- 89 -

AN ALGORITHM FOR SIMULATING THE ENERGY TRANSFER
PROCESS IN A MOVING SOLID-FLUID MIXTURE

Maria Laura Martins Costa, Rubens Sampaio
Department of Mechanical Engineering - Pontificia Universidade Catélica ~ RJ
Rua Marqués de Sao Vicente,225 — 22452 — Rio de Janeiro — Brasil

Rogério M. Saldanha da Gama
Laboratério Nacional de Computacio Cientifica (LNCC/CNPq)
Rua Lauro Miiller,455 ~ 22290 - Rio de Janeiro ~ Brazil

ABSTRACT

In the present work an algotithm for a local simulation of the energy transfer phenomenon in
a binary (solid-fluid) moving saturated mixture is proposed. An iterative procedure is used to
simulate {by means of a Finite Difference approach) the heat transfer in a saturated flow (through
a porous medium) between two parallel isothermal plates in which the fluid constituent's inlet
temperature is the only boundary condition prescribed on x-direction. An exaustive number of
tests have shown that the mentioned procedure (which is independent from initial estimates for
both constituent’s second order partial derivatives on x-direction) consists of an effective way to
perform this simulation.

INTRODUCTION

The interest on flow through porous media, taking into account heat and/or mass transfer is
growing significantly nowdays. Interactions between fluids and solids are present in many industrial
processes. These fluids may be passed over packed beds of solid material, so that a large ratio
of surface area to volume is obtained and phenomena such as heat and mass transfer or chemical
reactions may occur. The main purpose of this work is to present a procedure which, despite
its simplicity, is an effective way to perform a local simulation of the forced convection heat
transfer process which occurs when a fluid flowing through a porous channe! with realistic boundary
conditions is considered.

While the well known classical (single continuum) energy transfer model [1] describes adequately
the thermomechanical behaviour of materials such as stcel, water, rubber or air, it is not so
appropriate for a local description of the heat transfer process in a flow of 2 newtonian fluid
through a porous medium. Such a description would require the solution (for the fluid) of both
Navier-Stokes and Energy equations, in 2 domain defined by all active pores. Boundary conditions,
such as no-slip condition and prescribed temperature (and/or heat fluxes), should be considered
on all pore walls. The currently avaiable tools are not adequate to allow a simulation of so great
degree of complexity.

In order to make pomsible a local description, the problem is regarded through a Continuum
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Theory of Mixtures viewpoint {2]. A binary (solid-fluid) mixture is considered, in which the fluid,
represented by the "fluid constituent”, is assumed newtonian and incompressible, while the porous
medium, represented by the "solid constituent® jis assumed rigid, homogeneous, isotropic and at
rest.

This model, which is supported by a Theory, with thermodynamical consistence, that generalizes
the Classical Continuum Mechanics, allows a local description of the heat transfer phenomenon
in a porous medium saturated by a fluid. The forced convection heating of a fluid which fiows
through a porous channel, bounded by two impermeable isothermal flat plates, is simulated with
the mentioned model.

When the energy transfer between solid and fluid constituents is studied in a Continuum Theory
of Mixtures viewpoint, the existence of two temperatures at each spatial point of the domain (the
fluid and the solid constituents’ temperatures) gives rise to the Energy Generation Function (3]
(which provides the therma! interaction between both constituents of the mixture). The Con-
tinuum Theory of Mixtures demands each constituent to satisfy the balance equations, while a
global balance equation must be satisfied by the mixture. The existence of the Energy Generation
Function provides solid and fluid constituents’energy equations coupling.

When the forced convection heating of a fluid flowing through a porous channel is considered,
in a two-dimensional geometry (as shown in Figure 1), a system of two second order partial
differential equations on both x- and y-variables is to be solved. The characteristic nature of
the energy equations allows this system to be solved with only one boundary condition on x-
direction. From a mathematical viewpaoint, this statment may sound absurd, but from a physical
viewpoint, if both constituents’ temperatures are prescribed on the channel’s superior and inferior
boundaries (y-direction) and the fluid inlet temperature is known, no aditional boundary condition
seems necessary to determine both constituents’ temperature fields. The use of aditional boundary
conditions could, even, give rise to an unrealistic behaviour near the boundaries.

The main objective of the present work is to present a simple, but effective, procedure, capable
of solving a system of second order partial differential equations, in two variables each, employing
only five boundary conditions (instead of the usual seven or eight): four on y-direction and only
one on x-direction.

In fact, an exaustive number of examples taken into consideration, has shown that the domain’s
interior is not affected by aditional boundary conditions on x-direction, which can lead to unrealistic
situations on the boundaries.

Since both constituents’ energy equations are elliptic, four boundary conditions should, in prin-
ciple, be prescribed on x-direction. The fluid constituent’s energy equation, however, because
of its physical nature, is treated as a sequence of parabolic equations, suggesting that only one
boundary condition (2t the channel’s entrance) would be expected to be necessary for its solution.
Some tests, in which the fluid constituent inlet ternperature was known and several values of the
solid constituent partial heat flux (defined so as to be proportional to the solid and fluid con-
stituents’ temperatures difference) at the channel’s entrance and exit were used, have confirmed
the mentioned hypothesis.

The coupling of both energy equations suggested a step forward: to prescribe no condition for the
solid constituent, either at the channel’s entrance or at its exit. The verification of this hypothesis,

which allows the phenomenon to be studied in a more (physically) realistic way, has motivated the
present work.

MATHEMATICAL MODEL

Considering the mass and linear momentum balance equations for the fluid constituent (the porous
a medium is assumed rigid and at rest and, therefore, doesn’t need to satisfy such balance equa-




- 91 -

tions), assuming the two-dimensional geometry, presented in Figure 1, and one-dimensional steady-
state flow, the following velocity profile is obtained [4]:

- _ cuhtx x
op=C (l ooy HKZ?\ (1)
for —-H/2 <y < Hf2

in which C is a constant [4], H the channel’s width, K the porous medium specific permeability,
and X a parameter depending on the porous matrix.

The energy balance [2] must be satisfied by each constituent of the mixture. Supposing steady-state
conditions and sero heat generation for both constituents, it can be stated as:

mci{grad T:)-vy = —div qi +¥% 2

where § = S and © = F stand for the solid and the fluid constituents, respectively, s; stands for
the s-constituent density, T} for its temperature, q; and ¥, represent, respectively its partial heat
flux and energy generation function and, finally, ¢; represents the specific heat of the i-constituent,
regarded as a continuum.

Both energy equations are to be solved, in order to determine the two temperature fields (T
and Ts),as the mixture theory viewpoint allows the existence of a different temperature for each
constituent, at each spacial point.

Equation (2) requires some constitutive hypotheses. The partial heat fluxes for solid and fluid

constituents (qs and qr), according to the model proposed by Saldanha da Gama [3], are stated
as:

qs = -—Aks(l - qp)yrad Ts qr = —Akrpgrad Tp (3)

where A represents an always positive parameter which may depend on both the internal structure
and the kinematics of the mixture, ks and ky are, respectivelly, the solid and the fluid constituents’
thermal conductivity and o the fluid fraction {coincident to the porosity, for saturated flows).

The total heat flux (per unit of time and area) for the mixture is given by the sum of qs and qp.

The energy generation function, ¥, which is an internal contribution, represents the energy supply
to a given constituent, arising from its (thermal) interaction with the other constituents of the
mixture. The ¢ function i zero at a given point only if all the constituents are at the same
temperature at this point. According to Martins Costa [5], the energy generatioa function for solid
and fluid constituents are given by:

¥s = —¥pr = R(Tr — Ts) Q)

where R is an always positive factor, which will be considered constant in this work.
Considering these constitutive hypotheses, the balance of energy for the fluid and the solid con-
stituents can be written as:

prer(grad Tr)-vy = AkpoA(TF) + R(Ts — Tr) {s)

0 = Akg(1 - ©)A(Ts) + R(Tr - Ts) (6)
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IMPERMEABLE AND ISOTHERMAL SURFACES
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Figure 1 - Problem’s Scheme

Since the fiuid velocity is non zero only in the x-direction and considering the two-dimensional
geometry of the problem, as shown in Figure 1, the balance of energy can be reduced to:

oTr _ [Ty T
a== -[az, + ay,]+ﬂ(Ts—Tp) M
a’Tg a’Ts
0= 8:’ 3y’ +4(Tr — Ts) (8)
where:
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satisfying the following boundary conditions:

Tr(o,y) =0, Tr(z,ﬂ) = Ts(z,(’) = Tr(z,ﬂ') = Ts(:l:,H) =1 (10)

NUMERICAL METHOD

The problem consists of a system of two second order equations, on both x and y-variables,
subjected to four boundary conditions on y-direction and to only one boundary condition on
x-~direction. From a mathematical viewpoint, a problem of this kind, composed of two elliptic
equations, on both x- and y-variables, even if physically realistic, could give rise to an infinite
number of solutions. However, a great number of tested situations has shown that aditional
boundary conditions on x-direction have no influence on both solid and fluid constituents’ bulk
temperatures.

An iterative procedure is used, so that two second order equations on x-variable can be solved with
the help of a single boundary condition on x-direction: the fluid constituent’s inlet temperature.
The problem is treated as a sucession of modified problems in which the second order derivatives
on x-direction, for both constituents, are treated as previously known fields, that is: the fluid
constituent’s energy equation is treated as a sequence of parabolic problems on x-variable, while
the solid constituent’s energy equation can be considered as a sequence of elliptic problems on y-
variable. This procedure can be summarized in the following way: at the first iteration initial values
are estimated for these two fields, approximations for them being calculated after the solution of
the modified problem. These approximations are used as the second order derivatives’ values in
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the next iteration, instead of the imitial values, and new approximations for the derivatives are
calculated after the modified problem's solution. In short, the process consists of calculating the
n-th iteration, using, for the diffusive terms on x-direction, appraximations calculated in the n-1
iteration. This process is repeated until further iterations cease to produce significative alteration
on temperature values. The original system of equations is modified to:

a2 - o - p(rs - r,)]' - (5= - (1)
[_8;:‘: . . Ts)]‘ = [3;:;3]"‘ (12)

where the derivatives %’—3} and %,;Tf' are calculated from a previous iteration.

Since no analitical solution to the system of equations describing the problem is known, numerical
appraximations to its solution are searched with the help of a finite difference approach [6]. For
the diffusive terms, a central finite difference scheme discretization was used, while an *Upwind”
scheme [6] was employed in the convective term discretization.

As the temperature coeficients’ matrix (associated to the modified system of equations) is a sparse
one, a grid description, in which each constituent's temperature pe two ind , according
to its position on the grid, is used. Each iteration | is then solved with the help of the Gauss-Seidel
method, according to the following discretized system:

[Tt ) = 8{TFY (6 - L + [TRG+ 1,0 )+

-1
ot -0 + ot + F (5] (13)
ulTsH @A) = 6T (6 - LA +[T56 + 1,5+
I=-1
Tt + F [50 14

In (13) and (14), 2 <4 < Nz and 2 < j < Ny, in which Nx and Ny are the number of divisions
on x- and y-directions, respectivelly. The approximations for both constituents’ second order
partial derivative, calculated from a previous (I-1) iteration, are given by the following discretized
equations:

F [yr,]‘ o TN +1) - 2 G, 4) + T3 (6,5 ~ 1)

= {5z (15)
3T ToVij+1) - 2T 6, 7) + T (6,5 - 1)
F [ az:] g (AZP £ (16)

where A x is the mesh size on x-direction, | represents the global iteration, k the Gauss-Seidel
iteration and:

a 2 2 1 a
" tTEEt? CEETT CTmrE YT e @7

Equations (13) and (14) represent the modified problem in s very simple way, which aliows an
effective storage scheme, with memory reutilization.
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The iterative procedure, represented by equations (13) to (17), was repeated to a great variety of
initial estimate values of the second order partial derivative on x-direction, ranging from —~10* to
+10%. In all these cases the same results for the solid and fluid constituents’ temperature fields
were obtained, although the velocity of convergence showed a slight variation. In some of the tested
cases, not only the derivatives’ initial estimates, but also the factor R (which causes both solid and
fluid constituents’ energy equations coupling) was varied. Convergence to a same set of temperature
fields (according to the value of R) was observed for all tested cases. This is a strong argument
for the validity of the exposed procedure. Another meaningful argument is that two differenrt sets
of similar problems, where the complete energy balance equations are considered (one without the
described iterative procedure to calculate the second order derivative appraximations and the other
using it only for the fluid constituent) together with different boundary conditions, were simulated
and compared to the problem in question. In the first type of problem, several fluid constituent’s
outlet temperatures (ranging from O to 1) were prescribed, while zero heat flux was prescribed for
the solid constituent both at the channel’s entrance and exit. For the second type of problem, a
similar iterative procedure was used only for the fluid constituent, and several values of the solid
constituent’s heat flux were also considered, both at inlet and outlet, by varying a heat transfer
coeficient, h, analogous to the one usually employed in the classical Newton’s law of cooling, in
equations:

Aks(1— v)a—:;i(o.v) = h[Ts(0,y) - Tr(0,y)] (18)

~ ks (1~ 0) 2 (L) = ATs (L,4) ~ Tr (Lol

In all these cases no alteration on both constituents’ temperature profile, except for the channel’s
entrance and/or exit, is observed.

The above stated arguments sufficient to validate the numerical procedure employed in the
present work.

Convergence criterium for both Gauss-Seidel and global iterations was:
!(133’)!(!7?(%17 =TF AL TR 6.5) - TR ()} < 107° (19)

where 1 <{ < (Nz+1),1<j < (Ny+1), m =1 represent the global iterations and m = k
represent the Gauss Seidel iterations.

A very quick convergence of the l-iterations was observed, four global iterations being sufficient for
the worst case. The velocity of convergence of the intermediate iterations (Gauss-Seidel method)
varied also, according to the second order partial derivatives’ initial values.

RESULTS

In this section some results, considering 2 long porous channel (with 120 lenght and 1 heigh) divided
into a 13x13 grid as default, are presented. In Figures 2 and 3 this default problem is compared,
respectivelly to a problem where zero heat flux is prescribed for the solid constituent on both
channel’s edges, while several values for the fiuid constituent’s outlet temperature are prescribed,
and to another problem where two different values of solid constituent’s heat flux are considered
(on both channel’s edges) while no boundary condition is imposed to the fluid constituent at the
channel's exit.

Figures 4 and § plot both constituents’ temperature (at the channel’s central point) for different
mesh sizes and its percentual difference, related to the most refined grid considered, respectivelly.
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Figure 2 - Centerline Temperatures vs x
(varying Tr at the channel’s exit)
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Figure 3 - Centerline Temperatures vs x
{ varying ¢s both at inlet and outlet)

Figure 6 compares the temperature behaviour when mesh size is reduced 50 % on x-direction.
Finally, in Figure 7, the channel's length is considered five times greater than the default value.

Figure 2 shows both constituents’ centerline temperatures versus the x-variable in two different
cases. The first one (represented by the dashed lines, for both constituent's curves) shows the
problem, whose simulation originated the present work: no boundary conditions are prescribed ei-
ther for the fiuid constituent at the channel’s exit or for the solid constituent both at the channel's
entrance and exit, as stated in equation (10). The continuous curves correspond to the d case,
where zero heat flux was prescribed for the solid constituent, both at inlet and outlet. Six different
fluid constituent’s curves correspond to the described solid constituent’s curve, according to the
prescribed outlet fluid constituent’s temperatures. Severa! values were considered for this temper-
ature, varying from 0 (the fluid constituent prescribed inlet temperature) to 1 (the impermeable




isothermal surfaces prescribed temperature). This second problem, in which four boundary condi-
tions were prescribed on x-direction, shows an artificial behaviour, both at the channel’s entrance
and exit. Except for these values, complete agreement can be verified between the temperature
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fields, for both cases taken into consideration.
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Figure 5 - Percentual Difference among Central point Temperature

Figure 3 shows a comparison between two different problems, the first one, represented by the
dashed lines, as in Figure (2}, is the one described by equations (7) to (10), while in the other case
several heat fluxes are considered, by varying the heat transfer coeficient h in equation (18), for the
solid constituent, both at the channel’s entrance and exit, while no boundary condition for the fluid
constituent at the outlet is prescribed. The latter problem, represented by the continuous lines, is
solved by means of an iterative scheme, in which the elliptic fluid constituent’s problem is solved
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as a sequence of parabolic problems. This scheme is similar to the one described in the present
work, but only the fluid constituent’s second order partial derivative on x-direction is treated as
a known field. It is remarkable that no variation on the fluid constituent’s temperature curve is
observed, when no boundary condition or zero heat flux was prescribed for the solid constituent. A
very slight difference between these mentioned cases is observed at the channels exit, while a more
significative difference can be observed at its entrance. The use of a heat transfer coeficient so
great as h = 1000 is almost equivalent to prescribe both solid and fluid constitvents’ temperatures
with the same value. As a consequence, a value very close to zero is observed at the channel's
entrance for the solid constituent’s temperature, while apparently the same temperature values for
both constituents can be observed at the channel’s exit. This problem was considered for several
values of h, between 0 and 1000, and, except for the channel’s entrance and exit, no difference on
both constituents’ temperature fields is observed, as occurred on the case shown in Figure 2.
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F'gufe 6 - Centerline Temperatures vs x
{for 25x13 and 13x13 grids)

Figure 4 shows both constituents’ temperatures at a point located at the centerline’s center, for
different meshes, from a 3x3 mesh to a 25x25 one. The percentual difference among the latter
mesh and the remaining ones, at the central point, is plotted for both constituents’ temperatures
in Figure 5. Examining Figures 4 and 5 together, it can be noticed that the 13x13 grid, used
for the majoriry of the resuits presented in this work, sh ar able agr t to the most
refined one used: the 25x25 grid, for both constituents’ temperatures.

Figure 6 shows both constituents’ centerline temperatures for two different mesh sizes: 25x13and
13x13. A very slight difference is observed for the fiuid constituent’s temperature, while almost
no difference can be noticed for the solid constituent’s, as the grid is refined on x-direction. The
difference between these two curves is more accentuated near the channel’s exit. Comparing both
constituents’ temperature curves at a section z = 110, near the channel’s exit, it can be seen that,
even ncar the channel’s exit, only a little difference between these curves is observed.

Figure 7 represents both constituents’ centerline temperatures versus x-variable, for L = 600, five
times greater than L = 120 (the length considered in Figures 2 to 6}. It can be noticed that both
constituents’centerline temperatures are almost coincident at the second half of the channel. When
this Figure is compared to any one in which centerline temperatures are plotted versus x-variable,
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for L = 120, the concept of developed temperature fields, after a certain value of the channel’s
length, becomes a natural expectation.

FINAL REMARKS

When a problem like the one stated in equations (7) and (8) is simulated, usually a total of eight
boundary conditions is required. However, the practical situation considered in the present work
becomes unrealistic if all the usual boundary conditions are prescribed.

This work presents an algorithm which allows'the local simulation of the energy transfer process
in a saturated flow throgh a rigid porous medium, using a Mixtures Theory viewpoint, in which
a system of two elliptic equations on both x- and y-variables are solved with only one boundary
condition on x-direction: the fluid constituent’s inlet temperature. Aditional data like the fluid
constituent’s temperature or heat transfer and the solid constituent’s inlet and outlet temperature
and/or heat transfer, which are not avaiable in practical problems, need not to be known.
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