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1. Introductjon

Metal forming finite element (FE) simulations have always exhibited
difficulties while using classical formulations. As a matter of fact, in the
Lagrangian formuletion (where the FEs are embedded with the material), one
has to cope with changing boundary conditions and mesh distorsions which
often lead to a complex and expensive remeshing technique. On the contrary,
the Eulerian formulation (where the elements are fixed in space) can afford
very large material distorsions but the treatment of moving { unknown )
boundaries is always critical.

2. The Eulerian-Lagrangian (EL) formulation

In order to overcome problems met by using the preceding formulations, some
asuthors [1-6] have developped a combined Eulerian-Lagrangian formulatiom. In
this new method, elements have nodal point displacements {dv) that are
uncoupled from material displacements (du) (see fig. 1), so that matter can
flow through the elements {as in an Eulerian formulation) whereas their
shape can be controlled to prevent unbounded distorsions. This provides
much freedom in formulating the mathematical model. It is possible to fix
the mesh in space (dv=01. which leads to an Eulerian formulation, or to
attach it to the body (dv=du), thus resulting in a Lagrangian formulatjon.
It is also possible to allow the mesh to move independently from the
material (fig. 2). In the latter case, the tangent stiffness matrix
resulting from the linearization of the equilibrius equations is, 1in
general, non-symmetric and rectangular, owing to the fact that, for a 3D
problem, a reference location exhibits six degrees of freedom (three
Lagrangian ones and three Eulerian ones) while only three equations of
equilibrium are provided by the Weighted Residual Principle.

du
dv
Fig. 1 d‘; = material DOF Fig. 2 Dotted line: material
dv = mesh DOF Solid 1line: mesh

A solvable set of equations can be obtained by generating on the geometry of
the deformed body a new mesh (with identical topology and external boundary)
as follows :
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-first (before deformation), we impose a hierarchical partitioning
(fig. 3) of the domain into regions of rather simple geometry: the
"MacroRegions” (MR). Each of these MR's 1s defined, in 2D, by its four
(three) sides which are called “Master Lines* (ML). Moreover, each M. is
given a physical attribute according to the type of boundary or interdR
condition expressed om it. This one can be Eulerian, Lagrangian or
Eulerlan-lLagranglan. The resulting attribute for a given MR in thus
Lagrangian if all ML's are lagrangian, Eulerian if all ML's are Eulerian and
Eulerian-Lagrangisn in all other cases.

-second, at each time step, the computation is performed as with an
Updated Lagranglam formulation until a mew equilibrium position 1s reached.
Then a new mesh 1s generated by setting :

d;’.
d;)x

0_’ for an Eulerian MR

du for a lLagrangian MR

and using the Transfinite Mapping Method (TMM) [4,5,7) for an EL MR. This
technique generates very easily a mesh in an arbitrary 2D domain once a new
discretization of the four boundaries has been established (see next
paragraph) : internal mesh nodal positlons are simply evaluated through a
bilinear projector which maps a unit square with unifors mesh onto the true
quadrilateral (see fig. 4). We are thus able to generate a mesh in a 2D
region with given discretized ML's ; the remaining problem is to adapt the
mesh in a 1D manner over esch M. so that, for each macroregion, the 2D
adaptive problem be replaced by four 1D adaptive problems.
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Fig. 3 Hierarchical partitioning Fig. 4 T transformation

{a) reduced domain
{b) physical domain

3. Masterlines 1D nodal relocation

A number of studies on numerical solutions for boundary-value problems in
ordinary differential equations [8,9] have shown that the error can be
reduced by placing the grid polnts so that some estimator function be
equally distributed over the elements.

Consider the estimator function E(x) and its increment over the grid

interwval Mi = xld - )(l H

Elx) = r w(u) du 1)
°
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i+1 i+1 - -1+1
AI-Z1 E(xiq) - E(xt) r wi(u) du = w

Xy
where w(x) 1s some positive weight function (WF) and ¥ its mean value. The
equi~distribution statement requires thus along the ML that :

iﬂ = ;:ﬂ . Axi = constant (3)

y - bxy 2)

AE

With this condition, the grid interval will of course be small where WF is
large and vice versa. Thus if WF is some estimation of the error, or of the
solution variation, the grid points will be closely spaced in regions of
large error, or solution variation, and more widely spaced elsewhere.

Condition (3) over a curve of length L with M points (x, =0, ..., Xy = L)
is met by assuming a new grid position x; such that (see fig. 5) :
i-1 . .
E(x;)- ?:-15(1“) (1 =2, ..., M1}, xI-o. x“-L (4)
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Fig. 5. New grid point position x‘l' Fig. 6. Equal spacing of grid
insuring equidistributed points.

estimator E(x; ).

The selection of an appropriate WF is not obwvious. The simplest possible
choice is the unit constant w(x) = 1, which leads to equal spacing of all
grid points whatever be the solution (see fig. 6), and can give very good

results, much better than the Updated Lagranglan formulation, as illustrated
in [4, 5, 6].

Clearly more sophisticated WF are needed : the solution gradient, or the
gradient of a quantlity S related to the solutlon :

wix) = |s, | (s)

where the comma demotes a spatlial derivative, is a good candidate. With
this WF, the nodal point distribution varies so that each grid interval
captures the same variation of the solution (see fig. 7),resulting in fine
meshing for steep-gradient regions ; on the coatrary, if this gradient
vanishes, the spacing becomes Infinitely large. As a consequence, the
regions near extrema, l.e. where S.x = 0 locally, peed special treatement
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(see fig. 8). This can be achieved by incorporating scme influence of the
second derivative |S.uj into the WF.
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Filg. 7. Equal solution increaents. Fig. 8. Large spacing in the region
of small solutjon gradient.

Another interesting quantity in large deformation analysis is an image, no
longer of the solution curvature ls'xxl‘ but of the geometrical curvature of

the ML arc itself : 8.

A linear combination of the WFs presented above with appropriate norm
provides the desired criterion towards concentration in regions of steep
gradient/large curvature, near extrema while retaining equal spacing where
the solution is comnstant :

S, S,

Is. 1 . ISs o ee l8l )

S, Jdx P‘ s, dx IL 8] dx
- s 1Sl lel
The non-negative parameters «, 8 and T are to be prescribed. Clearly,
concentration near steep gradients is emphasized by large values of a«, near
extrema by large values of g, near high-geometrical curvature by t while a =
B =t = 0 will produce equal point spacing all along the arc.

wix) = !

L*e

4. Mumerical implementation

in a FEM context with bilinear isoparametric elements, a ML is defined in
its discrete form by a set of nodal coordinates linked by straight lines
that we shall call “sides”. Evaluation of (6) requires the knowledge of the
geometrical curvature 6 on each side as well as nodal values of S and S'x

(thus resulting on a constant s‘xx on each side). We use here S = ;p' the
equivalent plastic strain and none of the above required quantity 1is
directly available on the ML's in a kinematically admissible FE model.

The geometrical curvature 1s evaluated as follows : for each of the (M-1)
sides of the ML (M 2 3), consider nodes (i-1) and i bounding the ith side.
Consider also a third node, elther (1-2) or (i+1), closest to the middle of
side 1. Then compute the radius Rl of the circle supported by these three

nodes. The local curvature is then defined by °i - lml.
As & 1s a2 discrete function only known at the FE Gauss points, a continuous
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evaluation of ¢ and Ef‘ is more tedious.
First we shall coapute a c® estimator for £’ over the domain by assuming for
a given element :

PE,m = #,(E.m) c,’;J n

vhere ¢ =l £ Mtav) €W el NXI-L1L.G=1t8

J
are the classical shape functions of an isoparametric bilinear element,
expressed 1n natural coordinates and c"u the (unknown) nodal value of node }
vlthEJ-t 1, QJ-$1.

1f equation _(7) is sampled at the four Gauss point (where we precisely know
a value of €'), we get a 4x4 algebraic system with the 4 nodal values of &
as unknown quantities :

>
Zpm V- 2" (8)
where

TN zcr:r '[?c,m er2 ep3 E&,‘] .": = [sz E:z T ‘-’upt] 9

and (€k, 'k) is the location of Gauss Point k, Ek = 3 715. L 3 -;3—
Inverting (8) leads to

2 -1 2
£y =9 - €ep (10)
with A u u A-IO‘%-
_ A M ]
vl= s ,.--% 11)
Y u A
" a $=1-7

which is identical to the local least square smoothing matrix obtained by
Hinton & Campbell [10]. Nodal values for the whole structure are then
obtained by a summation of element nodal values of type (10) weighted by the
inverse of the number of connecting elements at the given node.

1 P

estimator of ¢ x (plecewise
constant on each side} but no one for ;p’“_ Again local or global least

square methods [10) could be used in that sake but proved to _be
unsatisfactory in the present case, leading to strong underestimation of cpx

for the limit nodes of the ML (1 = 1 & N). ’

Given this €° field of ¢f, we can derive a C

Ve h.ave thus implemented instead a ve_&.hted mean values method {11] yielding
a C estimator for ¢ x from its C piecewise variation on each side.

>
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Suppose any scalar quantity & (l.e. ? here) exhibits piecewise constant
¢! side values ‘! (1 =1, .., ¥1), thm the associate C° internal nodal

values 0: are taken as

('] -
T "9

' + (1 - Sl 1=2, ..., %1) (12)

1-1
where o= B, /(x, + Bx,_,) (13)

and the limiting nodal values are extrapoled as (see fig. 9) :

» - » .

- 2 -y : (14)
] - L]

L 2 ‘ {0 (15)

Once this €° estimator for ? has been bullt, the weighting function (6) is
available and new grid polnt posluom are determined according to (4) with
a plecevise linear estimator function E(x).

A final nodal slide is however often required to insure smooth variation of
side lengths along 2 given ML ; this is done by setting in reverse order

X o= ), ¢, 02 =W, ... 2 (16)

Fig. 9. Extrapolation to obtain a limiting nodal value

S. Numerical example

The EL formulation has already been applied successfully to the
simulation of the coining process [1,4], with obvious benefits ower
standard L models. Bowever it was never applied Dbefore, to our
knowledge, 1ln conjunction with an adaptive remeshing techmique. The
physical situation is displayed on fig. 10 : a 4 me-wide die, assumed to
be rigid, is moving dowmwards with a prescribed displacement. The body
to be formed is a2 3 » x 10 wm rectangle with an initial mesh of 24 plus
48 quadrilateral elements. Due to symmetry only a quarter of the
specimen is actually modelled. The hierarchical partition consists of 2
MR's : the dark one, alwvays containing the msaterial domain
instantaneously located under the punch, and the white one, containing
the remaining piece of matter. On the upper moving boundary of this
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second MR, the mesh 1s automatically adapted on the ML with adaptive
parameters given by a = 2, g =1, v = 5. The lower boundary is a mirror
ML of the upper one, while the vertical ML's are EL with equal point
spacings (with respect to their relative lengths). The -gterlai is J2
elasto~plastic vltg linear }cotr?ic bardening (E = 2.1 10" N/mm" ; » =
0.3, 'o = 250 N/ma“; h = 100 N/mm”) and all contact areas are assumed to

be frictionless.

Adaptive mesh deformation and effective plastic strain patterns are
displayed on fig. 11 for 30 X and 60 X height reduction. The latter
required 56 computational steps and 4 min 56 sec on a 3 Mips computer,
and exhibits adequate capturing of the strain gradient via, the adaptive
mesh strategy.
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Fig. 10. Initial geometry and Hierarchical Partioning.
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Fig. 11. Mesh and effective plastic straln after 30 % {(a) & 60 X (b} height
reduction.
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