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ABSTRACT:

We discuss the eflects of disk roughness and inertia terms on the flying attitude of a air beann:
slider of the type IBM 3380. The pressure acting on the holtom surface of the shider is determin
by solving a3 modifird Reynolds equation which includes a first order slip correction to take into
accouni rarefied effects. The flying attitude is then determined from a balance of moments around
the arm attachment poini. 1t i found that the offnct of disk renghness = rather small at the slider
l'orkikag conditions. The mertia efleris increase the fiying hright for sliders at a skew angle of
attack. -

RESUMEN:

Discutimos los efectas de la rugosidad del disco v de Jos érminos inerciales sobiwe la altura de vuelo
ru patines del tipo 1BAM 3380, La presiin actuante sobre Ia cara imferior del patin se reswelve
usando una mndificacion de la acuacion de labwicacion de Reynolds, que incluye Ia correecion de
primer order cn Ia condicion de nedeshizannento dehido al bajpo nidmero de Knadsen. La posickin
del patin se determina del balance de mnmentos alravdedaor del punto de pivate. Se encuentra que
los efactos de la rugosidad son mas impoviantes para veloridades bajas. Ademas, Jos términes
merciales aumentan fa altura de vuclo v ol dngulo de ataque.

1. INTRODUCTION

The hard disk magnetic recording techuolagy relies on a self-acting air-bearing slider which keeps
the read-write magnetic head at a very close distance to the recording surface. In the the 3380 type
slider the air is compressed to aboat two atnnsphercs in its Lwo laper areas to produce ﬂmnﬁh
lift to keep the slider from scratching the recording surface. The taper angle is chusen no that t
compression at the (runt of the slider is still present at very sinall disk velocities.

The flying attitude of the slider is obtained from the pressure acting on the air-bearing surface.
This pressure is desiribed by the Reynolds lulwriration equation. The equation is an approxima-
tion to the compressible Navier-Stokes equations hased on ng:fﬂ:k vertical pressure gradients
and temperature variations. A first order slip correction is introduced into the equations to take
into account rarefied effects, see Buw hlfl] At fiying heights below 0.1y the continuum ap-
proximation has to be discarded an! a new equation i derived from the Boltzinann equations.
The result of thic analysis is a modified Revmolds aquation (see Fukui et al. {2]).

The actual pitch angle, soll angle and flying heighis are determined from a moment balance around
the suspeasion point, sce Deckert [3]. The piich angle detesmines the reliability of the design. since
o insures a compression ares even if the pitch angle woor lo become negative. The nisimum flying
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height is one of the impoitant parameters which determine the boundary width of the recorded
bits. A smller flying heigat usually leads to higher recording densities.

For a complete discussion .of the tribology and mechanics of magnetic storage devices please refer
to the recent book by Bhushan [4].

In this work solutions to the lubrication equalions were oltained from a Finite Element Code
which includes a simple mesh refinement sirategy. The resulting equations were solved using a
Newion's approach. The resulting system of non-lincar equations, for the pressure and the angles
were solved using a precon.itioned GMRES mwthod and sparse matrix tecniques.

2. FORMULATION AND EQUATIONS
The Reynolds Inbrication rquation including 1he first order shp correction reads

CIW3pCp + 62 p, h?Tp — GuVph] = 12 %”i (1

Note that the divergence is taken only in the horizoutal plane, sce Fig. 1 for the coordinate
sysiem.

Fig. 1: Coordinate sy<temn

The term involving A,

2-¢

Am = As

arizes from the slip correction to the Navier-Stokes cquation. Ty the namerical results we use
o = 0.9 which correspon Is to the slip coefficicent of air on lass, see Bhushan pp.678 [4]. Slip
cocflicients for air on magnctic disk surfaces are uot available, The Reynolds cquation requires
boundary data: it is cutos wry to take Dirichlet bonneary conditions and lo unpose the pressure to
};e] the ambient pressure. See the work by Henshaw et al. Jor further discussion of this assumption

L

The equations which determine the attitude of the shider are
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where A ’
and
oh Oh
T==p)+ ST+ ©)

The relation between h and the rotational angles is given by
h(’v') = ‘0 -0z + ¥+ ‘w(’v')'

where hg = h(0.0).
The mean free path according to the Chapman-Enskog expansion is

16 p 3 -
A= ——2/RaT. :
S5V2x p Q)

Under normal conditions this results in A, = 0.065p1.

The arm attachment is chosen such that the slider rapidly responds to any possible asperities «a
the disk without damaging it. This results in very low spring constants in the simulation, ths
high accuracy is needed in the computation due to cancellations. The only stifincss shoald be a
the vertical motion so that the magnetic field generated by the recording head is well controlled.
In this work we will only consider steady state snlutions.

3. NUMERICAL IMPLEMENTATION

The equations were discretized using triangnlar clements of three, four and six nodes. The =i
node formulntion uses woparametric elements which allows for curvilinear boundaries aml possibk-
holes in the design.

In solving the Reyvnald's lubrication equation either p or the combination ph could be used as
unknowns. The use of ph has a lower truncation error away from the rail sides and is mor
convenient for the time dependent ennputations. Though. the resulting CIPU is slightly highes
than using only p as wuknown.

The actval discretization was oblained wsing Galeskin's approach. (A similar code which does
not solve for the attitute although mcludes peossibide deformation of the slider was developed 1y
Hendriks [6].) Fach termn in the Revnolds equation was discictized in the same wmanner. A simil-y
discretization was wsed in the moment equations to Viell a large non-linear system with unknowas
r. 8. 7 and he. The resulting Jacobian matrices were iverted using either a sparsc matrix solver
developed by Eiensiad et al. [7] and GMRES with an incomplete LU as preconditioner [8]. The
sparse solver is slightly faster for matrices of up to 1000 nnknowns, but for larger systems the
ierative method is faster, see Fig. 2a. In order to save CPU time, the stiffiness matrix wis
assembled only every foar to five backsubstitutions.
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Fig. 2a: CPU Comparisoa of GMRES vs. Yale

The number of iterations in GMRES did depend oa the number of vectors kepl in the orthogonal-
ization procedure. Fig. 2b shows the dependence of the number of iteration for varying number
of orthogonalization veclors for 1095 unknowns.
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Fig. 2b: Number of iteration vs. pumber of orthagonalization vectors

The code has a simple minded mesh refinement. In order to determine which triangles need to be
refined, a fictitious node is introduced in the center of each triaugle and the Re;::ﬁds lubrication
equation is solved at this new point, using ac houndary data the values of the pressure at the
corners >f the triangle. When the difference between this valve and the value of the interpolant at
the center is greater than 1% the triangle is divided in cither 3 or 4 triangles. Fig. 3a show the
initial mesh. "Fig. 3b_shows the result of a mesh refinement procedure dividing each triangle in 3
new triangles, while Fig. 3c shows the result of using 4 new triangles. It becomer clear that the
second approach leads to better meshes.
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Fig. 3a: Initial Mesh

Fig. 3c: Mesh using subdivision by 4 iriangles

4. RESULTS

In this section we discuss the ohtzimed results due to roughness and wmertia effects.
4.1 INERTIA EFFECTS

The air-flow at the entrance of the taper can be regasded as twn-dimensional on a scale of the taper
height. The air ix partially deflecind spwards while a8 ssall amount is carried by the disk under
the slider. At the stagnation point, ar pressure rises by an amount corresponding to the dynamic
pressure. A similar rise i pressure orcwrs for very swiall wlet gape, ie. very low local Reynolds
pumber, and is wsually termed ram effect (see Henshaw eof al. [5]). This situation particularly
arises in sliders at skew angle of attacks away from the front iapers.

We modify the pressure alang the sides of the rails, in take into account the ram effect to read

1 (4
P=Pe+ 5;."’ *(J"T' ®

where [/ is the norinal component of the velocity at the boundary and h is the distance to the
disk. The constant C is taken to be C = 12.5, to fit the data published in [5].

As the skew angle increases, the taper becomes less eflective and the minimum flying height de-
creases, while the pitch angle increases. The ram eflect becomes then even more important pro-
ducing an increase in the mnimam height and a decrease in the pitch sugle of the salution without
the inertia eflects. Fig. 4a show: the pitch values and Fig. 4b show the roll values for Dirichlet
pressure data and for the presswiv- valwes including ram cffects.
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Fig. 4a: Pitch angle for varying skew angle
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Fig. 4b: Roll angle for varying skew augle

4.2 ROUGHNESS EFFECTS
In this section we present some results of ronghness on ving height. There are two different cases
in the case of roughness and they arise from the relatives values of the bearing number
6pl’L
PN H

(9

and the size of the roughness. Typical sumbers for the hraring number are around 2000 while
hard disks can be pohsied 80 that the peek to valley values of the roughness is around 0.025p.
The actual homogeneized equations can be found in the work by Greengard [9]. Our simulations
fall into the case in which A is much smaller than A, where

hiz,y) = h(0,0) ~ 87 + Yy + o sin28xzx. (10)

In this case the homogenized pressure, in the one dimensional case, results in,

0 -1
5;{7 ({) }=0. (11)
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Fig. 52 shows the influence of longitudinal roughmess for varying roughness size: here alphe =
0,0.04,0.08,0.12 and 0.164, while 8 was kept at 12/L.
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Fig. 5a: Pressare aloug center of rail for longitudimal roughness

Finally, Fig. 5b shows the minimum flying height vs. the 8, the wave number of the
roughness. We show results for L3 = 0,4, 12. 24, 18,96 and 192. The largest computation invoives
50128 nodes and 92496 elements.

v T Y Y

A -
i -

3
.im i » .

3
s ] - 4
= b It 1 1 L3

- [ w r m
Fig. 5b: Mmimum fiying height vs. g for longitwlinal ronghness, for two different roughaess
phase
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NOMENCLATURE
h: distance between the bottom of the slider to the rotating disk
hey: height at cquilibrium
Arough: roughness
I,: slider moment of inertin for roll angle

ly: slider moment of inertia for pitch angle
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