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Abstract. An iterative algorithm based on the adjoint method for the estimation of the saturated
hydraulic conductivity k in the unsaturated zone from infiltration experiments is presented. The
groundwater flow is assumed to be described by Richards equation and the well-known van
Genuchten constitutive model. The cost functional used for the parameter optimization is de-
fined as the L2-error between the calculated pressure head values and the observed data at
discrete points in the soil profile during the infiltration process. The exact gradient of the cost
functional is obtained by solving an appropriate adjoint problem, which is derived from the
equations of the Gâteaux derivatives of the pressure head with respect to the parameter k. The
optimization procedure is solved employing a nonlinear conjugate gradient method. A Galerkin
finite element procedure is used to obtain approximated solutions of the three differential prob-
lems involved in each iteration: the direct and the adjoint problems and the Gâteaux derivatives.
The algorithm was implemented in one-dimensional domains and used to estimate k in hetero-
geneous soil profiles using synthetically generated data. Numerical examples show that the
proposed algorithm yields very good estimations of the saturated hydraulic conductivity and
becomes a promising method for in situ estimation of this parameter.
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1 INTRODUCTION

Numerical modeling of soil moisture requires an accurate knowledge of the hydraulic conduc-
tivity and water content functions. These characteristic functions are usually described by em-
pirical mathematical models with different number of fitting parameters, such as Brooks-Corey1

or van Genuchten2 models. Model parameters are often difficult or even impossible to measure
directly because of instrumentation, scale or conceptual constraints. Thus, inverse modeling of
laboratory or field data has become an attractive alternative to direct measurements.3–6 In recent
years, various optimization methods such quasi-Newton,7 Simplex,4 Levenberg-Marquardt6, 8

and Ant Colony9 have been used for parameter estimation of characteristic curves. In particu-
lar, the estimation of the saturated hydraulic conductivity is rather critical because the ground-
water flow is highly sensitive to this parameter.10 Hydraulic conductivity values are relatively
easy to obtain from laboratory methods but these values are often non-representative of in-situ
conditions.11

The objective of this paper is to present a nonlinear optimization algorithm to determine the
saturated hydraulic conductivity field first described in.12 Groundwater flow is assumed to be
described by Richards equation13 in conjunction with the well-known van Genuchten model.
The optimization problem minimizes the L2-error between the pressure head values p(x, k, t)
calculated at the measurements points and the measured values of the pressure head at these dis-
crete points. The gradient of the cost functional in our nonlinear optimization problem is defined
at the continuous level using the adjoint of the Gâteaux derivative of the solution with respect
to the parameter. Both the Gâteaux derivative and the adjoint are defined at the continuous level
as solutions of partial differential equations with appropriate initial and boundary conditions
and then discretized using finite element procedures. This approach, known as differentiate-
then-discretize, provides an expression for the gradient which is independent of the particular
discretization algorithm used to solve the differential problems. This method has been used for
example, in14–19 to solve parameter estimation problems in geophysics and other applications.
For an account of several aspects of estimation such as regularization, identifiability, etc, we re-
fer to.20 In particular, the proposed adjoint procedure allows for a more accurate calculation of
the gradient of the cost functional than the standard discretize-then-differentiate approach con-
sisting in discretizing the differential equations first and then applying optimization techniques
to a discrete version as described for example in.21

The organization of the paper is as follows: in Section 2 the direct model, the inverse problem
and the sensitivity equations are presented. In Section 3 the algorithm and its implementation
is stated. Finally, in Section 4 a numerical example is presented.

2 THE DIRECT MODEL, THE ESTIMATION PROBLEM AND THE SENSIVITY
EQUATIONS

2.1 The direct model

We consider the problem of estimating the saturated permeability k(x) in a multidimensional
bounded variably saturated soil Q with boundary ∂Q. Let Γ∗ be the part of ∂Q associated with
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the top surface of the soil, i.e., the part of ∂Q, where the rain and evapotranspiration data will
be specified and we set Γ = ∂Q \ Γ∗.

It will be assumed that water flow within Q is governed by Richards equation13 stated in the
form

Dtθ(p(k)) − div(kg(p(k))Dx(p(k) + x3)) = 0, x ∈ Q, t ∈ I = (0, T ), (1)

with boundary condition

−kg(p(k))Dx(p(k) + x3) · n = q∗, x ∈ Γ∗, t ∈ I, (2)

−kg(p(k))Dx(p(k) + x3) · n = 0, x ∈ Γ, t ∈ I,

and initial conditions
p(k)(t = 0) = p0(x), x ∈ Q. (3)

In the equations above the x3-axis is considered to be positive upward. To solve the differ-
ential problem (1)–(3), the functions θ(p) and g(p) need to be specified. One of the commonly
used pairs (θ(p), g(p)) is given by the van Genuchten model:2

θ(p) =





θs − θr

[1 + (αvg|p|)n]m
+ θr, for p < 0

θs for p ≥ 0,
(4)

g(p) =





{1 − (αvg|p|)
n−1[1 + (αvg|p|)

n]−m}2

[1 + (αvg|p|)n]m/2
for p < 0

1 for p ≥ 0,

(5)

where θr and θs are the residual and saturated water contents, respectively; n and αvg are shape
parameters; and m is given by the relation m = 1 − 1/n

2.2 The estimation problem

We assume that the pressure head values p are recorded at the points xri, 1 ≤ i ≤ Nr, inside
Q for all t ∈ I . Then our objective is to use the observation vector pobs(t) = ((p(xri, t))1≤i≤Nr

to infer the actual values of the permeability k(x). We will consider the set of admissible
parameters to be

P = {k : k is measurable, k∗ ≤ k(x) ≤ k∗}

endowed with the L2(Q)-topology.
We consider the cost functional J (k) defined as follows. For each point xri let Bi be a small

ball of radius r small enough such that Bi ∩ Bj = ∅, i 6= j. Then let us define

p̂(k, xri, t) =
1

|Bi|

∫

Bi

p(k, x, t)dx, (6)

p̂(k, t) = (p(k, xri, t))1≤i≤Nr
∈ RNr .
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Then let J (k) be defined by

J (k) =
1

2
‖p̂(k) − pobs‖L2(I,RNr ). (7)

Our estimation problem solved using a least squares criterion will be

minimize J (k) over P. (8)

2.3 The sensivity equations

The minimization problem requires the computation of the cost functional with respect to the
parameter. We will denote by Dk(p)δk the Gâteaux derivative of p in the direction of the
perturbation δk of k. The Gâteaux derivative Dk(p)δk can be computed as the solution of the
following differential equation:

Dt(Dp(θ)Dk(p)δk) − div(kg(p(k))DxDk(p)δk) − div((kDp(g)Dk(p)δk)Dx(p + x3)) =

div(g(p(k))δkDx(p(k) + x3)), x ∈ Q, t ∈ I,

(9)

with the boundary condition

−kg(p(k))DxDk(p)δk · n = 0, x ∈ ∂Q, t ∈ I, (10)

and the initial condition

Dk(p)δk = 0, t = 0, x ∈ Q. (11)

The functional J (k) has a Gâteaux derivative with respect to the parameter k given by

J ′(k)δk =

∫ T

0

Nr∑

i=1

(
1

|Bi|

∫

Bi

Dk(p)δk(x, t)χBi
(x)

) (
p̂(k, xri, t) − pobs(xri, t)

)
dt (12)

where χBi
(x) denotes the characteristic function of the ball Bi.

The algorithm described in the next section is based on locating the zeros of J ′(k).

3 THE ESTIMATION ALGORITHM

Using the above directional derivative we propose a Polak-Ribière conjugate gradient method
to estimate the parameter k(x).

From equation (12) it follows that the direction of steepest descent of J at the point kj(x) in
the j-iteration is given by

dj = D∗
kj

(p)

Nr∑

i=1

1

|Bi|
χBi

(x)
(
p̂(kj, xri, t) − pobs(xri, t)

)
, (13)
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where D∗
k(p) indicates the adjoint operator of Dk(p).

The expression D∗
k(p)

∑Nr

i=1

1

|Bi|
χBi

(x)
(
p̂(k, xri, t) − pobs(xri, t)

)
has the representation:

D∗
k(p)(f) = −

∫ T

0

g(p(k))Dx(p(k) + x3) · DxW (k)dt, (14)

where W (k) is the solution of the differential equation:

−Dp(θ)DtW (k) − div(kg(p(k))DxW (k)) (15)

+kDp(g)Dx(p(k) + x3) · DxW (k) = f, x ∈ Q, t ∈ I,

with boundary conditions

kg(p(k))DxW (k) · n = 0 x ∈ ∂Q, t ∈ I, , (16)

and final condition
W (k)(·, T ) = 0, x ∈ Q. (17)

The function f is the residual-related function given by

f(x, t) =
Nr∑

i=1

1

|Bi|
χBi

(x)
(
p̂(k, xri, t) − pobs(xri, t)

)
. (18)

Then, a minimization procedure using a Polak-Ribière conjugate gradient iteration can be
stated as follows:

• 1) Give an initial guess k0(x), compute p(k0) by solving (1)-(3).

• 2) Compute the direction of steepest descent d0 using (13).

• 3) Set j = 0.

• 4) Compute the descending step length αj

αj = −

∫ T

0

∑Nr

i=1

(
Dkj

(p)dj

) (
p − pobs

)
(xri, t)dt

∫ T

0

∑Nr

i=1

(
Dkj

(p)dj(xri, t)
)2

dt

where Dkj
(p)dj is the solution of (9) for the choice δk = dj.

• 5) Update the saturated hydraulic conductivity as follows:

kj+1 = kj + αjdj.

• 6) Compute p(kj+1) by solving (1)-(3).
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• 7) Compute error, if convergence is achieved, stop.

• 8) Compute J ′(kj+1) using (12).

• 9) Compute βj+1 using the Polak-Ribière formula22

βPR
j+1 =

‖J ′(kj+1) (J ′(kj+1) − J ′(kj)) ‖L2(Q)

‖J ′(kj)‖2
L2(Q)

• 10) Compute the search direction

dj+1 = −J ′(kj+1) + βPR
j+1dj.

• 11) New iteration: set j = j + 1 and go to 4).

Also, for improving the convergence of the Polak-Ribière conjugate gradient method a restart
procedure was implemented as described in.23 The numerical solutions of the direct problem
(1)-(3), the Gâteaux derivatives (9)-(11) and the adjoint problem (15)-(17) were obtained using
Galerkin finite element procedures.

4 NUMERICAL EXPERIMENTS

The proposed algorithm was implemented to estimate the saturated permeability k(x) in a ver-
tical heterogeneous soil profile during an infiltration experiment using synthetically generated
data. The observed data pobs are the pressure head values versus time at different depths ob-
tained as the solution of the forward problem.

For the numerical test we consider a 250 cm soil profile Q consisting of six layers with the
following values of saturated permeability

k(x) =





4.5 10−3 cm/s 0 cm ≤ x < 45 cm
4.0 10−3 cm/s 45 cm ≤ x < 85 cm
5.0 10−3 cm/s 85 cm ≤ x < 125 cm
6.0 10−3 cm/s 125 cm ≤ x < 165 cm
5.0 10−3 cm/s 165 cm ≤ x < 205 cm
5.5 10−3 cm/s 205 cm ≤ x ≤ 250 cm.

(19)

The other hydraulic parameters of van Genuchten model are arbitrarily assumed to be constant
over the whole profile with θs = 0.368, θr = 0.104, n = 2.0 and αvg = 0.0335 cm−1.

In the infiltration experiment, water is uniformly applied on the soil surface (x = 250 cm) at
a rate of 2.5 10−5 cm/s for a period of 9 days. The initial pressure head of the soil profile was
assumed to be constant and equal to -400 cm. The numerical test is stopped when the infiltration
front reaches the bottom boundary where a no-flux condition is prescribed. The time step used
in the numerical solution of Richard’s equation, the Gâteaux derivative and the adjoint problem
is ∆t = 864 s with a uniform partition T h of Q into elements Qj of size h = 2.77 cm.
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Figure 1: Simulated pressure head observations at x = 35, 95, 170 and 230 cm depths.

The pressure head values were assumed to be recorded at discrete times tn at 16 points xri

spaced 15 cm from each other. Figure 1 shows simulated pressure head observations at the
recording points x = 35 cm, 95 cm, 170 cm and 230 cm.

The initial guess for k(x) in the inverse procedure was taken to be constant an equal to
5.0 10−3 cm/s. Figure 2 shows the initial guess and the updates profiles of k(x) after 10 and 50
iterations, where some oscillations in the estimated profiles can be observed. To eliminate these
oscillations and stabilize the parameter estimation procedure a simply postprocessing algorithm
of the predicted k(x) profile was implemented. At each element Qj the saturated permeability
value was updated using a weighted average of its values at neighboring elements.

Figure 3 shows the updated profiles of k(x) after 100, 300 and 500 iterations. Numerical
oscillations almost disappear after 100 iterations and the estimate profile is quite accurate except
near the domain boundaries where convergence is slow. Note that in this numerical example the
permeability values are not assumed to be known near the top surface as it was assumed in the
derivation of our estimation procedure. The algorithm first quickly reached the true permeability
values in the interior of the domain and then slowly adjusted the true permeability profile near
the surface and bottom boundaries.

5 CONCLUSIONS

An iterative algorithm to estimate the saturated hydraulic conductivity in one-dimensional lay-
ered unsaturated soils is presented. The inverse problem is posed as a functional optimization
problem and the gradient of the cost functional was computed by solving the associate adjoint
problem. This allows for the formulation of the conjugate gradient algorithm to solve the esti-
mation problem independently of the discretization scheme used to solve the associated partial
differential equations. In the present work standard Galerkin procedures were employed to solve

Administrador
Text Box
3327

Administrador
Cuadro de texto
J. E. Santos y Luis Guarracino



.005

.005

.005

 0  50  100  150  200  250

 k
 (

cm
/s

) 

 x (cm) 

  initial guess 

  10 iterations 

  50 iterations 

Figure 2: Initial, estimated (dashed) and true (continuous) saturated permeability.
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Figure 3: Estimated (dashed) and true (continuous) saturated permeability.
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the direct and the adjoint problems and the Gâteaux derivatives. From the numerical example
shown in Section 4, we can conclude that the proposed algorithm yields a very good estimate
of saturated permeability in a stratified medium and becomes a promising method for in situ
estimation of this parameter under unsaturated conditions.

REFERENCES

[1] R. H. Brooks and A. T. Corey, Hydraulic properties of porous media, Hydrology Paper 3,
Colorado State University, Fort Collins, 1964.

[2] M. T. van Genutchen, A closed-form equation for predicting the hydraulic conductivity of
unsaturated soils: Soil Sci. Soc. Am. J., v. 44 (1980) 892-898.

[3] J. H. Dane and S. Hurska, In situ determination of soil hydraulic properties during drainage:
Soil Sci. Soc. Am. J. 58 (1983) 647-652.

[4] Z. Y. Zou, M. H. Young, Z. Li and P. J. Wierenga, Estimation of depth average unsaturated
soil hydraulic properties from infiltration experiments: Journal of Hydrology 242 (2001)
26-42.

[5] J. Simunek and M. T. van Genutchen, Estimating unsaturated soil hydraulic properties from
tension disc infiltrometer data by numerical inversion, Water. Resour. Res. 32 (1996) 2683-
2696.

[6] G. A. Olyphant, Temporal and spatial (down profile) variability of unsaturated soil hy-
draulic properties determined from a combination of repeated field experiments and inverse
modeling, Journal of Hydrology 281 (2003), 23-35.

[7] J. Zijlstra and J. H. Dane, Identification of hydraulic parameters in layered soils based on a
quasi-Newton method: Journal of Hydrology 181 (1996) 233-250.

[8] G. N utzmann, M. Thiele, S. Maciejewski and K. Joswig, Inverse modelling techniques
for determining hydraulic properties of coarse-textured porous media by transient outflow
methods, Adv. in Water Res. 22 (1998) 273-284.

[9] K. C. Abbaspour, R. Schulin, M. T. van Genuchten, Estimating unsaturated soil hydraulic
parameters using ant colony optimization, Adv. in Water Res. 24 (2001) 827-841.

[10] J. H. Dane and J. F. Molz, Physical measurements in subsurface hydrology, Rev. Geophys.,
Suppl. (1991) 270-279.

[11] J. B. Kool, J. C. Parker and M. T. van Genuchten, Parameter estimation for unsaturated
flow and transport models–a review: Journal of Hydrology 91 (1987) 255-293.

[12] J. E. Santos, Y. Efendiev and L. Guarracino, Hydraulic conductivity estimation in partially
saturated soils using the adjoint method, Tchnical Report Series ISC-05-05-MATH, Texas
University, (2005) 1-27.

[13] L. Richards, Capillary conduction of liquids through porous mediums: Physics, v. 1 (1931)
318-333.

[14] A. Tarantola, A., Linearized inversion of seismic reflection data, Geophysical Prospecting,
32 (1984) 998–1015.

[15] A. Tarantola, A., Inverse Problem Theory, Elsevier, New York, 1987.
[16] Y. Jarny, M. N. Ozisik and J. P. Bardon, A general optimization method using the ad-

Administrador
Text Box
3329

Administrador
Cuadro de texto
J. E. Santos y Luis Guarracino



joint equation for solving multidimensional inverse heat conduction, Int. J. Heat and Mass
Transfer, 47 (1986) 2911-2919.

[17] E. M. Fenandez-Berdaguer, Parameter estimation in acoustic media using the adjoint
method, SIAM J. Control Optim., 36 (1998) 1315–1330.

[18] R. Sampath and N. Zabara, A functional optimization approach to an inverse magneto-
convection problem, Comput. Methods in Appl. Mech. Engrg. 190 (2002) 2063–2097.

[19] E. M. Fenandez-Berdaguer, L. V. Perez and J. E. Santos, Numerical experiments on pa-
rameter estimation in acoustic media using the adjoint method, Latin American Applied
Research, 32 (2002) 337–342.

[20] H. T. Banks and K. Kunish, Estimation techniques for distributed parameter systems,
Birkhauser, Boston, 1989.

[21] L. Lines and S. Treitel, A review of least-squares inversion and its application to geophys-
ical problems, Geophysical Prospecting, 32 (1984) 159–186.

[22] E. Polak et G. Ribière, Note sur la convergence de méthodes de directions conjuguées,
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