VIBRACIONES TRANSVERSALES LIBRES DE PLACAS DELGADAS SOBRE FUNDACIÓN ELÁSTICA CON UNA MASA ADOSADA

Carlos A. Rossit^{*,†}, Daniel H. Felix^{*}, Diana V. Bambill^{*,†} y Santiago Maiz^{*,†}

^{*}Departamento de Ingeniería – Instituto de Mecánica Aplicada Universidad Nacional del Sur, Avda. Alem 1253 – (8000) Bahía Blanca - Argentina e-mail: carossit@criba.edu.ar, dhfelix@criba.edu.ar, ima@criba.edu.ar

[†]Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) e-mail:, <u>dbambill@criba.edu.ar</u>, <u>smaiz@uns.edu.ar</u>

Key words: Fundación elástica, Rayleigh Ritz, vibraciones, placa ortótropa, elementos finitos

Abstract. La fundación de maquinarias constituye una situación tecnológica de sumo interés, en virtud de los efectos vibratorios y sonoros que puede transmitir al medio circundante.

Es usual en la práctica constructiva, que los equipos se ubiquen sobre plateas de fundación con vigas de borde que le confieren rigidez.

El suelo sobre el que apoya la platea constituye un medio elástico que interactúa con la placa en la absorción de esfuerzos.

En una primera aproximación el comportamiento del suelo puede ser representado por el modelo de Winkler.

Como es sabido, para un correcto diseño de una fundación de maquinarias, resulta esencial contar con información sobre el comportamiento dinámico de la estructura resistente.

En el presente trabajo se determinan frecuencias naturales de vibración transversal y sus correspondientes modos normales, de una placa rectangular, apoyada sobre una vinculación elástica continua, con bordes simplemente apoyados o empotrados, según la rigidez relativa de la viga con respecto a la placa. También se considera la posibilidad de que sobre la placa se encuentre una masa adosada en forma rígida o elástica.

En este último caso, se estudian las características del acoplamiento del sistema discreto (masa-resorte) con el sistema continuo.

Como metodología de trabajo, se utiliza un método variacional, aproximando la deflexión de la placa mediante funciones viga que cumplen con las condiciones de borde en lados opuestos de la placa y ha sido demostrada su excelente convergencia en este tipo de problemas.

1 INTRODUCCIÓN

El estudio del comportamiento dinámico de placas apoyadas sobre fundación elástica es motivo de permanente análisis en la literatura técnico científica¹.

En el presente trabajo se analiza el sistema dinámico que muestra el esquema de las figuras $1a \ y \ 1b$, constituido por una placa de fundación de hormigón armado, apoyada sobre una fundación elástica tipo Winkler² y vinculada a vigas de contorno, que por su rigidez a flexión, se suponen inamovibles, tanto desde el punto de vista traslacional como rotacional. Se consideran los dos casos extremos de rigidez a torsión de las vigas de contorno, teniéndose así, el modelo de placa simplemente apoyada, Figura 1a, y el de placa empotrada Figura 1b.

Figura 1: esquema del sistema estructural propuesto, compuesto de una placa ortótropa, fundación elástica, vigas de borde, masa adosada y vínculo elástico entre masa adosada y placa. Los parámetros de configuración del modelo se describen en la tabla1. a) Simplemente apoyada, b) Empotrada.

El algoritmo desarrollado, contempla la ortotropía del material de la placa³ y adicionalmente el sistema contiene una masa concentrada adosada tanto rígida como elásticamente⁴, en diferentes posiciones de la misma.

Para lograr una mayor confiabilidad en los valores obtenidos, ya que no se hallaron resultados en la literatura técnico-científica disponible, el sistema fue analizado exhaustivamente por dos métodos numéricos diferentes. En primer lugar se utilizó el método variacional de Rayleigh-Ritz⁵ con una formulación matricial desarrollada por los autores⁶, que permite alcanzar gran precisión en los resultados, y en segundo lugar se utilizó el método de elementos finitos⁷. La concordancia alcanzada entre ambas metodologías fue sin dudas excelente.

2 FORMULACIÓN VARIACIONAL

Desde el punto de vista energético, el modelo estructural que muestran los esquemas de la figura 1 es gobernado por la siguiente funcional:

$$J[W] = \frac{1}{2} \int_{A} \left[D_{1} \left(\frac{\partial^{2} W}{\partial \overline{x}^{2}} \right)^{2} + 2 D_{1} \upsilon_{2} \frac{\partial^{2} W}{\partial \overline{x}^{2}} \frac{\partial^{2} W}{\partial \overline{y}^{2}} + D_{2} \left(\frac{\partial^{2} W}{\partial \overline{y}^{2}} \right)^{2} + 4 D_{k} \left(\frac{\partial^{2} W}{\partial \overline{x} \partial \overline{y}} \right)^{2} \right] d\overline{x} d\overline{y} + \frac{1}{2} k_{f} \int_{A} W^{2} d\overline{x} d\overline{y} + \frac{1}{2} k_{o} Z^{2}$$

$$-\frac{1}{2} \rho \omega^{2} \int_{A} h W^{2} d\overline{x} d\overline{y} - \frac{1}{2} m_{o} \omega^{2} \left(W_{o} + Z \right)^{2}$$

$$(1)$$

la cual evalúa las energías de deformación y cinética máximas de los diferentes componentes del sistema. Se tiene así, que la primer integral de la funcional (1), representa la energía de deformación máxima de la placa considerada ortótropa (el modelo isótropo resulta como caso particular de ésta), la segunda integral evalúa la energía de deformación que se almacena en la fundación, y el tercer término representa la energía de deformación almacenada en el vínculo elástico existente entre la placa y la masa adosada. Por otra parte los términos que son restados en la funcional representan la energía cinética de la placa y de la masa adosada respectivamente. La expresión (1) contiene la mayoría de los parámetros de configuración del modelo, los cuales se detallan en la tabla 1.

Parámetro	Descripción
W = W(x, y)	Deflexión transversal de la placa
D_1, D_2	Rigidez a flexión en las direcciones x e y respectivamente
D_k	Rigidez torsional
V_2	Coeficiente de Poisson en la dirección y
k_{f}	Coeficiente de balasto o rigidez elástica del suelo de fundación
k_{o}	Rigidez del vínculo elástico entre la placa y la masa adosada
Ζ	Deflexión de la masa adosada relativa a la placa
ho	Densidad del material de la placa
ω	Frecuencia de vibración transversal del sistema
h	Espesor de la placa
m_o	Valor de la masa adosada
W_{o}	Deflexión transversal de la placa en la posición de la masa adosada
$\overline{x}, \overline{y}$	Coordenadas espaciales de la placa
A	Dominio de integración coincidente con el área de la placa

Tabla 1: Descripción de los parámetros de configuración del sistema estructural que se muestra en la figura 1

Cuando la placa efectúa vibraciones transversales libres, lo hace de manera tal que la funcional de energía precedente, alcance un valor mínimo. Cada una de estas formas naturales que adopta la amplitud de desplazamiento, y que minimizan la funcional es una de las formas modales o modos naturales de vibración del sistema, y los correspondientes autovalores representan los coeficientes naturales de vibración transversal buscados.

La siguiente expresión variacional representa la condición de minimización a satisfacer

$$\delta J[W] = 0 \tag{2}$$

la cual es resuelta en éste trabajo, aplicando el conocido método de Rayleigh-Ritz, con el empleo de funciones viga como funciones coordenadas⁸⁻¹⁰, y con la utilización de la interfaz matricial mencionada anteriormente¹¹.

La deflexión de la placa es aproximada en la forma:

$$W(x, y) \cong \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} X_{m}(x) Y_{n}(y)$$
(3)

siendo $X_m(x) Y_n(y)$ las funciones viga, yM = N el número de términos utilizados en la aproximación. Las A_{mn} son las constantes a determinar mediante la aplicación de la expresión variacional (2), que permiten determinar las autofunciones o formas modales del sistema.

Las funciones viga que aparecen en la expresión (3) resultan para la placa de fundación simplemente apoyada en el contorno:

$$X_m(x) = Sen(k_m x) \quad ; \quad Y_n(y) = Sen(k_n y) \tag{4a, b}$$

Con

$$k_m = m\pi \quad \text{y} \quad k_n = n\pi \tag{5a, b}$$

Mientras que para la placa de fundación empotrada en el contorno resultan:

$$X_{m}(x) = \cosh(k_{m} x) - \cos(k_{m} x) + r_{m} [sen(k_{m} x) - senh(k_{m} x)]$$

$$Y_{n}(y) = \cosh(k_{n} y) - \cos(k_{n} y) + r_{n} [sen(k_{n} y) - senh(k_{n} y)]$$
(6a, b)

Con

$$r_m = \frac{\cos(k_m) - \cosh(k_m)}{\operatorname{sen}(k_m) - \operatorname{senh}(k_m)} \qquad ; \qquad r_n = \frac{\cos(k_n) - \cosh(k_n)}{\operatorname{sen}(k_n) - \operatorname{senh}(k_n)} \tag{7a, b}$$

En este caso los autovalores k_m y k_n se obtienen resolviendo las raíces de la siguiente ecuación característica:

$$\cos(k)\cosh(k) = 1 \tag{8}$$

Siguiendo el método de Rayleigh Ritz, a partir de la expresión (2), se llega al determinante

ecuación:

$$\left| \mathbf{U}^* - \mathbf{\Omega}^2 \mathbf{T}^* \right| = 0 \tag{9}$$

el cual permite calcular los coeficientes de frecuencia natural Ω_i buscados. Los coeficientes de frecuencia se relacionan con las frecuencias del sistema por la medio de la expresión:

$$\Omega_i = \sqrt{\frac{\rho h}{D_1}} a^2 \omega \tag{10}$$

en la que *a* es la dimensión de la placa en la dirección *x*.

 $\mathbf{U}^* y \mathbf{T}^*$ son las matrices de deformación y cinética del sistema en estudio, (los asteriscos son utilizados para diferenciarlas de las matrices de energía de deformación y cinética $\mathbf{U} y \mathbf{T}$ de la placa sin masa adosada)

De acuerdo al algoritmo matricial desarrollado por los autores, las matrices $\mathbf{U}^* \mathbf{y} \mathbf{T}^*$ que corresponden al sistema completo, pueden expandirse en la siguiente forma:

$$\mathbf{U}^* = \begin{bmatrix} \mathbf{U} & \mathbf{0} \\ \mathbf{0} & \lambda^{-1} K_o \end{bmatrix}$$
(11)

En la expresión (11), $\lambda = a/b$ es la relación de lados de la placa, y K_o la variable adimensional que contempla la rigidez k_o del vínculo masa adosada-placa.

$$\mathbf{T}^{*} = \begin{bmatrix} \mathbf{T} & \lambda^{-2} \frac{m_{o}}{m_{p}} X_{q}(x_{o}) Y_{l}(y_{o}) \\ \lambda^{-2} \frac{m_{o}}{m_{p}} X_{m}(x_{o}) Y_{n}(y_{o}) & \lambda^{-2} \frac{m_{o}}{m_{p}} \end{bmatrix}$$
(12)

La relación m_o/m_p , expresa la intensidad de la masa adosada relativa a la placa, y las funciones $X_q(x_o), Y_l(y_o), X_m(x_o) e Y_n(y_o)$, determinan los valores de las funciones coordenadas (funciones viga), en la posición de la masa adosada. La forma genérica de los elementos de las matrices **U** y **T** es:

$$\mathbf{U} = \begin{bmatrix} u_{ql\,mn} \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} t_{ql\,mn} \end{bmatrix} \tag{13a, b}$$

Los elementos de las matrices \mathbf{U} y \mathbf{T} indicados en la expresión (13a, b), se desarrollan de la siguiente manera:

$$u_{ql\,mn} = \lambda^{-2} X^{c}_{qm} Y^{a}_{ln} + \nu_{2} \left(X^{b}_{qm} Y^{b}_{nl} + X^{b}_{mq} Y^{b}_{ln} \right) + \lambda^{2} \frac{D_{2}}{D_{1}} X^{a}_{qm} Y^{c}_{ln} + 4 \frac{D_{k}}{D_{1}} X^{d}_{qm} Y^{d}_{ln} + \lambda^{-2} k_{f} X^{a}_{qm} Y^{a}_{ln}$$
(14)

$$t_{ql\,mn} = \lambda^{-2} \left[X_{qm}^{a} Y_{ln}^{a} + \frac{m_{o}}{m_{p}} \left(X_{q}(x_{o}) X_{m}(x_{o}) Y_{l}(y_{o}) Y_{n}(y_{o}) \right) \right]$$
(15)

A su vez los elementos de las expresiones (14) y (15) pueden obtenerse integrando las funciones viga utilizadas como funciones coordenadas. Se tiene así

$$X_{qm}^{a} = \int_{0}^{1} X_{q} X_{m} dx \qquad \qquad X_{qm}^{b} = \int_{0}^{1} X_{q} \frac{d^{2} X_{m}}{dx^{2}} dx \qquad (16)$$

$$X_{qm}^{c} = \int_{0}^{1} \frac{d^{2} X_{q}}{dx^{2}} \frac{d^{2} X_{m}}{dx^{2}} dx \qquad \qquad X_{qm}^{d} = \int_{0}^{1} \frac{dX_{q}}{dx} \frac{dX_{m}}{dx} dx \qquad (16)$$

$$Y_{ln}^{a} = \int_{0}^{1} Y_{l} Y_{n} dy \qquad \qquad Y_{ln}^{b} = \int_{0}^{1} Y_{l} \frac{d^{2} Y_{n}}{dy^{2}} dy \qquad (17)$$

$$Y_{ln}^{c} = \int_{0}^{1} \frac{d^{2} Y_{l}}{dy^{2}} \frac{d^{2} Y_{n}}{dy^{2}} dy \qquad \qquad Y_{ln}^{d} = \int_{0}^{1} \frac{dY_{l}}{dy} \frac{dY_{n}}{dy} dy$$

Las funciones viga que aparecen en los integrandos de las expresiones (16) y (17) son las ya presentadas en las expresiones (4) o (6), según corresponda de acuerdo a las condiciones de borde de la placa.

3 FORMULACIÓN CON ELEMENTOS FINITOS

La segunda metodología de cálculo utilizada, consistió en recalcular la totalidad de los 128 modelos analizados, por el método de elementos finitos⁷. Se utilizaron elementos tipo placa de 4 nodos, generándose una malla de 60×60 elementos para la placa cuadrada y una malla de 90×60 elementos para la placa rectangular. Se utilizaron elementos de borde elásticos aplicados en los nodos internos de la malla, para representar el suelo de fundación, y elementos viga sin masa propia y liberados de absorber esfuerzos de flexión, con la masa adosada en su extremo, para representar el vínculo elástico masa adosada-placa.

4 RESULTADOS NUMÉRICOS

A los efectos de verificar la procedencia del enfoque utilizado, evaluar su convergencia y presentar resultados más confiables, se comparan exhaustivamente los resultados obtenidos con la metodología variacional, con los calculados utilizando el método de elementos finitos.

En virtud de las numerosas posibilidades de combinación de las variables intervinientes, se determinan los coeficientes de frecuencias naturales para un espectro limitado de modelos.

Las propiedades mecánicas del material elegido corresponden al hormigón armado, para el que resulta la aplicación más frecuente de este tipo de estructuras.

La información obtenida se muestra en las tablas 2 a 9 clasificadas en función de las condiciones de contorno, ortotropía del material y relación de lados de la placa de fundación.

Se han considerado condiciones de isotropía (Tablas 2, 4, 6 y 8) y de ortotropía (Tablas 3, 5, 7 y 9) para el material de la placa.

En ambas situaciones, las propiedades mecánicas del material elegido corresponden al hormigón armado, de frecuente aplicación en este tipo de estructuras.

Siguiendo lo propuesto por Gorman^{12,13}, han sido consideradas las características de ortotropía que a menudo presenta este material.

A su vez cada tabla contiene resultados correspondientes a 16 modelos ordenados de acuerdo a los valores elegidos para rigidez del suelo de fundación, valor y posición de la masa adosada y rigidez del vínculo existente entre la masa adosada y la placa.

Los coeficientes de frecuencia calculados para cada modelo pueden ser comparados con los coeficientes de frecuencia de la placa de fundación sin masa adosada, que se presentan en cada una de las tablas mencionadas.

Las variables que aparecen en las primeras 5 columnas de cada tabla están expresadas en forma adimensional, y su relación con los parámetros indicados en la tabla 1, se muestran en la tabla 10 junto con las correspondientes unidades expresadas en el sistema internacional (mks).

Forma adimensional	Parámetros de configuración y sus respectivas unidades	Descripción
K_{f}	$\frac{k_{f}\left[N/m^{3}\right] \times a^{4}\left[m^{4}\right]}{D_{1}\left[Nm\right]}$	Indicador de la rigidez elástica del suelo de fundación
$m_{_O}/m_{_P}$	$\frac{m_o[Kg]}{m_P[Kg]}$	Relación entre la masa adosada y la masa de la placa
x_m, y_m	$\frac{\overline{x}_m[m]}{a[m]}, \frac{\overline{y}_m[m]}{b[m]}$	Coordenadas adimensionales de la posición de la masa adosada.
K_m	$\frac{k_m [N/m] \times a[m] \times b[m]}{D_1 [Nm]}$	Indicador de la rigidez del vínculo elástico masa adosada-placa

Tabla 10: Relación entre las variables adimensionales que aparecen en las tablas 2 a 9, y las correspondientes a los parámetros de configuración del sistema.(ver también tabla 1).

K_{f}	m_o/m_P	X_m	${\mathcal Y}_m$	K _m		Ω_1	Ω_2	Ω_3	Ω_4
	0	-	-	-	MA	48.884	66.612	66.612	90.743
				100	M A	15.974	52.741	66.612	66.612
		0.50	0.50	100	ΕF	15.970	52.740	66.604	66.604
		0.30	0.50		MA	29.405	66.612	66.612	74.904
	0.2			œ	ΕF	29.389	66.604	66.604	74.851
	0.5			100	MA	16.085	50.568	66.597	69.591
		0.50	0.75	100	ΕF	16.081	50.568	66.604	69.596
		0.50	0.75	~	MA	30.664	55.333	66.597	89.342
2000					EF	30.643	55.327	66.604	89.306
			0.50	100	M A	9.8350	52.488	66.612	66.612
		0.50			EF	9.8326	52.488	66.604	66.604
				~	M A	19.766	66.612	66.612	71.320
	0.8			~	EF	19.749	66.604	66.604	71.268
		0.50	0.75	100	M A	9.8919	50.463	66.597	69.470
					E F	9.8893	50.464	66.604	69.475
				~	M A	20.401	54.488	66.597	87.350
					EF	20.381	54.483	66.604	87.312
	0	-	-	-	M A	58.221	73.730	73.730	96.090
		0.50	0.50	100	M A	16.389	61.400	73.742	73.742
				100	E F	16.385	61.389	73.730	73.730
				~	M A	33.611	73.742	73.742	80.508
	0.3			w	EF	33.584	73.730	73.730	80.458
	0.5			100	M A	16.422	59.601	73.724	76.408
		0.50	0.75	100	EF	16.418	59.601	73.730	76.412
		0.50	0.75	~	M A	34.333	63.432	73.724	94.446
3000				~	EF	34.302	63.427	73.730	94.411
				100	M A	10.067	61.246	73.742	73.742
		0.50	0.50	100	EF	10.064	61.245	73.730	73.730
		0.50	0.50	~	M A	22.258	73.742	73.742	77.684
	0.8			~	EF	22.233	73.730	73.730	77.637
	0.0			100	M A	10.082	59.539	73.724	76.318
		0.50	0.75	100	EF	10.080	59.539	73.730	76.323
		0.50	0.75	~	M A	22.542	62.895	73.724	92.764
				~	EF	22.514	62.891	73.730	92.728

Tabla 2: Primeros cuatro coeficientes de frecuencia natural $\Omega_i = \sqrt{\rho h/D} a^2 \omega_i$, en una placa de fundación isótropa cuadrada, simplemente apoyada en el contorno. MA: método analítico con $M \times N = 625$ términos, EF: Elementos Finitos⁶, con malla de 3600 elementos. Material: H° A° : con $\sqrt{v_1 v_2} = 0.25$ (Ref. ¹²).

K_f	m_o/m_P	x_m	\mathcal{Y}_m	K _m		Ω_1	Ω_2	Ω_3	Ω_4
	0	-	-	-	MA	105.61	118.03	140.95	149.84
				100	MA	29.486	111.01	118.03	140.95
	0.3	0.50	0.50	100	ΕF	29.472	111.00	118.03	140.95
		0.50	0.30		MA	57.184	118.03	127.38	140.95
				8	ΕF	57.098	118.03	127.34	140.95
				100	MA	29.651	108.11	118.03	144.23
		0.50	0.75	100	EF	29.637	108.11	118.03	144.23
		0.50	0.75		MA	59.147	115.00	118.03	146.82
2000				8	EF	59.049	114.98	118.03	146.83
			0.50	100	M A	18.117	110.76	118.03	140.95
		0.50			E F	18.107	110.76	118.03	140.95
					M A	37.313	118.03	125.55	140.95
	0.8			~	EF	37.240	118.03	125.50	140.95
		0.50	0.75	100	M A	18.206	108.00	118.03	144.16
					E F	18.197	108.00	118.03	144.16
				~	M A	38.304	113.95	118.03	146.74
					EF	38.223	113.93	118.03	146.74
	0	-	-	-	M A	127.34	137.81	157.88	165.88
		0.50	0.50	100	M A	30.185	131.75	137.81	157.88
				100	EF	30.168	131.75	137.81	157.89
				~	M A	64.712	137.81	145.30	157.88
	0.3			~	EF	64.582	137.81	145.26	157.89
	0.5			100	M A	30.233	129.38	137.81	160.80
		0.50	0.75	100	EF	30.218	129.38	137.81	160.80
		0.50	0.75	~	M A	65.701	134.82	137.81	163.13
3000				~	EF	65.561	134.80	137.81	163.14
				100	M A	18.519	131.61	137.81	157.88
		0.50	0.50	100	EF	18.510	131.61	137.81	157.89
		0.50	0.50	~	M A	41.743	137.81	144.07	157.88
	0.8				EF	41.639	137.81	144.04	157.89
	0.0			100	MA	18.544	129.31	137.81	160.75
		0.50	0.75		EF	18.534	129.31	137.81	160.76
		0.00	0.75	α α	MA	42.152	134.20	137.81	163.07
				~	EF	42.041	134.18	137.81	163.07

Tabla 3: Primeros cuatro coeficientes de frecuencia natural $\Omega_i = \sqrt{\rho h/D} a^2 \omega_i$, en una placa de fundación isótropa rectangular ($\lambda = 1.5$), simplemente apoyada en el contorno. MA: método analítico con $M \times N = 625$ términos, EF: Elementos Finitos⁶, con malla de 5400 elementos. Material: H° A° : con $\sqrt{\nu_1 \nu_2} = 0.25$ (Ref. ¹²).

K_{f}	m_o/m_P	x_m	${\mathcal Y}_m$	K _m		Ω_1	Ω_2	Ω_3	Ω_4
	0	-	-	-	M A	50.673	69.681	79.477	105.28
				100	M A	16.256	54.518	69.681	79.477
		0.50	0.50	100	ΕF	16.253	54.518	69.690	79.485
		0.30	0.50		MA	31.225	69.681	79.477	83.412
	0.2			80	ΕF	31.212	69.690	79.485	83.359
	0.5	[100	MA	16.479	52.478	69.681	81.936
		0.50	0.75	100	EF	16.476	52.479	69.690	81.943
		0.30	0.75		MA	33.694	61.794	69.681	100.53
2000				8	EF	33.677	61.781	69.690	100.52
			0.50	100	MA	10.003	54.274	69.681	79.477
		0.50		100	E F	10.001	54.274	69.690	79.485
		0.30			M A	21.226	69.681	78.971	79.477
	0.8			æ	E F	21.211	69.690	78.916	79.485
		0.50	0.75	100	M A	10.125	52.362	69.681	81.864
					E F	10.124	52.363	69.690	81.871
					MA	22.753	59.844	69.680	99.041
					EF	22.735	59.833	69.690	99.025
	0	-	-	-	MA	59.731	76.520	85.537	109.93
		0.50	0.50	100	M A	16.627	62.937	76.520	85.537
				100	EF	16.625	62.937	76.529	85.544
		0.50		~	M A	35.666	76.520	85.537	88.396
	03			~	EF	35.644	76.529	85.544	88.344
	0.5			100	MA	16.742	61.226	76.520	87.812
		0.50	0.75	100	EF	16.739	61.227	76.529	87.819
		0.50	0.75	~	MA	37.633	68.815	76.520	105.19
3000					EF	37.606	68.804	76.529	105.18
				100	M A	10.210	62.784	76.520	85.537
		0.50	0.50		EF	10.209	62.784	76.529	85.544
		0.50	0.50	∞	M A	23.910	76.520	84.704	85.537
	0.8				<i>E F</i>	23.888	76.529	84.652	85.544
	0.0			100	M A	10.273	61.155	76.520	87.754
		0.50	0.75		EF	10.271	61.156	76.529	87.761
		0.00	0.75	~	M A	24.990	67.472	76.520	103.88
					EF	24.964	67.462	76.529	103.87

Tabla 4: Primeros cuatro coeficientes de frecuencia natural $\Omega_i = \sqrt{\rho h/D} a^2 \omega_i$, en una placa de fundación ortótropa cuadrada, simplemente apoyada en el contorno. MA: método analítico con aproximación $M \times N = 625$ términos, EF: Elementos Finitos⁶, con malla de 3600 elementos. Material: H° A° con $\sqrt{v_1 v_2} = 0.25$ (Ref. ¹²).

K_{f}	m_o/m_P	x_m	${\mathcal Y}_m$	K _m		Ω_1	Ω_2	Ω_3	Ω_4
	0	-	-	-	MA	108.76	123.08	156.78	168.77
				100	MA	29.986	114.22	123.08	161.26
		0.50	0.50	100	ΕF	29.975	114.22	123.09	161.28
		0.50	0.30		MA	60.941	123.08	133.97	168.76
	0.3			x	ΕF	60.863	123.09	133.93	168.77
				100	MA	30.355	111.44	123.08	158.30
		0.50	0.75	100	ΕF	30.344	111.44	123.09	158.32
		0.50	0.75	~	MA	65.450	123.08	123.58	160.77
2000				8	EF	65.351	123.09	123.53	160.78
			0.50	100	M A	18.419	113.98	123.08	161.14
		0.50			EF	18.412	113.98	123.09	161.16
					MA	40.142	123.08	131.87	168.76
	0.8			~	EF	40.073	123.09	131.82	168.77
		0.50	0.75	100	M A	18.628	111.32	123.08	158.27
					E F	18.621	111.32	123.09	158.29
				~	MA	42.824	121.38	123.08	160.64
				~	EF	42.737	121.34	123.09	160.65
	0	-	-	-	M A	129.97	142.17	172.17	183.15
		0.50	0.50	100	M A	30.617	134.48	142.17	176.23
				100	EF	30.605	134.47	142.17	176.25
				~	MA	69.082	142.17	151.04	183.15
	0.3			~	EF	68.960	142.17	151.01	183.16
	0.5			100	M A	30.808	132.17	142.17	173.55
		0.50	0.75	100	EF	30.796	132.17	142.17	173.57
		0.50	0.75	~	M A	72.452	141.79	142.17	175.78
3000				~	EF	72.308	141.75	142.17	175.79
				100	M A	18.782	134.33	142.17	176.14
		0.50	0.50	100	EF	18.774	134.33	142.17	176.16
		0.50	0.50	~	MA	44.975	142.17	149.58	183.15
	0.8				EF	44.872	142.17	149.54	183.16
	0.0			100	MA	18.890	132.10	142.17	173.53
		0.50	0.75		EF	18.882	132.10	142.17	173.54
		0.50	0.75	ος.	MA	46.826	140.43	142.17	175.68
				~	EF	46.710	140.40	142.17	175.69

Tabla 5: Primeros cuatro coeficientes de frecuencia natural $\Omega_i = \sqrt{\rho h/D} a^2 \omega_i$, en una placa de fundación ortótropa rectangular ($\lambda = 1.5$), simplemente apoyada en el contorno. MA: método analítico con $M \times N = 625$ términos, EF: Elementos Finitos⁶, con malla de 5400 elementos. Material: H° A° con $\sqrt{v_1 v_2} = 0.25$ (Ref.¹²).

Figura 2: Comparación entre las primeras cuatro formas modales en una placa cuadrada, ortótropa de hormigón armado, simplemente apoyada: a) Sin presencia de fundación elástica, b) Con fundación elástica, c) Con fundación elástica y masa rígidamente adosada a la placa. $D_2/D_1 = 2$; $\sqrt{v_1 v_2} = 0.25$ (Ref.¹²).

K_{f}	m_o/m_P	x_m	${\mathcal{Y}}_m$	K_m		Ω_1	Ω_2	Ω_3	Ω_4
	0	-	-	-	MA	57.402	85.959	85.959	117.10
				100	MA	16.096	62.392	85.959	85.959
		0.50	0.50	100	ΕF	16.093	62.394	85.965	85.965
		0.50	0.50		MA	30.938	85.959	85.959	97.127
	0.3			00	ΕF	30.921	85.965	85.965	97.045
				100	MA	16.558	58.878	85.946	88.710
		0.50	0.75	100	ΕF	16.554	58.882	85.965	88.727
		0.50	0.75	~	M A	35.714	65.995	85.946	110.73
2000				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EF	35.686	65.986	85.965	110.69
				100	M A	9.8972	62.153	85.959	85.959
		0.50	0.50		EF	9.8952	62.155	85.965	85.965
			0.50	~	ΜA	20.474	85.959	85.959	93.094
	0.8			~	EF	20.459	85.965	85.965	93.011
		0.50	0.75	100	ΜA	10.162	58.804	85.946	88.642
					EF	10160	58.808	85.965	88.659
				×	ΜA	23.529	64.626	85.946	108.77
					EF	23.502	64.618	85.965	108.73
	0	-	-	-	MA	65.536	91.594	91.594	121.30
			0.50	100	M A	16.429	69.876	91.594	94.594
		0.50		100	E F	16.426	69.878	91.597	91.597
		0.50		~	MA	34.407	91.594	94.594	101.57
	0.3			~	EF	34.382	91.597	91.597	101.49
	0.5			100	ΜA	16.743	66.808	91.579	94.166
		0.50	0.75	100	EF	16.739	66.812	91.597	94.182
		0.50	0.75	~	MA	38.624	72.788	91.579	114.93
3000					EF	25.135	71.812	91.597	113.14
				100	M A	10.087	69.710	91.594	91.594
		0.50	0.50		E F	10.085	69.712	91.597	91.597
		0.00	0.00	x	ΜA	22.584	91.594	91.594	98.071
	0.8				EF	22.562	91.597	91.597	97.993
				100	MA	10.268	66.759	91.579	94.110
		0.50	0.75		EF	10.266	66.763	91.597	94.126
			0.75	x	MA	25.170	71.818	91.579	113.18
					EF	25.135	71.812	91.597	113.14

Tabla 6: Primeros cuatro coeficientes de frecuencia natural $\Omega_i = \sqrt{\rho h/D} a^2 \omega_i$, en una placa de fundación isótropa cuadrada, empotrada en el contorno. MA: método analítico con $M \times N = 625$ términos, EF: Elementos Finitos⁶, con malla de 3600 elementos. Material: H° A° : con $\sqrt{\nu_1 \nu_2} = 0.25$ (Ref. ¹²).

K_f	m_o/m_P	x_m	\mathcal{Y}_m	K _m		Ω_1	Ω_2	Ω_3	Ω_4
	0	-	-	-	MA	117.55	137.58	179.61	180.36
				100	MA	29.588	125.08	137.58	179.61
		0.50	0.50	100	ΕF	29.576	125.07	137.60	179.63
		0.50	0.50		MA	58.481	137.58	152.39	179.61
	0.2			x	ΕF	58.399	137.60	152.32	179.63
	0.5			100	MA	30.443	119.82	137.58	180.14
		0.50	0.75	100	EF	30.429	119.82	137.60	180.16
		0.50	0.75	~	MA	67.748	130.75	137.58	180.15
2000				8	EF	67.617	130.69	137.60	180.18
			0.50	100	M A	18.172	124.79	137.58	179.61
		0.50			E F	18.164	124.79	137.60	179.63
					M A	37.925	137.58	150.10	179.61
	0.8			w	EF	37.859	137.60	150.03	179.63
		0.50	0.75	100	M A	18.671	119.72	137.58	180.13
					E F	18.663	119.72	137.60	180.17
				×	M A	43.706	128.77	137.58	180.15
					EF	43.598	128.74	137.60	180.18
	0	-	-	-	M A	137.40	154.89	193.19	193.90
		0.50	0.50	100	M A	30.217	143.80	154.89	193.19
				100	EF	30.204	143.79	154.91	193.20
				~	M A	65.304	154.89	167.59	193.19
	03			~	EF	65.185	154.91	167.53	193.20
	0.5			100	M A	30.785	139.31	154.89	193.68
		0.50	0.75	100	EF	30.771	139.31	154.91	193.70
		0.50	0.75	~	M A	73.230	148.17	154.89	193.69
3000				~	EF	73.055	148.13	154.91	193.72
				100	M A	18.537	143.62	154.89	193.19
		0.50	0.50	100	EF	18.528	143.62	154.91	193.20
		0.50	0.50	8	M A	42.003	154.89	165.87	193.19
	0.8				EF	41.911	154.91	165.81	193.20
	0.0			100	MA	18.871	139.26	154.89	193.68
		0.50	0.75		EF	18.862	139.26	154.91	193.70
		0.20	0.75	∞	MA	46.802	146.91	154.89	193.69
				~	EF	46.667	146.87	154.91	193.72

Tabla 7: Primeros cuatro coeficientes de frecuencia natural $\Omega_i = \sqrt{\rho h/D} a^2 \omega_i$, en una placa de fundación isótropa rectangular ($\lambda = 1.5$), empotrada en el contorno. MA: método analítico con $M \times N = 625$ términos, EF: Elementos Finitos⁶, con malla de 5400 elementos. Material: H° A° : con $\sqrt{v_1 v_2} = 0.25$ (Ref. ¹²).

K_{f}	m_o/m_P	x_m	${\mathcal{Y}}_m$	K _m		Ω_1	Ω_2	Ω_3	Ω_4
	0	-	-	-	M A	62.585	91.358	107.82	138.61
				100	M A	16.465	67.251	91.358	107.82
		0.50	0.50	100	ΕF	16.462	67.256	91.384	107.84
		0.50	0.30		MA	34.180	91.358	107.82	109.62
	0.3			00	ΕF	34.165	91.384	107.84	109.52
				100	MA	16.997	64.008	91.358	109.98
		0.50	0.75	100	E F	16.994	64.014	91.384	110.00
		0.50	0.75	~	MA	41.319	76.740	91.358	130.83
2000					EF	41.291	76.714	91.384	130.82
				100	M A	10.114	67.053	91.358	107.82
		0.50	0.50		E F	10.112	67.058	91.384	107.84
		0.50			M A	22.727	91.358	105.08	107.82
	0.8			~	EF	22.712	91.384	105.00	107.84
		0.50	0.75	100	M A	10.424	63.943	91.358	109.95
					E F	10.422	63.949	91.384	109.97
				~	M A	27.600	73.866	91.358	129.42
					EF	27.571	73.847	91.384	129.40
	0	-	-	-	MA	70.120	96.676	112.36	142.17
		0.50	0.50	100	M A	16.718	74.262	96.676	112.36
				100	EF	16.716	74.266	96.701	112.38
				~	M A	37.548	96.676	112.36	113.58
	0.3			~	EF	37.526	96.701	112.38	113.50
	0.5			100	M A	17.115	71.374	96.676	114.44
		0.50	0.75	100	EF	17.112	71.380	96.701	114.46
		0.50	0.75	~	M A	44.359	82.337	96.676	134.48
3000				~	EF	44.320	82.314	96.701	134.47
				100	MA	10.259	74.117	96.676	112.36
		0.50	0.50	100	EF	10.258	74.121	96.701	112.38
		0.50	0.50	~	M A	24.798	96.676	109.50	112.36
	0.8				EF	24.777	96.701	109.42	112.38
	0.0			100	MA	10.492	71.329	96.676	114.40
		0.50	0.75	100	EF	10.490	71.334	96.701	114.42
		0.50	0.75	~	MA	29.246	80.128	96.676	133.17
				×	EF	29.209	80.110	96.701	133.17

Tabla 8: Primeros cuatro coeficientes de frecuencia natural $\Omega_i = \sqrt{\rho h/D} a^2 \omega_i$, en una placa de fundación ortótropa cuadrada, empotrada en el contorno. MA: método analítico con aproximación $M \times N = 625$ términos, EF: Elementos Finitos⁶, con malla de 3600 elementos. Material: H° A° con $\sqrt{v_1 v_2} = 0.25$ (Ref.¹²).

K_{f}	m_o/m_P	x_m	${\mathcal Y}_m$	K_m		Ω_1	Ω_2	Ω_3	Ω_4
	0	-	-	-	MA	128.91	149.97	193.13	229.05
				100	MA	30.268	135.88	149.97	197.62
		0.50	0.50	100	EF	30.258	135.88	149.99	197.66
		0.50	0.50		MA	64.891	149.97	165.32	229.04
	0.3			00	ΕF	64.805	149.99	165.27	229.07
				100	MA	31.246	131.07	149.97	194.42
		0.50	0.75	100	EF	31.235	131.07	149.99	194.47
		0.50	0.75	~	MA	79.010	148.17	149.97	201.69
2000				8	EF	78.854	148.07	149.99	201.70
			0.50	100	M A	18.575	135.66	149.97	197.54
		0.50			E F	18.569	135.66	149.99	197.58
				~	M A	42.217	149.97	163.10	229.04
	0.8			~	EF	42.145	149.99	163.05	229.07
		0.50	0.75	100	M A	19.153	130.99	149.97	194.40
					E F	19.145	131.00	149.99	194.45
				~	M A	51.451	144.72	149.97	201.06
					EF	51.314	144.65	149.99	201.07
	0	-	-	-	M A	147.24	166.00	205.82	239.85
		0.50	0.50	100	M A	30.743	153.31	166.00	210.02
				100	EF	30.731	153.31	166.01	210.06
				~	M A	71.507	166.00	179.48	239.84
	03			~	EF	71.386	166.01	179.43	239.85
	0.5			100	M A	31.463	149.12	166.00	207.03
		0.50	0.75	100	EF	31.451	149.12	166.01	207.07
		0.50	0.75	~	M A	84.665	163.35	166.00	213.76
3000					EF	84.461	163.27	166.01	213.77
				100	M A	18.853	153.16	166.00	209.95
		0.50	0.50	100	EF	18.846	153.16	166.01	209.99
		0.50	0.50	~	M A	46.203	166.00	177.75	239.84
	0.8				EF	46.105	166.01	177.69	239.85
	0.0			100	MA	19.280	149.06	166.00	207.01
		0.50	0.75		EF	19.273	149.06	166.01	207.05
		0.20	0.75	ος.	MA	54.524	160.95	166.00	213.24
				~	EF	54.358	160.88	166.01	213.25

Tabla 9: Primeros cuatro coeficientes de frecuencia natural $\Omega_i = \sqrt{\rho h/D} a^2 \omega_i$, en una placa de fundación ortótropa rectangular ($\lambda = 1.5$), empotrada en el contorno. MA: método analítico con $M \times N = 625$ términos, EF: Elementos Finitos⁶, con malla de 5400 elementos. Material: H° A° con $\sqrt{\nu_1 \nu_2} = 0.25$ (Ref. ¹²).

Figura 3: Comparación entre las primeras cuatro formas modales en una placa cuadrada, ortótropa de hormigón armado, empotrada: a) Sin presencia de fundación elástica, b) Con fundación elástica, c) Con fundación elástica y masa rígidamente adosada a la placa. $D_2/D_1 = 2$; $\sqrt{v_1 v_2} = 0.25$ (Ref. ¹²).

5 CONCLUSIONES

La absoluta concordancia que se observa, al comparar exhaustivamente los valores de frecuencia obtenidos por ambas metodologías utilizadas, permite concluir, que resulta muy aceptable la estabilidad numérica y grado de convergencia de la metodología variacional aplicada. Se observa entonces que la aplicabilidad de tal metodología no se ve afectada por la presencia en el modelo del suelo de fundación, masa adosada y del vínculo elástico entre dicha masa y la placa.

La lectura de los resultados alcanzados permite apreciar la influencia del suelo de fundación, con incremento de rigidez del sistema, y de la masa adosada, con incremento de inercia. Se aprecia que algunos valores de frecuencia se mantienen constantes a pesar de la presencia de la masa adosada, debido claro está, a que se halla ubicada sobre una línea nodal.

Por otra parte cuando el vínculo existente entre la masa adosada y la placa tiene rigidez finita, se observa que el primer coeficiente de frecuencia tiende al valor $\sqrt{K_m/m_o/m_P}$, que desplaza en una posición al resto de las frecuencias del sistema.

Tanto la presencia del suelo de fundación como de la masa adosada, producen modificaciones muy significativas en el comportamiento dinámico de la placa de fundación, con lo cual resulta importante considerarlas en el análisis.

La frecuencia fundamental del sistema, experimenta los cambios más significativos, tanto por la inclusión en el modelo, del suelo de fundación como de la masa adosada, debido a que en dicho caso, la placa tiene mayor desplazamiento transversal. El presente enfoque permite tener en cuenta inhomogeneidades en la fundación.

La ortotropía adoptada para el Hormigón, resulta además altamente incidente en los cambios de rigidez de la placa, con la correspondiente influencia en los valores de los coeficientes de frecuencia.

También pueden apreciarse alteraciones en las líneas nodales, (Figura 3c), debidas al reacomodamiento que sufren las formas modales para compensar los cambios en la distribución de rigidez y masa del sistema.

6 AGRADECIMIENTOS

Los autores agradecen a los Sres. Profesores Dr. Patricio A. A. Laura e Ing. Enrique A. Gil por sus valiosas sugerencias. El presente estudio fue financiado por CONICET y la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur.

7 REFERENCIAS

- 1. D. G. Paviou, N. V. Vlachakis and M. G. Paviou, "An analytical solution of the annular plate on elastic foundation", *Structural Engineering and Mechanics*, **20**(2), 209-223, (2005).
- 2. A. D. Kerr, "Elastic and viscoelastic foundation models", *Journal of Applied Mechanics* **31**, 491-498, (1964).
- 3. H. A. Larrondo, D. R. Avalos and P. A. A. Laura, "Transverse vibrations of simply

supported anisotropic rectangular plates carrying an elastically mounted concentrated mass", *Journal of Sound and Vibration*, **215**(5), 1195-1202, (1998).

- 4. D.H. Felix, D.V. Bambill, y C.A. Rossit, "Vibraciones libres de una placa rectangular: Influencia de una masa adosada", *Mecánica Computacional*, Vol. XXI pp 2194-2200, (MECOM 2002).
- 5. Lord Rayleigh, *Theory of Sound*. Segunda edición, Vol. 1 Mac Millan, London (1894), Sec 88 (Re-Edición por Dover, New York, (1945).
- D. H. Felix, D. V. Bambill y C. A. Rossit, "Desarrollo de un algoritmo de cálculo para la implementación del método de Rayleigh-Ritz en el cálculo de frecuencias naturales de vibración de placas rectangulares con complejidades diversas", *Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería*, Vol 20 (2), pp. 123-138, (2004).
- 7. ALGOR inc., *Linear Stress and Vibration Analysis Processor Reference Manual*. Part N° 6.000.501, Revision 5.00, Pittsburgh, PA, USA, (1999).
- 8. C. A. Rossit, P. A. A. Laura, "Free vibrations of a cantilever beam with a spring mass system attached to the free end", *Ocean Engineering*, vol 28, pp. 933-939, (2001).
- 9. A. W. Leissa, "The free vibration of rectangular plates". *Journal of Sound and Vibration*, 31(3), 257-293, , (1973).
- 10. P. A. A. Laura, and R. H. Gutiérrez, "Transverse vibrations of rectangular plates on inhomogeneous foundations, part 1: Rayleigh-Ritz method", *Journal of Sound and Vibration*, **101**(3), 307-315, (1985).
- 11. D. H. Felix, "Vibraciones de placas ortótropas con diversas condiciones de vínculo y orificios de borde libre" *Tesis Doctoral*, Departamento de Ingeniería, UNS, Bahía Blanca, Argentina, (2004).
- 12. D. J. Gorman, "Accurate free vibration analysis of the completely free orthotropic rectangular plate by the method of superposition", *Journal of Sound and Vibration*, **165**(3), 409-420, (1993).
- 13. D. J. Gorman, Free vibration analysis of completely free rectangular plates by the method of superposition-Galerkin method, *Journal of Sound and Vibration*, **237**(5), 901-914, (2000).