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This work discusses the model of d~namic structural problems through
the generalized t~chni~ue of Bond Graphs. It is present~d a ~ethodol09~
for the graph construction when a continuous s~stem is modeled b~ the
finite element method. We discuss also the facilit~ to obtain the
s~stem graph when the structure must be considered as a d~namic
subs~stem, i.e., when the continuous media is modeled b~ several
finite elements and is a part of the whole s~stem.

The use of finite element method in structural anal~sis has received
new researches each da~, and the developments of complex models are
presented in great number of works.
There are, however, difficulties in the modeling of structural
behavior when it must be considered as subs~stem of the whole
In the problem with interactions among subs~stems of distinct
we must consider the structure as an element that exchange
with other s~stems.

d~namic
s~stem.

domains,
energ~

Then, for the high technolog~ used in the
designs, we need a s~stematic approach to model
This methodolog~ onl~ is possible with the use
permit the modeling of subs~stems of distinct
interact ing each other [1 J.

machine and equipment
theirs components.

of techniques that
ph~sical nature

The technique that in last ~ears has been used with efficienc~
ph~sical modeling, simulation and anal~sis stages is the Bond
Its unified approach to several ph~sical domains permits the
amOng sUhs~stems.

in the
Graphs.

unions

In this work we establish the bond graph representing structural models
obtained b~ the Finite Element Technique. It is shown the procedures to
model linear structural s~stems. .
We present, as example, the methodolog~ used to model a beam element
b~ the bond graphs technique. It is considered in the model the mass,



the stiffness and dissipative effects to the
modularit~ of the technique, permitting the
elements in the model. is also explored.

beam structure. The
inclusion of lumped

The bond graphs technique considers a ph~sical s~stem being represented
b~ lumped parameters with coupling through the forces equilibrium and
the kinemat~~ ~estrictions referred to the problem. Then if we have a
continuous represented b~ the finite element technique, we can find the
stiffness parameters among two an~ degrees of freedom. Figure 1 shows a
continuous with two generic displacements of nodes represented.

The global stiffness matrix representing the s~stem has two lines and
two columns related to the ~ and uJ degrees of freedom, and can be
represented b~ the matrix,

[
J

: : : : : . K~ ~ . : : : : . K, ~ . : : : : :
...... K'J KJj .
.... .

Considering onl~ these two degrees of freedom we can write the
following matrix,

[
kHkij]

Ck J=
kijk jj

(2)
In this matrix each stiffness coefficient is defined considering the
elastic effects of the elements associate to the ~ and Uj degrees of
freedom.

Particularl~ to these two degrees of freedom we have the corresponding
velocities that, from the bond graph technique, are represented b~
1-junct ions. If we consider inert ias II1i. and mj and forces Ft and Fj
referring to these degrees of freedom, the graph representing the
d~namic among these velocities can be shown in figure 2.
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Figure 2. Bond graph representing the coupling among two degrees of
freedom.

f5 = fe - f? and e7 = e. elS
Constitutive Relations:
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fz pz/mj e.• kjq.•

e5 kijq!S
Sources;

e6 = F, and e" = FJ

In the relations (3). (4), (5) and (6) e, f. p and
generalized variables of effort, flow. momentum and
respectivel~. With these relations we can obtain the state
wrote as a function of the energ~ variables p and q. The
manipulation leads to

q are the
displacement

equations.
algebraic

[~i][0fZ 0
~, = 1/mt
~.. 0
q!J -1/mt

o
o
o

lImj
1/mJ

It is eas~ identif~ in the state equations the relations
state variables and the lagrangean coordinates of the
Equations (8) show these relations.

among the
problem.

qg = Ui.q.. Uj

q!J Uj - Ui

If we substitute equations (8) in the two first state equations the
classical equations of motions used in the finite element method can be
obtained.

[mt 0J [~il + [k i -kijo m uJ.l -kij
-k i.jJ [Ui] - [F']

krkt' Uj - Fj

In this matrix form the k, and kj elements must be defined b~ the
following relations;



ki.i. + k'J
kJ.i + ki.j

The graph of figure 2 represent. then. the elastic coupling among two
degrees of freedom. Analog development can be obtained for the
dissipative effects as viscous damping. The graph considering these
effects is shown in figure 3.
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Figure 3. Bond graph for two degrees of freedom including elastic and
dissipative effects.

The manipulation of the energ~ variables for this graph leads to the
following state equations:

[~t][(bi. j-bi. } 1m;. -bi. j/mJ -·ki.
t'z -b'J/m, (bi.j-bj)/mz 0
t'll = 1/mi. 0 0
~.. 0 1/mj 0q., -1/mi. 1/mj 0

Using the relations (10) and their analog~ to dissipative effects. we
can shown that the state form (11) represents the classical problem
of the d~namic. expressed mathematical~ as

The [mJ. [bJ and [kJ are respectivel~ the mass. damping and stiffness
matrices.

The classical beam element used in plane structure anal~sis has four
flexure degrees of freedom as shown in figure 4.

Considering an element with length L. elasticit~ modulus E and moment
of inertia I we can write its stiffness matrix.



F'
3L -6 3L

1
= £il

2L'" -3L L'" (13)
Ck J

L'" -6 -3l 6 -3l
3L l'" -3L 2L'"

In this matrix the four rows and columns are related to the four
degrees of freedom U~. 8~, ua and 82 in this order.
With the presence of terms out of the principal diagonal, the bond
graph for this element must consider the coupling to all degrees of
freed·om, then we must use the graph topolog~ of figure 3.

Considering also the beam inertias as lumped parameters concentrated in
the element nodes, we can represent the bond graph for this element as
shown in figure 5.

C•• R•• C•• -'l 1 I'- R•.• R •• Cn

~lv, J. ',1/
1•• 1'- 1 Ie o < 11-'4 ( ••l~;I'- R•• C•• ~;71
C•• c ••
J. .I<

1-'10 01'-1
T' 1.. .•.

J I
R•• R ••

la/ii' o « 11.- L.

l' ~
e•• R•• Co.~ 1 I'- Ro. R•• C ••

The generalized capacitors represent the beam flexibilit~ and are
defined b~ the expressions:

The generalized resistors represent the dissipative effects which
expressions are similar to (14) and (15).



The I-junctions in the graph 0' 'igure 5 represent the absolute
velocities related to the 'our degrees of freedom. In this t~pical
graph the beam is 'ree, without boundar~ conditions and appl~ed 'o~c~s.

The geometric boundar~conditions can be easil~ considered in the graph
through the elimination 0' 1-junctions referred to the null velocities.
Then. for example. if this element represents a clamped-free beam. we
must consider Vi and ~i nulls. The I-junctions referred to these
velocities and the corresponding bonds must be eliminated. If the beam
is also forced in the V2 direction of node 2. we can consider a effort
source in the corresponding i-junction. The bond graph for this problem
can be constructed as shown in figure 6.
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Figure 6. a) Ph~sical model of a clamped-free beam with one beam
element.

b) Bond graph of the model.

Reference [2J presents the methodolog~ for the establishment 0' the
mathematical model based on the bond graph. With this methodolog~ we
can find the state equation 'orm 'or the problem. The simulation 0'
these equations leads to the response of the s~stem expressed through
its energ~ variables. We can shown that the state equation 'orm provide.
the same answers that 0' the conventional 'orm used b~ the finite
element method.



represent the interactions among s~stems of different t~pes. Next we
consider a beam with single supports, without dissipative effects and
represented b~ three beam elements. The beam interacts with a lumped
mass-spring-damper s~stem and is forced as show in figure 7.

Figure 7. a) Structural s~stem modeled b~ three beam elements
interacting with lumped parameters s~stem.

b) Conventional degrees of freedom adopted b~ the finite
element method.

The bond graph for this s~stem can be represented as illustrated in
figure 8, where all degrees of freedom couplings were considered.
We can observe also the coupling among subs~stems made through the
i-junctions referred to the velocit~ in the contact point among
subs~stems. This procedure allows the knowledge of the charge effects
between subs~stems, i.e., we can determine the actual d~namic influence
of one s~stem in other.

With the bond numbers adopted in Figure 7, we have the follow state
vector with twent~ four energ~ variables:

[

tApp]

[A] = [Aqp]
tApq Jl
[Aqq JJ
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Where,

= [~

0 0 0 0 0 ·I-bIb 0 0 0 0 bll
0 0 0 0 0 J,[App] 0 0 0 0 0 (20)
0 0 0 0 0
0 0 0 0 0

bIb 0 0 0 0

-kt 0 0 0 0 0 ktz -kts 0 0 0 I
0 kzz 0 0 0 0 -kt Z 0 kzs kz .• kz, I0 0 -ks 0 0 0 0 kts -kzs 0 0

[Apq] 0 0 0 -k.• 0 0 0 0 0 -kz .• 0 I
0 0 0 0 -k" 0 0 0 0 0 -~2"10 0 0 0 0 k6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 I

, 0 0 0 0 0 0

Ik:.
0 0 0 0 -k

-k••, 0 0 0 0
I-ku o -k"5 -k"6 0 0 (21)

I 0 k1l5 k.•" 0 -k!56 0
0 0 0 k.•6 k56 0

'I 0 0 0 0 0 k

[

l~~l~lZ: : : : _~~~:
o 0 1/b 0 0 0 0

CAqp]"= 0 0 0 l/i •• 0 0 0
o 0 0 0 1/15 0 0
o 0 0 0 0 1/16 0
o 0 0 0 0 0 0

-lilt
o

lib
o
o
o
o

o 0
l/Iz lIb

-lib 0
o -1/1 ••
o 0
o 0
o 0

I 0 0 0 0 0 0 0

I 111, 0 0 0 0 0 11lz
0 lIb -l/ls 0 0 0 0

1 0 -111. 0 -111" -1/1" 0 0 (22)
,- ~Il" 0 1/15 1/1" 0 -1/1 , 0

0 0 0 1/16 111 6 0
I 0 0 0 0 0 0 -1/1

The mathematical s~stem, then, can be represented in its conventional
state farm.

.
X = CA] X + CB] U•.. •..



The U vector here is a ·scalar with the value of the forcing and the
(BJ is a vettor with all null terms. except 8(4)=1.

The simulation of equations (24) permits the d~namic anal~sis of the
involved variables. The results are similar to that presented b~
Margoli5>t:3:rwhere he uses the modal anal~sis concepts.
Figure 9 shows the representative graphic to some
the s~stem; (1) Suspended maSSj (2) The forcing
interaction point.

velocit~ points of
point and (3) The

1.15
t (s)

The methodolog~ presented in this work is absolutel~ general. With the
limitations here presented we can make the d~namic anal~sis of an~
structural s~stem interacting with others ph~sical domains.

It is importante to note that the number of state variables for this
procedure can be ver~ large sometimes. Here, for example we had twent~
four state variables for a s~stem with seven degrees of freedom. This
is a particular characteristic of the technique that, in a first
anal~sis, do not provide the minimum number of state variables to the
problem. This problem can be solved if we adopt some order reduction
criterions for the s~stem. An other wa~ to reduce the number of state
variables is to define a methodolog~ relating the lagrangean
coordinates used b~ the finite element method with the energ~ variables
of bond graphs technique.

If we use the store and dissipative fields of the technique we
need reduce the order of the s~stem, because the number of
variables will be exactl~ twice the lagrangean coordinates for
continuous s~stem.
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