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ABSTRACT

Biot's theory describing the propagation of waves in fluid-saturated porous solids is applied to show
numerically the presence of type II compressional waves in such media, a diffusion-type wave due to
the motiom in opposite phase of the solid and fluid phases. The equations of motian are salved using
finite element techniques and nuwmerical results are shown and analyzed.

§ 1. INTRODUCTION

In this work we will show the application of Biot's theory (2], [3], [4], describing the propagation
of waves in a fluid-saturated porous solid (which will be referred to as a Biot medium) to problems
arising in exploration geophysics.

In an elastic solid, only two different types of body waves can propagate, s compressional and a shear
wave. On the contrary in a Biot medium there exist two compressional waves in addition to the shear
waves. In the fastest pressional wave, denoted as Type | wave, the solid and fluid constituents
move in phase, while in the slower Type II wave the solid and fluid move in opposing phase. The
type I1 waves are diffusion-type waves, suffering high attenuation over a wide range of frequencies. To
observe them it is necessary to consider very high frequencies, of the arder of 1 mHz. The experimental
observation of this wave was first done by Plona (8], [9].

In this paper we will apply Biot's theory to describe the simulation of waves in a cilindrically symmetric
domain consisting in a fluid-filled cil'mder 1y about the centerline and t-axis £ surrounded by a
Biot medium 1,. After ¢ ional point are exited at points in £, the displacements are
recorded at varicus pomts mnde 1, . The otganisation of this paper is as follows. In Section 2 a brief
review of Biot’s theory is given. Tben in Section 3 the model and finite element technique is described.
Finally, some numerical results are shown in Section 4.

§ 2. REVIEW OF BIOT’S THEORY
Let Q denote a cube of bulk material and let u* = (w!), &/ = (ii/) be the averaged solid and
fluid displacement vectors over Q. The fluid dispiacement vector is defined such that éi! cvdo
represents the t of fiuid displaced through the face S of @, ¢ being the effective parosity. Let
o = §# - ')
be the fiuid displacement relative to the solid frame and set
e=V.ut, =-9.4.
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Let 7;;(w/,u*) and p(u/,u’) denote the total stress tensar of the bulk material and the fluid pressure.
Following [4], in the isotropic case the stress—strain relations are given by

Tij = 2N ei5 + §5{Ae — BE),
p=-Be+ ME, (2.1)
where ¢ = ;(g-p %‘:i) is the solid strain tensor. Also, N is the shear modulus of the solid
4 §

matrixand A = K, - ?-N, where K is the bulk modulus of the saturated rock. The coeficients K.,
B and M can be computed using Gassmana theocy [8] and the compressibility tests described in [S].
For completeness we include the formulas below:

_x KatQ _ KK, - Ka)
K.-K.—M , Q= —;_«x.-x,) .
Be K.K (K, - Ka)
T KK, - Ka)+ KK, - K;7)'
M X1k,

= KI(K- - K..) + K,«K, - K!) :

Here K,, K. and K, denote the bulk modulus of the salid grains, the solid matrix and the fluid,
respectively.
Biot's equations of motion in the low-frequency range are

. O v/

i) p-&—,— +p;-—ot—’ =V.r

(2.2)

.. By P

i) 1 g e thg = -V,
with p = (1~ 4)p, + #27, #, snd p; being the solid and fuid mass densities, respectively. Also,
b= p/k, where g is the fluid viscosity, k the rock permeability and g = 5'7" where S is the so—called
structure factor. Following {1}, to estinate S we used the formula

s=1-%(1-%). (2.3)

In the high—frequency range, Biot showed that the mass and viscous coupling coefficients ¢ and &
need to be modified and become frequency dependent. Denoting by w = 2xf the angular frequency,
the mentioned coefficients are given by [3]

i) g(w)= f‘l(u tLU] : ;‘7) . (24)

w
i) M) = SR(0)

where
. 1 T
P(0) = F.(0 i(8) = - R
(9) = F,(#) +iF;(6) 1ITTET®
bel# + ibelt
T(6) = berf + ibeid’

’- .,(‘ig)”’ (2.5)
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In the formulas above ber z and bei z are the real and imaginary parts of the Kelvin functions of the
first kind and zero order. The pore—sise parameter a, in (2.5) has to be estimated from the data of
the given formation. Using the form of the coefficients ¢ and b in (2.4) implies solving the equations
of motion (2.2) in the Fourier transform domain for each angular frequency w and then obtaining
the solution in the time domain by computing the inverse Fourier transform (for example using an
FFT algorithm). Since results on the existence and uniqueness of the solution of (2.2) in the Fourier
transform domain with the corresponding boundary conditions are still unknown, we will use in our
model the low-frequency version of Biot equations, for which results on the existence and uniqueness
on the solution of the equations are shown in {11].

§ 3. THE MODEL
A vertical cross—section of the domain 2 = 1, UQl, for any # = & is shown in Figure 1 below.

] R, R,

- r
I I
T, 3 rn
2y 12,
Zs 'R 7 Tn R,
Figure 1

Let v = (w,,0,u;,), vz = (uy,,0,u,) and u; = {us,,0,u,) be the fluid displacement in Q,
and the solid and fluid displacements in l,. Assume sero initial displacements and velocities in
both (I, and N, and let f; = f,(r,z,¢) be the source term in ;. Then the problem is to find
u(r,z2,t) = (w,uz,u3), t = J = (0,T) such that

i) p;a;::‘ -V(K,V-w)=fi, (rz,t)€0xJ,
(s.1)
ii) Ay(;;;") +c'9(“;;"’) -(V-1,-Vp)=0, (rat)ef,xJ,
with boundary conditions
i) ~KyVoy = \/p,—l\’!%‘:-‘--n {(r.z,8) €Ty x J,
i) (=rrpr—ripxh, - ripgr) = B( v, St B BB anerix,
(32)

iif) Tv, + KV ey, =0 (r,2,2) €Ty xJ
iv) (up +ug) e vp+urory=0 (rz,t)elyxJ
Y)ugev, =0 (r,z,8)€TyxJ

In (3.2) ¥ = (¥;r,0,¥;) i = £,p is the unit outward normal on 80; and Xp? s Xp? are ortogonal unit
vectors along 80, . Also the 4 x 4 matrices A and C are given by

2 B 24 _sfo o
A'[ul r!]'c'i[o '}’
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where I is the identity matrix in R?*?, A is positive definite and C is nonnegative.
The positive definite matrix B in (3.2) is given by [11]. Existence and uniqueness results for the
system in (3.1) (3.2) were given in [11].

To formulate the finite element procedure, we proceed as follows. Let F(div,0;), i = f,p be the
closed subspace of H(div,Q;) given by

RA(div, ) = {9 = (pr. w0, 0:) € H(div, D) : 0o = 0}

Similarly, set

[B'(0,)]® = {# = (rrve.p) € [ (@] 190 = 0, 90—“;'- = 1’5"; =0},

which is a closed subspace of [F(Q,)]". Let
¥ = B(div,) x [B*(0,)]® x H(div,0,)
and set .
V={v=(n,nn)eV:(n-n)¥y=0u-vy=0 oals}
V is a closed subspace of the separable Hilbert space V.
The weak form of problem (3.1)-(3.2) is found by multiplying equations (3.1) by test functions in V'

and using integration by parts. We obtain
8’u| 8’(",,";)
(or G+ m), + (A5 (noen) +

(8(8—;‘1.v’ 28—":--x’, N 8—:—-x’;, -a;;}-l")' y

(vz-V,.v:-x,-,vz-x,a.'s-V,)')r,
=(hn), v={n,nmu)eV, telJ, (3.3)

where A(v,w) is the symmetric bilinear form defined on ¥ by

A(v,w) = (K;V -0, V) 4 (T2, 93}, 60 (1)),
+ (To0(v2, 1), €00(01)); + (Tou(2, 1), €40 (1)),
+ z("n("ﬂv’l)-‘u("]))’ - (P(”h”i)rv 'W;), (3‘)

The finite element procedure is defined as follows. Let 0 < h < 1 and let r{ and 77 be quasiregular
partitions of 1, and 1, into elements generated by the rotation of rectangles in r and z about the
s-axis, with the diameter of the rectangles being bounded by h. Let P, ;(r,z) denote the piecewise
bilinear polynomials in r and z and set

My = {¢ = (9, 0,0.) € C*T1,) : 9, € rPy(r,2), @, € Pyy(r,2)}

It is clear that M, C [E‘(ﬂ,)]' . Let Wy(01;), i = f,p, be the vector part of the lowest arder mixed
finite element space defined by Morley (7). Away from r = 0 the functions in W (f)) have locally the

form (;+br,c+dz),whihintheinnemoudqngnts sbout r = 0 have the local form (br,c + dz).
Then, let ¥, = Wa(fl5) x My, x Wp(f2,) and set

Vi={veVhi(m-n)¥=0,v0-r,=0 onl,)
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then V) C V and V, satisfies the approximating properties {7},
Jaf fim - wrlles, + (7, 93) - (2.3l ]
S chfimha, + l(v2,m)lha,] .
inf fiv- olly < ch{lmbha, +IV-wlia,

»EVL
+ llezllza, + losfhn, + 1V -wlha,]

In order to obtain an explicit procedure, all integrals invalving time derivatives are computed using
the quadrature rule

ox ‘
/ f(r,s)rdrdfdz ~ vy h.h, E firi (3.5)
q §=1

where f; denotes the value of f at the carner a; of the rectangle Q in the finite elernent partition.
Let us denote by [u,w}] and {(v,w)} the inner products (v,w) and (v,w) computed using {3.5).

Next, if L is a positive integer, At =T /L and U™ = U(nAt) we set
d U™ = (U™ - U*)/at,
U™ = (U™ - U™Y)/(24t),
Bt = (U™ 20 - U /(AL) .

The discrete-time Galerkin procedure consists of finding U™ € Vi, n = 0,1,...,L such that
(8 UT mls + [AB(U20)", (02, 03)lp
+ (€80, Ua)" (m. 1)}, + A(U™,¥)
+{(Ves K780 - vg,0 vy,
+ ((B(3UT v, 807 - x;,8U7 - x3,0U3 )", (w2 - ¥p, 02 - X302 - X}0 9~ 1)) )y,
=(ffsm)y, veVN, 1<n<L-1. (3.6)
Stability and convergence results for (3.6) are given in [11]. In the mext section, the procedure (3.6)

will be applied to show numerically the presence of the type I1 compressional waves in fluid-saturated
porous solids.

§ 4. A NUMERICAL EXAMPLE

The finite element procedure (3.6) was used to show ically the p: of type II compressional
waves in fluid-saturated porous rocks, as opposed to dry rocks, where only type I and shear waves
can propagate. The fluid in 2, was taken to have density 1.4 gr/cm® and sound velocity 1250 m/sec.
The porous material was chosen to be Teapot Sandstone with the physical data taken from [10]. The
ssturant fluid in 1, was chosen to be water of density 1 gr/cm® viscosity 1cp and bulk modulus
2.25 x 10'® dynes/cm?. Setting the density, bulk modulus and viscosity of the saturant fluid in a,
equal to zero, and the parameter g equal to an arbitrary non sero constant, the algarithin (3.6) allows
us to treat the case of dry formations. The data for the numerical tests is shown in Table 1. The
compressional point sources have the form

Nilr,2,8) = 9(1)V8,z0,2=4,,5 = 1,2
with

#l1) = —26(t - )e=0-0

£ being related to the principal frequency, chosen to be 1 mHz. The mesh sise & was chosen to
be 0089 cm, which is approximately 1/10 of the shortest wavelength (i.c., the type Il wavelength).
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The time step was chosen to be .02 usec, which satisfies the stability constrain derived in {11]. The
d in size was ch as follows: radious of f1; = 2 cm, radious of 2 = 3.3 cm, Depth = 6.4 em.
Figuare 2 shows traces of the total displacement in the z~direction (i.c., u3, + us,) for water saturated
and dry Teapot Sandstone at the location indicated in the figure. The new event due to the arrival
of the type II wave is cleary observed, with a much larger amplitude of the type I wave as compared
with the type I wave.

Figure 3 shows traces of the total displacement in the r—direction for water—saturated Teapot Sandstone
at & distance r = 2.1455 em from the centerline of {1; and for receivers equally spaced in depth. The
slopes of the lines marking the arrivals of the type I, type II and shear waves give the velocities of the
corresponding waves. In a dry rock, the last event would not be present.

Pigure 4 shows numerically a property of the type I and type II first shown theoretically by Biot in
[2]. It can be observed that the divergence of uy and @3 = uy + lu,. have the same sign for type I

waves and different signs for type Il waves, showing that for the type I wave the 2olid and fluid move
in phase while for the type II wave they move in opposite phase.

Our next objective is to include the frequency correction factors in the mass and viscous coupling
coefficients g and b m Biot's equmom and the effect of dissipation due to internal friction via the
inclusion of fr y dependent coeflicients in the stress—strain relations. This will be the subject of
forthcoming pnbhcahom.
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‘T'able 1
‘Teapot Sandstone

_ Water Saturated Dry
K dnrcies 1.9 1.9
A |10"%dynca/em? 8.4044 4.3478
N_[10'°dynca/em? 6.4707 6.4797
Q 10" dynen/em? 5.3371 0
11 110'"%dynes/cin? 0.9197 0
L 207 207
Do gr/cm? 2.65 2.65
S 2.18356 2.1836

Total Displacement in r—direction ol r=2.1455 cin  2z=4.84 cm

0.6

0.2 |-

Amolitude {cm)

o4
o

-0.4

T

Teopot Sondstone 1 ity
¥

0.020

0.023

©0.026 0.029
Time (mesc)
Figure 2

0.032




- 78 -

Toto! Displocement in r~direction at r=2.1455 cm

teceiver

Waler Saturdied Teopot Sondstone
Al T ¥

deplhs

412 cm

4,48 cm

4.84 cm

5.2 em

L

5.56 em

1

©0.020

0.023

0.028

0.029 0.032 0.035 0.038

Time (msec)
Figure 3

Solid versus Fluid Divergepce ot r=2.33 cm 2=3.76 cm

Woter Soturaled Teopol Sondstone 1 miiz
L]

20.0 + T
10.0 |- 4
pi »2
0.0 -\ A o
~10.0 |- -1
Fiuld Divergencs
—— Solid Divergence
~20.0 . = .
0.018 0.021 0.024 0.027 0.030

Time (mvec)

Figure 4




