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DYNAMIC ELASTIC-PERFECTLY PLASTICITY
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RESUMEN

Enuteuab;jomtmmmimpb'dhmmdﬁnpopmdmﬂandcnc_p
sujeto a la ley constitutiva elistica perfectamente plistica.

Probamos la convergencia de 1 solucién discreta si las condiciones de contorno impuestas pars las tensiones
no dependen del tiempo.

ABSTRACT

In this work we pr t an maplicit sch on time for the dynamical problem of the body subject to an
elastic-perfectly plastic constitutive law. We prove the convergence of the discret salution if the imposed
boundary conditions on the stress do not depend om time.

SOME NOTATIONS

We suppose that the body occupies & bounded region 0 in R’ .
o We shall denote v the velocity field, w(z,f) € R*, & the stress tensor o(z,t) € B! and f the body
forces f(z,t) € R’ with z€R t€f0,T], T>0. .
o M =28,2U38,Q we impose the forces in dpf) and the velocity on 3,61.
o 13(@) = LQ), L=(0) = L=(2)?, L'(Q) = L(Q)! and H = L}(Q) x L}Q)
¢ Let we H'(Q), we define ¢{w) the strain rate associated with w
_ 18w By
)= 3(5ee + 22)
® A =(Aijar) is the 4th order temsor of elastic compliance of the material exhibiting the usual properties
of sy try, bounded and coercivity.
{A",‘n=Aﬁu=A~','u
abiili; < Aijenbani; < BEijE; witha>0and >0

» We define the scalar product [,], on H such that [(:),(‘:)l =/1~,Aﬁdz+/q~,b
] Q
with A4 symmetsic , bounded and coercive. 4
e We define
Y = {r e L}(Q) with div r € L}(Q)*}

REGULARITY ASSUMPTIONS

s [ € Wh=(0,T; L}(Q))
o We consider mixed boundary comnditions. We assume that the forces are given on a part 3, and the
velocity is itnposed on 812, = 30 — 801y
.on=F" om0y
v=v' ombQ,

*This paper is part of work dome under the divection of Pierre Suguet at the “Laboratoire de Mécanique
et D’Acoustique” (CNRS), Marseille, France




o The initial state of the material is defined by o¢ the initial stress, and vy the initial velocity.
» We assume the existence of (¢°,v") such that

o*(z,t) € K pp.
o= F fzedpRandtelo,T]
v =v ifz€ 8N andtelo,T]
*(0) = oy
v(0)=w

v € Whe(0,T; L}(Q))

o € Wie(0,T;L"(D))

div ¢” € L=(0,T; L}(Q)*)

e(v") € Whee(0,T;L1(Q))

FORMULATION OF THE DYNAMIC ELASTIC-PERFECTLY PLASTIC PROBLEM
The constitutive law of an ideal perfectly elasto plastic material reads as follows:

e(v) = 46 + 8Ix(o) (1)

where

o K is the closed convex set in l: which delimits the set of physically admissible stress stat
o Ix » the indicator function of K .

We have in addition the movement equation

dive+ f=¢ (2)
where we assume p = 1 for simplicity.
with initial conditions
{0(0) = og (3)
'(0) = vy

and boundary conditions
{c.q: P ifzeQp,tel0,T]

v=1o! fze ., telo,T) “

In fact like in the quasi static case (see [5]) the solution will satisfy only a weak form of the constitutive
law (see [1]) however, v and o will be unique.

WEAK CONSTITUTIVE LAW

[ 4ste)o) - 7o) de + [ (o10) = 57(0) div (o(8) - 7)) e - [ ety -renaz <o
] Q Q

Note: In [1] it is proved the existence of a solution for the problem defined by (2), (3), (4) and (5).

We mt

F=v-v. f=f-¢". h=elv)
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Therefore we obtain from (2), (3), (4) and (S) the equivalent problem.
Find (0,%), o(t) €K with X = {r €Y and r(z) € X p.p.} such that

/"Aé(c—f)dz+/aidiv(a—r)dzs/nh(c-—f)dz {s)
for all 7 such that 7(t) € Kp = {r e X/7.3 = P%}
dive+ =¥ (£4]
The boundary conditions
en=F fzepll telo,T) (8)
=0 H=z€80 telo,T] (9)
The initial conditions
#o)=0, o(0)=0y ifzeN (10)

IMPLICIT SCHEME
We use a finite difference discretisation in time.
We divide [0,T) in N intervals Jto,tas1] with At = § w*(z) = v*(v,t.) snd T (z) = F(z,t.).
hn(z) = h(z,ta).
We consider ¢® = 05,7 = 0 and (¢!, #™*!) is defined by induction as the solution of

/OA(_":%:_‘!Z),(,“! —r)de + /na*“ d.i‘v (™ —r)ds << /° A _yde (1)

for all r ¢ K§
and

e

for all w € L}(01)
with the boundary condition on ¢

e a=F dzedpn {(13)
and

etlek (14)

It is possible to see, using the theory of convex analysis (see for instance [3] and [4]) that there is a unigue
salution for the implicit scheme.
We shall give some definitions
For a sequence (xa)e<acn in & vectarial space we define

LIl S .
AN (1) = (Xa = Xn-t) ;‘;‘+x..-. H1€itar,ta]

xwlt) = xa 1€ jtaiita)

We shall see what happens with the sequences on,oj, % and Ty when N — 400
A PRIORI ESTIMATES I

¢ Because the tensor A is positive defined we obtain

A~ )™ > (Ao - As"e) (s)
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Therefore -
ZIOA(G"“ -t de > %/OA'"‘U“‘ - %/‘.Aa't. (16)
nxl
o We also have -
Y [ et ] [ pipe (17)
=

Using (15), (16), (17) aad after summation of the successive inequations, (11) and (12) with » € K and
w =7+ we obtain

1 - 1 b .
;/o““l' +I“+;/°ﬁ—+llzd‘$§‘/°“r" +dl'f)3-+‘d:

+ }:/ Ath~ (e ~ r)de + / A(e™! — ¢®)rde 4+ l/ Acgoy dx (18)
—Ja o 2Ja
From the assmxuptions we have dove in chapter 1, we have in particular f € L°(0,T; L*(02)*) and

h € L*=(0,T;L*(Q)*), using the coercivity of A we get from (18) the existence of C; and C,, positive
constants such that

/1.-+‘;’d=+/ ™1 fde < Gy + CyAL Z(/ w'a+/ ™ 1dz) (19)
L] [ /o a
Therefore we can deduce from a discret version of the Gronwall Lemma that
/|,-+l,:h+/ ,ﬁawl!tbsc
[ 0
ey and ¢} are bounded in L=(0,T;1}(R2))
independently of N

Uy and ¥y  are bounded in L*(0,T;1}(R)°)
independently of N

(20)

A PRIORI ESTIMATES 11

‘We take the addition between the (11) inequation written at t =, with r = ¢™ as test function and
written at t = t,; with v = &**' as test function and we obtain

A -2t 4 et (o™t ~o™)dz + [ (F°F! - T) div (¢™* - o")dx
k & g

< / (A" — K)o — o)z (21)
a

Now we can take the difference between the (12) equation written at t = t.;; and t = t., with w =
¥+ — ™ as test function and we obtain

[ v e s [0 T - e

_/ Lt Al
=/, A

With an easy computation and using that 4 s positive defined we get the following inequalities

(! - 7)de (22)

A('ﬂl - 20" ¢+ '.—IX'-O-I - ’-) > -;A(’.“ - 'nx'ﬂl - '-)__

- ;A(’l - '--l X‘. - ’.-l) (23)
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and . )
(r" P alk X ‘»)(r{vl r) > EF-N _r" - _Er _ ‘._‘P (u)

Therefore, from (21) and (22) we obtain

L e

e (e e

T
+/n( x )ﬁ“ - ")z (25)
From the assumptions in Chapter 1, vekno'tlnt lEW""(O T; L}(2)*) and
Fe Wie(0,T; L)) then sh= P~ g 47 = are bounded in L*(2)®. Therefore

after summation over n in (25) and using A positive defined we get

-+l
(===« |
a
L7 e+
+
with C,, C;, C; positive constants.
We take the equations (11) and (12)at t =t, w =7 and 7 = ¢* as test functions and we obtain taking

L) (55 [l o< [ (757)

+/n(51;7.)(divc'+7‘)ds

Therefore using A positive defined, h € Z*(0,T; LY0)*) and T € L*(8,T;Z*(1)°) we have

ot - # P
A L& =< @
with C¢ a positive constant.

Using (27) we can apply the discret version of the Gromwall's lesnma on (26) and we deduce that there
exists a positive constant C;s such that

H'ﬂ——‘—’-“ +B'ﬁ———‘°FL <G (28)
At iLg) a: Map ©
with m=0,..., N-1.

From (12) and (28) it follows that

““-5"
At

dr << C

"lm

LIz “] =)

j div e ‘L‘(.)' <
Therefore .
N s a bounded sequemce in L*™(0,T;1°(Q2))
ow s a bounded sequence ia L*(8,T; L (2)")

29
div o) and div ¢}, are bounded sequences (29)

in L*(0,T;L}(Q)*)
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PASSING TO THE LIMIT N — 400

From (20) and (29), there exist # € L*(0,T;Y)n W'=(0,T;L}(Q)), & € L*™(0,T;Y),
F€ WH=(0,T; L*(R2)*) and ' € L*{0,7;1*(1)’) and subsequences of (on,%x), (o4,7%)
such that

oy~ @ m L%(0,T;1L}(Q1)) weak =
N — in L*=(0,T;L} (1)) weak »
ol - in L%(0,T;L}(Q)) weak »

dvoy —~ dive .in L*™(0,T;L}(Q)*) weak »

) div 0§, — div e’ in L*(0,T;L3(Q)) weak » (%)
Oy ¥ n 1*(0,T; L*(Q)®) weak »
Ty~ T in L*(0,T;1}(Q)*) weak o
by in L*(0,T; L3(2)°) weak «
From the definitions of oy, 0%, ¥y, Ty , (20) and (28) it is easy to see that
{um.ﬁ-w ~e4)=0 I L=(0,T;Y) o).
By~ puo(Br ~ Ty) = 0 m L%(0,T; 1Y)
Therefore we can dednce
{ior ()
=7

The apphication T; : W32(0, T;1}(2)) — L*(11}, 71{r) = 7{0) is continuous and convex. Then by a
lower semicontinuity argument

Mo) - .‘u S l'lgfg H"(n) - '.“L'(ﬂ) =60

Therefore we deduce

7(0) = oy (33)
with the same technique we obtain

#0) =19 (34)
It remains to show that ¢ ¢ K
o The application T3 : L}(0,T;L}(R)) = R, Ty(7) = [r— Pl uert?
K convex of plasticity. Then by a lower semicontinuity argument

(ay) 1 convex and continue, with

n’ - Planp“:L'(o)’ < “R‘gf “’N - Px a"“l.’(.,";la‘(ﬂ)) =0
Therefore
#(=,1)€ K pp. (35)
o For all w€ C*=([0,T) x N1,R*) with w =0 ¥ z € 6,0 we have from the Green formula

/.r/n divc,,.wdzdt:'[r/q'nf‘(:)wdzdt—/:/nrp.e(w)d:d

Passing to the limit we obtain
o= Fpp in 8tk (36)
In order to obtain the movement equation we remark the following
]
x € Wh=(0,T; L}(Q)™)
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then
Xie — x in L=(0,T; I} ()™)

with m > 1.

Movement Equatioa
By the definition of ¢4, viy, ox and wy we can deduce

r
[ [(aveusTu-tmas e a=o
.
with w € C*(0,T; L}{(Q)*)
From (37) we have in particular
why = w in L}0,T; 1} (01))

{7; —7 w0, T;L(Q))

Using (30) and (32) we can pass to the lmit and by using a density argument we deduce

divet+f=#

The Comstitutive Law

We will see that it holds in two steps

FIRST STEP

We consider 7 € Kp with the following assumptions
{r € Wie(0,T;L}())
div » € Wi=(0,T; L}(R)})
From (11) we get

n=0 at

< Z/ hu-#l('n-ﬂ —‘l’(t"g»*
n=e 70

and we get from (12)

?::,/o div o™ 2 = g/" (v‘*‘A‘—f -7(&»\))3‘“" dz

Combining (40) aad (41) we obtain

£ [ AT w £ [ (T e

gg[/"4"’;;"7(:...).&4,1"“(mv(t.u)+7(:.ﬁ))a]+

+ ng“‘(-“‘ - 7{tass))dz

S [ L AT rtiendie s [0 (o o] <

(37

(38)

(38)

(39)

(40)

(a)

(42)
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From (16), (17) and the definitions of ¢%,,75,5x and Ty we get with ¢ = nAt
1 1 1
3 [ Aewteontearts + ] [ mutealiae - L [ dovos de <
Q ] (]
gf/ uj.,:;,d:d.w[]a;..(divr;,+7‘,)¢z¢.+/‘/ (0% — 75 )dz ds
® JO Q s JQ

We shall use the following
o The application
Ty : Wi (jo, T}, 1} () — Li(0,T)

1(6) = ; /° A£(t)E(1)dz is continuous and convex

tmint 3 [ dontten(t)2 3 [ Acttiote) e

N —too

and with the same technique we get
1 2 1
b > -
kiﬂz/‘,’-'”(')' dr > z/o)in(z,t)t’k

o From (37) and (30) we get in particular

oy @ 2 L}(0,£;1}(Q)) weak
T T in L}{0,1;L%(Q))

Ty =7 in L3(0,t; L}(2)*) weak
div g — divr in L}(0,1; L}(Q))

v -7 in L}(0,1; L))

hy =& m L*0,t; L}(Q))

oy —e in L3(0,t; L*(N)®) weak

Using (44), (45) and (46) we can pass to the limit N — +o0o and we obtain
;/nAa(t)a(t)d.t- ;[‘,Aa.a.b«Q—%/olﬁ(t)f’& s/; /nAt‘rrdz dst

¢
+//h(v—f)dzb+/‘/(7+ divrivdzds
s Ja s Ja
Combining with the movement equation we conclude

/"LAb(p—r)hb+/.‘Li Ev(a—r)dzdaf/../nh(o—f)dzda

SECOND STEP

We consider r € L=(0,T;Y) with r(t) ¢ Xp
We define .
Ta(z,t) = [ pals)r(z,2 ~ 5)ds
with g, such that
Pn € C{(0,1])
oo =1, p.20

(43)

(44)

(48)

(46)

(47)

(48)

(49)
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We will show that
1. =1 m L}o,LYQ)) (56)

with
r(t)EKr

We shall use some results
o We define (see for instance [2])
J0) = if {a>0/L e K}
with ,el: and K comvex of plasticity
J is a convex function and from the definition of J, X = {y € R}/J(y) < 1} because K is a close

convex.
In order to show 7,.(z,2) € K p.p. we write

Tl ) = ([ palolrtont - 1)

Using J convex we get from (49)

Koo ) S [ pale) oot - s
Therefore, taking into account that r{z,t) € K p.p. we obtain
J(ra(z,t) <1 p.p.

From the definition we have directly

Tan=TF¢
Them 1, € Kp.
In order to show the convergence of ¥, 0 7, we define

Gal®) = ra(e) - (oW prermty (s1)

It is easy to see that
Gi(z) ~Opp.m @

GCiz)<Cpp m@ 52)
Therefore we can apply the Lebesgwe dominated convergence theorem to obtain
Jim [ Gl =0 (53)
Then we have r, — 7 in L’(O,T;L’(Q)) and we have proved (50).
H we write (48) with 7 as test fumction, passing to the limit = — +00 we get
‘3
/./ah(l—r)dtdl-&[/o‘i&v(o—r)bhs[Lh(c-r)dzb (54)

forall re Ky

REMARK

hfw,mhwm(“)uiaﬂmd(ﬁ).lx'-nqto-uthal we have & unique solution
(0, ¥) such that (54), (7) and (8) are satisfied.
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