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ABSTRACT

An incremental and plecewise nonlinear finite element approach \is
developed for the 1larqge displacement , large straln regime with
particular reference to elastic-plastic behavior In metal structures
A large displacement, small straln formulation (as applicable to
problems of structural stability) is obtatned from this theory by
assuming that changes in lenght of 1line elements and relatlive
rotations are negligible when compared to unity. A consistent Updated

Lagrangian formulation is derived from the energy balance egquation in
reference to propper configuration. Differences between the existing
formulations and similar ones in the literarure are found to be in
specific geometric nonlinear terms in the final incremental equation
as well as in the definition of the load increment vector. A complete
formulation for the equilibrium of a thin walled member of arbilitrary
open cross-section 1is used and a complete displacement fied (axial
and transversal) is developed including higher order terms. A more
restricted approach under the hypothesis hypotesis of linearized field
of displacements is adopted in order to show an appllication and a new
stiffness matrix for geometrically non-linear incremental analysis of

three dimensional beam-column with bisymmetrical, thin walled, . .I-type
cross section is presented. Corrections in the element matrix are made
to propperly consider the behavior wunder finite rotatlions. The

formulation implemented in a computer program uses the Newton-Raphson
scheme for nonlinear incremental analysis.

INTRODUCTION AND REVIEW OF LITERATURE

Much previous research has been conducted to obtain the governing
differential equations for beams and beam-columns in three dimensions
based on consideration of equilibrium, virtual work, or total potentlal
enerxgy. Studies in the 1literature consider only some effects as
uniform torsion {2), whilst others (6] (13]) studied both uniform and
nonuniform torsion. Several other effects have been taken into account
such as the effect of initial imperfectlions, constitutive
nonlinearities and geometric nonlinearities, the latter being due to
large displacements. The most commonly used nonlinear material 1is the
elastic-plastic model, for which the 1linearity of the incremental
stress-strain law forms the basis of the equations. 1Its most direct
application is in the incremental type sSolution, where the solution
is built up as a series of linear increments. Geometric nonlinearities
were first included by means of incremental geometric stiffness
(initilal stress stiffness matrix). The earlier results were obtained on
basis of equilibrium at nodes. The derivatlion of the 1initial stress
stiffness matrix was finally placed on a firm basis by the use of the
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Lagrangian or Green's straln. More recent analysis has stabilished the
importance of additional terms wich take the form of an 1initlal
displacement matrix in the incremental solution. The linclussion of this
matrix ls very important even within the small strain approximation.

PROCEDURE

The development of the equlilibrium equations for a three dimensional
beam columnh of thin-walled open cross section requires that attention
be given to:

(1) Basic assumptions

(2) Kinematics of a section and equllibrium equations

(3) Stress-Straln relationship.

(4) Generallzed forces and displacements

(5) Selection of shape functions
And for analyses of spatial structures composed by non-collinear
members, an additlional requlirement of kinematic continuity that must be
satlsfied (2], (5}):

(6) Finite Rotations

BASIC ASUMPTIONS

@ The beam-column has a general open cross section and no distortion
of the cross section occurs appart of warping (rigid transversal
body assumption).

& Effects of transversal stresses are negligible.

« For transversal displacements we will consider moderate rotations
hypotesis. ’

(b For axial displacements we will consider:

@y Transversal displacements are much larger than the longlitudinal
ones.

di» The thin-walled beam element is composed by individual plate
elements.

v The shearing strain in the middle surface and 1in the plane
normal to the individual plate elements 1s neglected.

KINEMATICS OF A SECTION AND EQUILIBRIUM EQUATIONS
Hipotesis of Large Rotation in Flexure

In large displacements and small strains, it is important to know the
order of magnitude of the rotation of the cross section caused by the
coupling of bending and torsion. In order to deal correctly with
approximations and error estimations, we begin to consider the complete
set of the field of displacements caused by large rotations,
considering all the terms without approximations. The complete
development of the field of displacements obtained from Vlasov's theory
for a general thin-walled open-cross section beam (Figure 1), can be
found in reference (7].
/P
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Figure 1. A general thin-walled open-cross section beam
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The displacements in the interior of the element considering large
rotatlons are:

ux(x,y,z) = ux(x) -y 1 u;(x) sin p(x) + u;(x) cos p(x) 1 -
z | u;(x) cos p(x) - u;(x) sin p(x) 1 - @ (y,z) o'(x)
uY (x,y,z) = uy(x) - (z - z) sin p(x) - (y - ya)(l ~ cos p(x))

u {(x,y,2) u (x) + (y - Y} 8in p(x) - (z - zg)(l - cos p(x)})) (1)

Where y-z i3 the principal axis of the cross section, w(y,z) 1s the
sectorial area and p' iIs a measure of the warping of the section.

With this set of displacements, we can now deal with the hypothesis of
moderate rotations.

Hypothesis of Moderate Rotations in Beam Theory

We shall assume that the rotations about the normal to the midplane
are small and of the order of magnitude of the strains, while the
rotations of the normal are moderate. These assumptions are consistent
with the real features of these strutures which exhibit a large
in-plane rigidity and some transverse flexibllity. In mathematical
terms, the assumption of small strain means

pl{x) << 1 ; sin e(x) = p(x) ; cos p(x) =1 (2)
we will disregard the terms

p(x) p'(x) u;(x) ; p(x) e’ (x) u’(x) (3)

With this last assumptions, the field of displacements reduces to:

u”(x,y,z) = ux(x) -yl u;(x) + u;(x) pix) ) - 2( u;(x) - u;(X) p(x) ) -

wl(y,z) o' (x)
u (X,y,2) = u (x}) =~ (z - z ) p(x)
Y 0% 2

L

uz(x,y,z) uz(x) + (y - yn) p{x) (4)

Hipothesis of linearized field of displacements

It i1s shown that the cholce of thls hypotesis represents an simplified
and particular case of a varlety of nonlinear refined thin-walled beam
theorles. In the 1light of the present theory, these approximate
variants may be derived in a unified manner and related to each other
in the basis of order of magnitude considerations, which accordingly
makes 1t possible to clarify the range of validity of this hypothesis.
It is also shown that under coherent assumptions and constraints, the
present use of linearized field of displacements reduces the hard work
of deal with a complete set of fleld displacements and a stress-straln
relationships. Several authors 161, (8], 19) have adopted the
linearized fleld of displacements directly and not as a simpilified
hypothesis through the complete field of displacements.

Taking the relations (4) as a basis, we have:

u (x,y,z) = u (x) - y u;(x) -z ulx) - wly,z) ' (x)
uy(x,y,z) = uy(x) - {z - z ) pix)
uw (x,¥,2) = u (x) + (y - y) e(x) (S)

This hypothesis is completed with the small strains hypothesis.
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Equilibrium Equations for Thin-Walled Beam-Columns

In the following development one may consider the motion of a beam
element in a stationary Cartesian co-ordinate system, as shown in
Figure 2. There are three configurations to consider: Co the initial or
undeformed, Ci1+ is a current deformed and known deformed state, Cz is
the neighbouring unknown deformed state. In the present development we
will use the notatlon of Bathe [(3}: 1left subscript denotes the
configuration in which the quantity 1is measured; left superscript
denotes the configuration in which the quantity occurs. Quantities with
no superscript denotes increment between configuration 1 and 2.

S
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ta) : {(b)
Figure 2. Confligurations of a thin-walled beam and stress resultants
Total and Incremental Virtual Work

The principle of wvirtual displacement may be used to write the
equllibrium requirements for any stress field. Using Cartesian tensor
notation, neglecting body forces, and expressing the internal work as
the product of the associated components of the Kirchhoff stress
tensor, c¢ij, and Green's strain tensor £ij, the principle of virtual
displacements may be written in the deformed conflguration 2 as

f l»ALS.‘ 6'1*Al£,‘ ldv - l#ALR (6)
. t (91 t 1) t
\' .
where R is the expression of the external total virtual work, 8 is the
2nd Piola-Kirchhoff stress tensor and £ is the Creen-Lagrange strain
tensor. An incremental decompogsitlon of these tensors is:
t+ AL 1 l+Al£ t

3 = T .+ 8 .. = £+ £ (7)
1 i} L) t vy t 1 L] t i)

where trLj and le,”_aze the Cauchy and Green-Lagrange tensors in Ci.

Due to eguation (6) we can see that

L+ AL
& F> = & ; £, = +

t i [ i teu 1nu (8)
where

e L u u ) + (tu u ‘u a, )1} (9)

= - + hd +

t v t v, L, X,i t k,j k,j L k,i

and

1
Ny Tz ( ML 1uk,j) : . (10)
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are the linear and nonlinear components of the strain tensor.If we use
the constitutive tensor to relate the strain tensor to the 2nd
Piola-Kirchhoff, then we have
g = C. . £ (11)
t i Lt ijre t ro
and equation (6] can now be expressed as

t t t t+AL t t
J Cijra (%0 805, OV + ft T S av o= ®R-J T 80 AV (12)

v v v

that is linear in displacements wui. If the time Increment between
configurations 1 and 2 is very small , we can rewrite the last
equation Iin the form
t t t t +At t
I iClire 1%ra Spep; av+ [ Tr o s Ay = ® - F (13)
tv ‘v

in which high order terms have been dropped.

It Is usually more efficient to evaluate all magnitudes and matrices in

local co-ordinate system and then perform a transormation to global

system, before the element assembly proccess, then, we will

identify this magnitudes with an upper bar. The last equation is now

J €y 80,0 tavie flr s tav - tAtg - tE (14)
ty tv

STRES8-STRAIN RELATIONSHIPS

Due to characteristics of the selected bi-symmetrical thin-walled beam
(Figure 2b), we have only three non-zero stress components, then

<'tr=<te tr v >
% 123 zx
< e > =< e 2 e 2 e >
t t oxx t wyx 1 zx
< ln > =< lnxx 2 lnyx 2 lnzx > (15)

and If we neglect the square of the Polsson effect,
[16]=diaq(EGG] (16)
Incremental Equillibrium EBguation of a 3D Beam-Column

In subﬁtltutlng the equations (15) and (16) into (14), we obtain

E 2 G 2 G L
fl( ; 6(lux,x) M ; 6(&ux,y M luy,x) * ; 6(lux,z * luz.x)’ av +
\'

t
o 2 2 2
XN
f { — 6{u + u + ou )+
N 2 t . t y.x t oe,x
v

t

T S(u u + u u + 0 u )+
Xy 1 xx t oy t yx t yy t 2% t 2y
Yt S(u . u o+ uu s ou_u )] ‘av =
»z t w3t t o xx L yx t yz L 2x t ex
v+AL [ g
' ® - F (17)

We can rewrite this last equation after some operations, in a matrix
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:l P } are the load vectors at the end and begining of the incremental

proccess,

GENERALIZED NODAL FORCES AND DI1SPLACEMENTS

In order to obtain the geometrical stiffness matrix of a thin-walled
bi-symmetrical I beam, the selected local beam axis are chosen so that
x~ coincides with centroidal axls and y-z are the cross-sectional ones.
Next, figures 3a and 3b shows the Cartesian degrees of freedom and

forces.
i I

Do X e

Y.
wlv, ot oy, g dor by x D xg mgle, |

b I R
A, s Hiin Pt
‘z/ 5": / Mz,

4

a) Displacements b) Forces
Fiqure 3 Cartesian degrees of freedom and forces
where

P> =< Uy Ve Wy Py X, ¥ 0, VY P X, W, 00, 2 (19)

is the Carteslian displacement vector and

P> = < in FY! FZ! Hxn MY1 MZ! sz FYZ FZZ sz HYZ HZZ Bl B2> (20)

is the Carteslian load vector.

DISPLACEMENT FUNCTIONS

Usual elements for spatial frame anallsis are formulated with Hermitian
Interpolations. We use linear function for axital displacement and cublc
and quadratic functions for flexure, torsional and flexural rotation.

u = <H1> u ; v = <Hs> v H W o= <Ha> w ; P = (Ha> p (21)
where

<H1> = <(1-t) t>
CHs> = <(1-3t%+2t%) (t-2¢%+ t?)  3t%-2t?) (2% ) (22)

with t = x/l.The upper bar on the displacement vectors is used to
indicate a nodal displacement at the end nodes 1 and 2 of the element,

= < uou > v = v, tp‘ v, tpz>,

TEIIE

= - - o = '
(w‘ lz‘ w, lxz>, f < °, dp‘ v, Lp; > (23)
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FINITE ROTATIONS

The rotational degrees of freedom adopted as <p y ¢>= <8x, -u;, u;)

does not ensure the kinematic continuity at nodes when finite rotations
occurs {2),15]1. In order to obtain a consistent formulatlion, that
describe the generalized nodal load vector, it 1s shown the necessity
for the inclussion of the load correction matrix. The argumentation |{is
based in the fact that the stiffness geometric matrices obtained
through the expression of strain enerqgy assoclated to the
Green-Lagrange strain tensor components, does not consider the
non-linear work produced by the applied loads, and it must be included
as additlonal correcting matrices, called "load correction matrix®
It means that for the correct selection of generalized displacements
(translation and rotation), finite rotation vectors that are
commutative up to second order terms, must be wused to ensure the
kinematic continuity in the nodes of the structure {2}.

Generalized rotatlons <¢> = < ¢ x w > must be related to Euler,

Milenkovic or Rodrigues angles <3> = < ¢_ ¢ ¢ > as pointed out by Kane
X Y 4

(4] and Surana {171] as

T gty = - 1 1
@ -ug ul> = <pox w> o= g (¢Y- 7 ¢x¢z) (#,+ 3 ¢x¢y) > (24)

The generalized virtual Incremental rotation must be related to the
finite incremental rotations as

Sp 1 0 0 ] 50,
Sxp = |- @,/ 2 1 ¢,/ 2 sp t = [A] 59 (25)
Sy #,/ 2 ¢/ 2 1 J 5¢,)

Relationships between generalized moments { M } and { M¢ } must be

obtalned from the last equation as

tM, 3 = [A]T tn (26)
The differential form of this last equation is

CeM, b = [A)  coMmt v [6A]TUM) (27)

We can rewrite the differential moments as a product of a stiffness
matrix and a vector of incremental rotations as

(BM b = (Kg) (68} ; {&M} = (K] {6p) (28)
Then, (24) 1s now:
T T
(Kgl (68} = [ A]" (k1 [A]) (68} +6[A] (M (29)
where
. . 0 -6¢, o6& M, . 0 M, -M] (68,
[(6A170 M} = N 0 0 S | M} = N M, 0 0 &9, (30)
0 -6 O M, M, | o9
We can say then
-
. . [ ] 59, o 0 -~ &8,
[ eA ] {H}=Mx; 0 St + M :) 0 Sp b+
s - = 0 0 | |58
z 2 z




84 ) ENIEF 8° Congreso Sobre Métodos Numéricos y sus Aplicaciones

1
? z Sy

M Y 0 6¢Y (31)
o o 59,

The second member of this equation may be written in compact form as:
[eal™ tmy=[c ] sz (32)
where i 1Is the node element and x w the rotational degrees of freedom

The expression of thls matrix ls
2

[c 1 =i, () 10, 0 (ST ) (0

axa ¥ zxz)-' (33)

This matrix added to the stiffness matrix, turns the latter suitable
for finite rotations.
NUMERICAL RESULTS

EXAMPLE 1 . Spatial L Frame

In this flexural-torsional example wWe have used 15 elements per side in
order to ensure the convergence to 1linearlzed critical load and to
obtain the performance of the element compared with those available in
the literature.

A-A A [}
v 1.=240 mm
b= 80 mm
T t=0. 6 mm
‘' v= 0.91
- b
z | E=74240
l N/mm
L ke = : AN
x
RefeL [KO] Gritical Lead p__ {n] Critical Load p__ [N]:
(71 [K;:] 0,4303 0,5607
171 [Ko ] 0,6940 1,0972
Q
12) ‘ [xf:]c_c 0,4217 0,5505
121 [Kg]c'c 0,6808 1,0873
(2] [Kg]ﬂ.c 0,8236 1,2234
(21 kK1, . 1,0775 2,0965
(5] Lo 0,8236 1,2234
(5] L 0,8236 1,2234
tin |k, ] 0,7101 1,0079
-
(6] [KO: 0,4217 0,5505
LR
(6]} [Kay] 0,6808 1,0873
(18} [Kg’l“ 0,4217 0,5505
{15) [x” 0,4403 0,5697
(1s) | [x27] 0,7000 1,1000
{121 | sLIAS 0,6818" 1,0847"
xx
{131 FLDZ 0,6804 T
(14} 2IMO - 1,09

Table 1. Results for load cases A and B
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L] analytical results using nonlinear rotations

x results using 10 elements per side

%%t results without indication of discretization employed

- case not solved for the authors

The letters used inside the brackets are:"=s" and "aq" superscripts
represents geometrical stiffness matrices with and without nodal
correction matrix added. For the author in ref. {2] "e" 1is same as
"es", and "q" is same as "eq". The subscripts c.c and a.¢ outside the
brackets represents the consideration or not of shear forces, and g
represents the variation of flexure moments along the element. "mnL"
represents an element obtained with linear Lagrangian functions,

EXAMPLE 2. CANTILRVER BEAM WITH END MOMENT

This example was taken from refs. (16] and [17] and solved analytically
through elliptic integrals [19). Geometric and _‘mater!al properties
are tn Figure 4. Convergence tolerance used is 10 in all cases. A
four three node element is used. The total load is applied in 100 equal
steps,

0.0

’L_ . . . J;)M t20.2

1208  1-08

Figure 4. Cantilever beam model and a load-deflection behavior

load A {17) A (16) A7) Iter. (451 Iter.(16] JIter.(?
factor A Anal. A Anal. A Anal.

0.2 0.99 1.00 1.00 7 4 3
0.4 1.00 1.01 1.00 7 5 3
0.6 1.00 1.01 1.00 7 4 3
0.8 1.00 1.02 1.00 7 5 3
1.0 1.01 1.02 1.00 7 4 3
1.2 1.01 1.01 1.01 8 5 3
1.4 0.99 1.00 1.00 8 5 3
1.6 0.96 0.97 0.98 8 6 3
1.8 0.91 0.92 0.93 7 5 3

Table 2 Comparison of results of cantilever beam under moment

CONCLUSIONS

The three dimensional thin-walled beam formulation presented here is
based on a consistent derivation of a complete displacements flelq,
performs very well in problems of linearized stability and for
nonlinear incremental analysis. The inclussion of warping effects, a
nodal correction matrix and an improved algorithm for the proccess of
forces recovery, offers extremely good convergence characteristics
during eguilibrium iterations. The displacement of the elements is
comparable with isoparametric beam elements.
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(2]

£3)

[4]

{5}

(6]

(7}

(8]

(9]

{101

[11]

{12}
(131

[14]

(15)

f16}

{17}

18]
t19)
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