
1..T.A.S. - 1bel"llOll6caD1que.~1 tut de M6caDlque
UIliversite de 1.1•••• 21 rue E. Solvay. 8-4000 1.1•••• Belc1_

Metal for.ing flD1te el_t (FE) si.ulatiaos bave always exhibited
difficulties while using classIcal fon-ulatlons. As a aatter of fact. In the
Lagrangian for.ulatlOil (where the FEs are e.bedded witb the aaterlal). one
bas to cope witb changIng boundary concHtions and esb dlslorslons whIch
often lead to a co.plex and expensIve re_sblng technique. On lhe conlrary,
lbe Eulerian foraulalion (where the eleaenls are fIxed In space) can afford
very large _terlal distorslons but the lreat_nl of aoving (UDImown)
boundarIes is always critical.

In order lo overco_ probleas _t by using the preceding for.ulations. so.e
autbors (1-6) h•••• developped a coablned Eulerlan-Laaran&ian foraulaUoo.. In
tbis new _thod. ele_nts have nodal fOint displaceaenls (d;) that are
uncoupled fra. •• terial displaceaents (du) (see fig. 1). so that •• tter can
flow tbrougb the eleaents (as in an Eulerian foraulation) whereas their
shape can be controlled to pr~t unbounded dlstorslans. This provIdes
IlUCbfreedoa in foraulaUng the _tbe_tical lIOcIel. It is possible to fix
tbe eBb in space (d~l, whIch leads to an EulerIan foraulation. or to
attach it to lhe body (d~). thus resulting in a Lagrangian foraulation.
a is also possible to all_ the .esh to IlOve independently frOll the
_terlal (fig. 2). In the latter case. lhe tangent stiffness aatrlx
resulting frOll the linearization of the equl11briua equations is, in
general. non-syaaetric and rectangular. owing to the fact that. for a 3D
probl_, a reference locatiOll exbibits six degrees of freedoa (three
Lagrangian ones and three EulerIan ones) vblle only three equatiODS of
equllibrha are provided by the Weighted Residual Principle .

..
du ••• terlal DOl'
d; • aest> DOl'

A solvable set of equations can be obtained by generating on the gec.etry of
the deforaed body a DeW_sb (with Identical topology and extenal boundary)
as follows :



-f'lrst (before defor.aUonL we i~_ • hierarchical )NlI"t.iUon1Dc
(Cig. 3) of the doIIain into reSions of rather siaple geo_try: the
"lIacroRe.lo_" lIIO. Each of these MR's is c1eflned, in 20, by it. four
(three) sides which are called "Master Lines· (MI.). Moreover. each MLi.
given a pbysical attribute accordinc to the type of" boundary or inter1lR
condition expressed em it. This one CaD be Eulerian, Lagrangian or
Eulerian-Lagrangian. The r_ltins attribute for a given MIl in ttu.
LagrangiAilif all MI.'. are LagrangiAil.Eaderian if" all ML'. are Eulerian aDd
Eulerlan-Lagrangian 111 all other ea-.

-second. at each Use step, the COlIpUtatloni. perforwed _ with an
Updated Lagranaian for.-dation _til a DeWequ1l1briua po.ition ls reacbeci.
1ben a new.esh i. aenerated by sett1lll

for an Eulerlan MR
for a LagrangianMR

and \lSinc the Transfinite 1IappincMethool(1*) [4.5,7) for an ELMR. This
tecbnique .-rates vet-yeasily a ••esh In an arbi trary 2D .s-in once a DIN
discretlzatlon of the four boundaries has been e.tablished (see Dext
paragraph) : l.Dternal sesh nodal positi •••••are sl..,ly evaluated thrO\lllha
bilinear projector which -aps a unit square with unifora aeBbonto the true
quadrilateral (see fig. 4). We are thus able to geDerate a -.ab in a 2D
ntglQIIwith SiYelldlscretlzed ••..' s ; the r••• ini ••• probl•• i. to adapt t.be
.esh l.Da ID ..uaner over _ch ••.. 110 that. for each _croreeicm. t.be 2D
ad.apt.lw probl_ be replaced by four ID adaptive probl_.

Fla. 4 IHM transforaation
la) reduced doaain
(b) physical doaain

A nuaber of studies aD _ricaJ solut1oos for boundary-val_ probleas in
ordinary dUferenUal equations 18,9) have shown that the error can be
reduced by plact... the grid points so that so.. esU_tor function be
equally distributed over the eJeaents.

Consider the estl •• tor fllllCtlon £(x) and its lncreaent over the grid
interval Axl • xi+1 - Xi

E(x) • 1: v(u) du
o



i+1 ,xi+1 -i+1
4£i • E(xi+1) - E(x1)· J_ w(u) du • v1 • Ax1

xi
where w(x) is sa.e positive _ight function (WF)and wits _an
equ1-d1stributlon state_t requires thus dOIll the MLthat :

4£i+1 • vi+1 Ax _ constant
i i' i

\lith this condition. the grid interval will or course be nall tlhere \IF is
large and vice versa. '!bus if WFis sc.e esUaation of the error. or of the
solution variation. the grid points will be closely spaced in regions of
large error, or solutiODvariation. and .are widely spaced elsewhere.

Condition () over a curve or length L with Mpoints (Xl • O. • ••• ~ • L)

is _t by ass_illl a newgrid position xi such that (see fig. 5) :

Flg. 5. Newgrid point position Xi
insuring equidistrlbuted
estiaator E(xp.

na. 6. £qual spac1Dgor grid
points.

The selection of an appropriate \IF is not obvious. The si.pleat possible
choice is the unit constant w(x) = 1. whIch leads to equal spacing of all
grid points whatever be the solution (see fig. 6), and can give very good
results, IIUchbetter than the UpdatedLacrangian fonmlation. as illustrated
in (4. S. 61.

Clearly sore sophisticated \IF are needed : the solul1ODgradient. or the
gradient of B quantity 5 related to the solutiOD :

where the co••• denotes a spaUal derivative. is a good candidate. With
this \IF. the nodal point distribution varies so that each grid interval
captures the saae variation of the solutlOll (see fig. 7). resul ting in fine
aeshllll for steep-gradient regions ; on the cOlltrary. if this gradient
vanishes. the spacilll bec:oaes infinitely large. As a consequence. the
regions Dear extreaa, i.e. where S'x - 0 locally. Deed special trea~t



Isee fig. 81. This can be achieved by incorporaUIl8 _ inf"luence of" the
Rcond derivative IS'xxl iato the \IF.

Fla. 8. Large spacina: ill the reaion
of"~11 solution grad1ent.

Another interestlJla quantity 1n la,... deforaaUon analysis is aD 1aage, no
longer of" the solution curvature IS, xxI• but of" the geo_trical curvature of

the HI..arc 1tself" : 8.

A llnear c_binatlon of" the llFs presented above vi th appropriate DOnI
provides the desired cri teriOQ UNards concentrat1Cl11in resions of steep
gradienVl&rge curvature, near extr_ whUe retainina: equal spacina: where
the solution 1s constant :

t IS'xl IS,xx
'

191
,,(xl • [ + C t + ". t + TIS, Idx IS. Idx rt-191dx

o x 0 xx Jo
The ~t1ve paraaeters «, fJ aDd T are to be prescribed. Clearly.
cODCelltrat1onnear steep sradients is _phasized by large values of c, near
extrelUl by large values of II. near high-geoaetrical curvature by T while C •

II _ • 0 vill produce equal point spacing all alena: the arc.

In a FEM context vith bUinear iso~tric eleaents, a MLis defined 111
1ts discrete fona by a set of nodal coordInates linlted by straIght lines
that ••• shall call "sides". Evaluat10a of 161 requires the Imowledgeof the
seo-trical curvature 8 on each side as _11 as nodal values of S and S'x

Ithus resultlng on a CODStantS, OIleach side). \Ie use here 5 • 7. thexx
equivalent plastic strain aDd none of the above required quantity is
directly ava1lable on the Hl.'s 111a kineaatically adaUssible FE .adel.

The aeo-trical curvature is evaluated as follows : for each of the IM-1)
sides of" the HI..1M~ 3), consider nodes (1-1) and I boundilll the 1th slde.
CoDs~r also a third Dade, e1ther (i-2) or (i+l), closest to the aiddle of
side 1. Then COIIputethe radius R1 of the c1rcle supported by these tbr_

nodes. The local curvature 111then def1ned by 81 • tlll
l
"

As ? is a discrete f'unctiOll GIllyknownat the FE Gauss points, a cont1D\IOUS



cP((._) ••_j(('_) C:J (7)

Wbere-J •.1 (1 ~ ({J) (1 ~ - -J)' «._) • [-1. 1) X [-1. 1).(j •• 1 to .)

are the classIcal shape fWlCtlons of an lsoparaaetrlc bll1near el_t.
expressed In natural coordInates and i::

j
the (~) nodal value of node J

wIth (j ••; I, -J ••; 1.

I! equation (7) is sallpled at the four Gauss poInt (where we precisely know
a value of 7), we get a hC algebraic II)'Stea with the C nodal values of ?
as unknownquantities

lGP - 'I . tN
Wbere

-kj •• -/(Ie' ,), t~ "[~1 ~ i:~ ~4]' t~., [C:1 c~ cPN3c:e] (9)

1 taDd ((Ie' ,) Is the locaUon of Gauss PoInt k. ~ •• ; 7.3' "' ••; 73
IDYerting (8) leads to
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whIch Is Identical to the local least square SIIOOthingaatrix obtained by
HInton & Caapbell (to). Nodal values for the whole structure are then
obtained by a s••••••Uon of ele •• nt nodal values of type (10) _ipted by the
inverse of the nuaber of connecting d.-nts at the gl_ node.

GIven lhis C;Ofield of cP. _ can derive a C;-lestiaator of cP (pleeevi ••,x
constant on each side) but 110 one for cP AgaIn local or global least,xx
square •• lhods 110) could be IISecI In that sake but proved to be
UDSatisfaclory in lhe present case. leadl. to strong UDderesU_Uon of cP.x
for the Uait nodes of the MLU •• t •• II).

We~ve thus Il1ple_n!ed Instead a '"!.\lhled •• an _lues _thod Ut) yieldillll
a C; esUaator for cP fro. its C; piecewise variaUClA on each sIde .•x



SuppotIe any scalar quantity,. n .•. ? bere) exh1b1ts p1ecewlse constant,x
C-1 s1de values ;1 11 • 1, __, 11-1), tlMDthe assoc1ate C" internal ~l

•values "1 are talteo as

0Ilce this CO eellaator for? bas beeDtMllt, the -1sbt1na fUDCt10n(6) 1.,x
avaUable aDd new arid point posItIODS••.• det.ra1DecI accord1nc to (.() w1th
a piecewise 11De&r_t1aat4r funcllOll E(x).

It. f1nal nodal sUde 1s ~ orten requ1red to 1nsure -.oth var1at1011of
side Itmlftbs alona a SiveDIlL tb1s Is done by •• U1ac 111reverse order

The EI. lOI'1IIUlallOl1bas already beeD appUed successfUlly to the
sl_lallon of the coining process [1.41. w1th obvious benef1ts ower
standard lL IIOdels. Bo-ver it _s _r applied before. to our
knovleclge. ill COI1Junc:t1onwIth an adaptive r••• shlng technique. The
physical .ltuat1011 Is displayed on f18. 10 : a ••• -vIde die, assuaed to
be rigid, Is .covina ~rds wUh a prescrlMd dlsplacellel1t. The body
to be fonled Is a 3 • x 10 •• rec:tansle with an Inl Ual •• 1Ihof 24 plus
48 quadrilateral el_ts. Due to syBIOetryonly a quarter 01 the
specl_n Is actually "'11ed.. The blerarchlcal part1tion consists of 2
HR's the dark ODe. al_ys contain 1.. the saterial cto.&ln
Instantaneously located under tile punch, and tile wIlite one, contalnina
the rellalnlna piece of satter. (M the upper .covina boundary of this



second HR, the aesh Is autOlllltically adapted on the t«. vlth adaptive
parUleters given by « • 2, II • 1. T • 5. 1be lower bo\mdaryis a alrror
Ml.or the upper one. \lIllle the vertical Ml.'. are n. vlth equal polDt
spaclnes (vith respect to their relative lene1bs). 1be ~terlai Is J2
elasto-plastic vlt1J linear l-trcr,lc bardeDlne (E • 2.1 10 N/_ ; ••
0.3. "0 • 250 N/_ ; h • 10 N/_) and all c:altact areas are asllUMdto

be frictionless.

Adaptive •• sh deforaatlOD and effective plastic strain patterns are
displayed on flg. 11 for 30 X and 60 X height reduction. The latter
required 56 coaputatlonal steps and 4 ain 56 see on a 3 Mips c_puter.
and exblb1ts adequate capturlll&of the stratn gradient via. the adaptive
aesb strategy.
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Fig. 11. Meshand effective plastic strain after 30 X (a) •• 60 X (b) height
reduction.
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