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ABSTRACT

This work discusses the model of dynamic structural problems through
the generalized technique of Bond Graphs. It is presented a methodology
for the araph construction when a continuous system is modeled by the
finite element method. We discuss also the facility to obtain the
system graph when the structure must be considered as a dynamic
subsystem, i.e., when the continuous media is modeled by several
finite elements and is a part of the whole system.

INTRODUCTION

The use of finite element method in structural analysis has received
new researches each day, and the developments of complex models are
presented in great number of works.

There are, howaveyr, difficulties in the modeling of structural dynamic
behavior when it must be considered as subsystem of the whole suystem.
In the problem with interactions among subsystems of distinct domains,
we must consider the structure as an element that exchange energy
with other systems.

Then, for the high technology used in the machine and equipment

designs, we need a systematic approach to model theirs components.
This methodology only is possible with the use of techniques that
permit the modeling of subsystems of distinct physical nature

interacting each other [13.

The technique that in last years has been used with efficiency in the
physical modeling, simulation and analysis stages is the Bond Graphs.
Its unified approach to several physical dowains permits the unions
among subsystems.

In this work we establish the bond graph representing structural models
obtained by the Finite Element Technique. It is shown the procedures to
model linear structural systems.

We present, as example, the methodology used to model a beam element
by the bond graphs technique. It is considered in the model the mass,




68 ENIEF 8° Congreso Sobre Métodos Numéricos y sus Aplicaciones

the stiffness and diséipative effects to the beam structure. The
modularity of the technigque, permitting the inclusion of lumped
elements in the model, is also explored.

ELASTIC COUPLING AMONG DEGREES OF FREEDOM

The bond graphs technique considers a physical system being represented
by lumped pavameters with coupling through the forces equilibrium and
the kinematdir restrictions referred to the problem. Then if we have a
continuous represented by the finite element technique, we can find the
stiffness parameters among two any degrees of freedom. Figure 1 shows a
continuous with two generic displacements of nodes vrepresented.

u:

Figure 1. A continuous system with two degrees of freedom.

The global stiffness matrix representing the system has two lines and
two columns related to the ui and u; degrees of freedom, and can be
represented by the matrix:

Considering only these two degrees of freedom we can write the
following matrix:

()

In this matrix each stiffness coefficient is defined considering the
elastic effects of the elements associate to the ui and u; degrees of
freedom.

Particularly to these two degrees of freedom we have the corresponding
velocities that, from the bond graph technique, are represented by
1-junctions. If we consider inertias m and mj and forces ¥Fiv and Fj
referring to these degrees of freedom, the graph representing the
dynamic among these velocities can be shown in figure 2.

With the procedures to determine de state equations [2] we have:
Equations for the i-junctions:

es = es - es - ey and fe = f2
€z = eo + €a - €4 and fo = fa
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Figure 2. Bond graph representing the coupling among two degrees of
freedom.

Equations for the @-junctions:

fs = fa -~ ¢ and e; = €8 = es (4)
Constitutive Relations:
1 = pa/m es = kiqg
fz = pz/mj es = kjqe 3
es = Kijgs
Sources:
es = Fi and ep = F; (&)

In the relations (3), (4), (35) and (&) e, f, P and q are the
generalized wvariables of effort, flow, momentum and displacement
respectively. With these relations we can obtain the state equations,
wrote as a function of the energy variables p and gq. The algebraic
manipulation leads to

p1 ° 6 ki ¢ -ki] [rs 1 e

P2 1] (4 ? -kj kij pz e 1 e

as] =] 1/m @ o ¢ e asf + Je o [e ] 7
Se & t/m; © © @ Ge o o]l®"

9o -1/m 1/my 2 ¢ 0 qs % @

It is easy identify in the state equations the relations among the
state wvariables and the 1lagrangean coordinates of the - problem.
Equations (8) show these relations.

u

P4 = MRl s = ui .
o Qe = uj 8
Pz myug g = uy - w

If we substitute equations (8) in the two first state equations the
classical equations of motions used in the finite element method can be

obtained.
m 0 u‘ ki-kij  -kigffuif . JFi
[0 mJ[u,] + [ “kij kj'kiJ [ug] [Fj] )

In this matrix form the ki and k; elements must be defined by the
following relations:
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ki
ki

kiv + kg
ki + kij (10)

W

The graph of figure 2 represent, then, the elastic coupling among two
degrees of freedom. Analog development can be obtained for the
dissipative effects as viscous damping. The graph considering these
effects is shown in figure 3.
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Figure 3. Bond graph for two degrees of freedom including elastic and
dissipative effects.

The manipulation of the energy variables for this graph leads to the
following state equations:

E; L{bi j-bi3/m ~bij/my ki @ -~Kkijffjps 1 0

pz ~Bij/m (bij-bil/mz @ -~kj kiz}jirz o1 €o

pal= 1/mi [ 2 © @ qaf+]0 @ [210] (11)
a4 0 1/m) ¢ o o g4 2 9

qs ~1/mi i/mj [ 2 9 qs o 0

Using the relations (1@) and their analogy to dissipative effects, we
can shown that the state form (i) represents the classical problem
of the dynamic, expressed mathematicaly as :

tmll + “”".i + [kdu = F (2

The Lml, Lbl and [kl are respectively the mass, dampihg and stiffness
matrices.
THE BOND GRAPH FOR THE BEAM ELEMENT

The classical beam element used in plane structure analysis has four
flexure degrees of freedom as shown in figure 4.

ui w2
fI\ Gy o2

Na 3 NS =

Figure 4. The classical beam element.

Considering an element with length L, elasticity modulus E and moment
of inertia I we can write its stiffness matrix.
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6 3L -6 3L
3L 2t® -3L L
-6 -3L & -3L
aL L®  -3L aL®

£kl = 2L

L(!!

(U

In this matrix the four rows and columns are related to the four
degrees of freedom us, @1, uz and &2 in this order.

With the presence of terms out of the principal diagonal, the bond
araph for this element must consider the coupling to all degrees of
freedom, then we must use the graph topology of figure 3.

Considering also the beam inertias as lumped parameters concentrated in
the element nodes, we can represent the bond graph for this element as
shown in figure S.
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Figure 5. Bond graph for the beam element.

The generalized capacitors rvepresent the beam flexibility and are
defined by the expressions:

Ciy = 1/kyy pl i ® j e
(14)
Ciy = 17ki p/ i = j
in expressions (14} the ki elements are defined by equations (19).
-
ki = 2 Kik (15)

emi

The generalized resistors ~represent the dissipative effects which
expressions are similar to (14) and (13).




72 ENIEF 8° Congreso Sobre Métodos Numéricos y sus Aplicaciones

Rij = bij pA i * i e
(18)
Rij = b o/ i = j
Where,
S
bi = I bik 17>
W ang

The i-junctions in the graph of Figure 35 represent the absolute
velocities related to the four degrees of freedom. In this typical
graph the beam is free, without boundary conditions and applyed forces.

The geometric boundary conditions can be easily considered in the graph
through the elimination of i-junctions referred to the null velocities.
Then, for example, if this element represents a clamped-free beam, we
must consider vs and @1 nulls., The 1-junctions referred to these
velocities and the corresponding bonds must be eliminated. If the beam
is also forced in the vz direction of node 2, we can consider a effort
source in the corresponding i-junction. The bond graph for this problem
can be constructed as shown in figure 6.
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Figure 6. a) Physical model of a clamped-free beam with one beam

element .
b) Bond graph of the model.

Reference (21 presents the methodology for the establishment of the
mathematical model based on the bond graph. With this methodology we
can find the state equation form for the problem. The simulation of
these equations leads to the response of the system expressed through
its energy variables. We can shown that the state equation form provides
the same answers that of the conventional form used by the finite
element method.

INTERACTIONS AMONG LUMPED AND CONTINUOUS SYSTEMS

An important advantage of the bond graph approach is the facilities to
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represent the interactions among systems of different types. Next we
consider a beam with single supports, without dissipative effects and
represented by three beam elements. The beam interacts with a lumped
mass-spring-damper system and is forced as show in figure 7.
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Figure 7. a) Structural system wmodeled by three beam elements
interacting with lumped parameters system.
b) Conventional degrees of freedom adopted by the finite
element method.

The bond graph for this system can be represented as illustrated in
figure 8, where all degrees of freedom couplings were considered.
We can observe also the coupling among subsystems made through the
i1-junctions referred to the wvelocity in the contact point among
subsystems. This procedure allows the knowledge of the charge effects
between subsystems, i.e., we can determine the actual dynamic influence
of one system in other.
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Figure 8. Bond graph for the model of figure 7.

With the bond numbers adopted in figure 7, we have the follow state
vector with twenty four energy variables:

5‘ = [ps P2 ... P? Q8 9o ... 9243 (18>

The state matrix can be put in the form:

LApp] CApql (19)
CAT = lrapl C[Agel
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Where,
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The mathematical system, then, can be represented in its conventional
state form.
X = CA1 X + CBI U (243

]
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TBe U vector here is a -scalar with the value of the #forcing and the
£B) is a vector with all null terms, except B(4)=1.

The simulation of equations (24) permits the dynamic analysis of the
involved variables. The results are similar to that presented by
Margolis {3Y where he uses the modal analysis concepts.

Figure 9 shows the representative graphic to some velocity points of
the system. (1) Suspended mass; (2) The forcing point and (3) The
interaction point.

v (m/s) 8.82; /3

Figure 9. Simulation Results
FINAL COMMENTS

The methodology presented in this work is absolutely general. With the
limitations hevre presented we can make the dynamic analysis of any
structural system interacting with others physical domains.

It is importante to note that the number of state wvariables for this
procedure can be very large sometimes. Here, for example we had twenty
four state variables for a system with seven degrees of freedom. This
is a particular characteristic of the technigque that, in a first
analysis, do not provide the minimum number of state variables to the
problem. This problem can be solved if we adopt some order reduction
criterians for the system. An other way to reduce the number of state
variables 1is to define a methodology relating the lagrangean
coordinates used by the finite element method with the energy variables
of bond graphs technique.

If we use the store and dissipative fields of the technigue we don°‘t
need reduce the order of the system, because the number of state
variables will be exactly twice the lagrangean coordinates for the
continuous system.
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