a transormation
system, before the element assembly proccess, then,
identify this magnitudes with an upper bar. The last equation

matrices in
to global

we will
is now

Due to characteristics of the selected bi-symmetrical thin-walled beam
(Figure 2b), we have only three non-zero stress components, then

< l- > l l l >T < 0- T Txx yx zx

< le > < e 2 e 2 e >l xx l yx l zx

< l7) > = < l7)xx 2 l7)yx 2 l7)zx > (15)

and if we neglect the square of the Poisson effect,

[ lC ] diag I E G G (16 )

Incremental Equilibrium Equation of a 30 Beam-Column
In sUbstituting the equations (15) and (16) into (14), we obtain
I I ~6( U )2 + ~ 6( u + U )2 + ~ 6( u + U » ldV +

2 l X,x 2 1 )(,y t v,x 2 l )(,2 t Z,)(
lV

l
0-
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l 6( u )T U U U + U U +xy \ M,>C l x.y l y.x l y.y l ••.x l ••.y

l+Al~ _ li
l l

We can rewrite this last equation after some operations,



l( P ) are the load vectors at the end and begining of the
l

proccess.

GENERALIZED NODAL FORCES AND DISPLACEHENTS
In order to obtain the geometrical stiffness matrix of a thin-walled
bi-symmetrical I beam, the selected local beam axis are chosen 50 that
x- coincides with centroidal axis and y-z are the cross-sectional ones.
Next, figures 3a and 3b shows the Cartesian degrees of freedom and
forces.
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r ,",z, /Zz. t x
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1

a) Displacements b) Forces
Figure 3 Cartesian degrees of freedom and forces

DISPLACEHENT FUNCTIONS
Usual elements for spatial frame analisis are formulated with Hermitian
interpolations. We use linear function for axial displacement and cubic
and quadratic functions for flexure, torsional and flexural rotation.

<Hs>
<H9>

«l-t) t>
«1-3t2t2t9) (t-2t2t ta) ( 3t2-2t9) (t9_t2»

with t xll.The
indicate a nodal

upper bar on the displacement vectors is
displacement at the end nodes 1 and 2 of the

v = < Vs 4>•. V2 4>2>'

used to
element,



The rotational degrees of freedom adopted as <p X ¢>= <ex' -u~, u;>
does not ensure the kinematic continuity at nodes when finite rotations
occurs 121,[51. In order to obtain a consistent formulation, that
describe the generalized nodal load vector, it is shown the necessity
for the inclussion of the load correction matrix. The argumentation is
based in the fact that the stiffness geometric matrices obtained
through the expression of strain energy associated to the
Green-Lagrange strain tensor components, does not consider the
non-linear work produced by the applied loads, and it must be included
as additional correcting matrices, called "load correction matrix"
It means that for the correct selection of generalized displacements
(translation and rotation), finite rotation vectors that are
commutative up to second order terms, must be used to ensure the
kinematic continuity in the nodes of the structure 121.

Generalized rotations <p> = < p X ~ > must be related to Euler,
Hilenkovic or Rodrigues angles <~> = < ¢x ¢y ¢z> as pointed out by Kane
[41 and Surana 1171 as

The generalized virtual incremental rotation must be related to the
finite incremental rotations as

{::} [~':1 0 0

1 r}2 1 -¢,/ 2 J 6¢y [ A J 6¢
¢yl 2 ¢x! 2 I 6¢z

Relationships between generalized moments { H I and { H¢
obtained from the last equation as

{ 6H¢ } = [A ]T { 6H I + [o5A ]T { H }

We can rewrite the differential moments as a product of a stiffness
matrix and a vector of incremental rotations as

{o5H¢} = (K~I {6~} {o5H} = [KJ {o5p}

Then, (24) is now:
I K~ I {6~} = [!I.] T [K J [A] { 6~ } + 6 [ !I. ] T { H }

where

[
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0 H
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We can say then
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The second member of this equation may be written in compact form as:
[61\]T[HI=[C" ][6~} (32)

. XlJI
where •.is the node element and X lJI the rotational degrees of freedom
The expression of this matrix is

[C ] = r [0 ) [e ) [0 ) [C2
) [0 )J

XlJI !lx!l X1JI !Ix9 X¥' 2x2

This matrix added to the stiffness matrix, turns the latter suitable
for finite rotations.

EXAMPLE 1 . Spatial L Frame
In this flexural-torsional example we have used 15 elements per side in
order to ensure the convergence to linearized critical load and to
obtain the performance of the element compared with those available in
the literature.

A-A A g B
L=240 mm A

.~Jb= 90 mm

'1ru--l =0. <S mm
v~ 0.3.

Ji:~7t2""O ;:.l : I X

H/mm :. r
~ p~ l 10'. P = - iN -..

x p
.ere- [Ko] Cr i. tical Load [N) [N)renc. p critical Loa.d P

cr cr

(7) [K:q] 0,4303 0,5607
[7 ) [K:"] 0,6940 1,0972
[2 ) [K:] c. c 0,4217 0,5505
[2 ) [K:] c. c 0,6808 1,0873
(2 ) CK:] •. c 0,8236 1,2234
[2 ) [K:] •. c 1,0775 2,0965
(5 ) [KOB] 0,8236 1,2234
[5) [KOB]N 0,8236 1,2234
[11 ) [Koa] 0,7101 1,0079
(6) [K:~] 0,4217 0,5505
[6 J [K:;] 0,6808 1,0873
[18 ) [Ko] BL 0,4217 0,5505
(15 ) [K::J 0,4403 0,5697
[15 ) [K::J 0,7000 1,1000
[121 " 1,0847"ELIAS 0,6818

**(131 FLDZ 0,6804 .,,"
(14 J SINO 1,09



• analytical results using nonlinear rotations
•• results using 10 elements per side
••• results without indication of discretization employed

case not solved for the authors
The letters used inside the brackets are:"••" and "aq" superscripts
represents geometrical stiffness matrices with and without nodal
correction matrix added. For the author in ref. (21 "." is same as
"••", and "q" is same as "~". The subscripts C.c and •.c outside the
brackets represents the consideration or not of shear forces, and "Y"
represents the variation of flexure moments along the element. ".L"
represents an element obtained with linear Lagrangian functions.
8XAMPL8 2. CAIf'l'IL8V8R BBAM WI'l'H nD HOHDI'l'
This example was taken from refs. (161 and (171 and solved analytically
through elliptic integrals (19). Geometric and _.material properties
are in Figure 4. Convergence tolerance used is 10 in all cases. A
four three node element i8 used. The total load is applied in 100 equal
steps.

'-0.8

Figure 4. Cantilever beam lIIOdeland a load-deflection behavior

looad A (l7) A (16) A (71 1;t.r.115J zt.r. (ICJJ It.r.m
'c:r.ctor A Anc:r.l. A Anc:r.l. A Anc:r.l.

0.2 0.99 1.00 1.00 7 4 3
0.4 1.00 1.01 1.00 7 5 3
0.6 1.00 1.01 1.00 7 4 3
0.8 1.00 1.02 1.00 7 5 3
1.0 1.01 1.02 1.00 7 4 3
1.2 1.01 1.01 1.01 8 5 3
1.4 0.99 1.00 1.00 8 5 3
1.6 0.96 0.97 0.98 8 6 3
1.8 0.91 0.92 0.93 7 5 3

Table 2 Comparison of results of cantilever beam under moment
COIICLU8I0lI8

The three dimensional thin-walled beam formulation presented here is
based on a consistent derivation of a complete displacements field,
performs very well in problems of linearized stability and for
nonlinear incremental analysis. The inclu8sion of . warping effects, a
nodal correction matrix and an improved algorithm for the proccess of
forces recovery, offers extremely good convergence characteristics
during equilibrium iterations. The displacement of the elements is
comparable with isoparametric beam elements.
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