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ABSTRACT

Penalty functions are used to enforce bending and continuity
constraints through modifying the Variational Indicator of thin
axissimetric shells. The procedure is found useful to enforce implicity
rotational constraints in the formulation to impose interelement
continuity and element end constraints. The resulting model procedure
allows the removal of element rotation degree-of-freedom with full
compatibility between shells of different curvatures at the elements
adjoining node. While the process is approximate, good practical
results can be obtained provided an appropriate numerical parameter
employed and sufficient accuracy is available in the computer. The
formulation has been implemented and test results of some sample

problems are compared to other numerical or amalytical solutions
show its effectiveness,

is

to

RESUMO

Funcoes de penalizacao sao utilizadas para preescrever vinculacoes
de flexio e de continuidade através da modificacao do Indicador Variacio
nal na formulagdo de cascas axissimétricas finas. O procedimento é dt i
em garantir vinculos da rotac3do transversal, obtida de forma implicita
em relacao aos deslocamentos da superficie média da casca, de fcrma a sa
tisfazer as condicoes de continuidade e de engastamento do modelo. A fdi
mulagao resultante permite a compatibilidade no ponto nodal comum a c¢as-
cas com diferentes curvaturas. Apesar de ser um processo numérico apro-
ximado, a técnica de penalizagdo fornece bons resultados de ordem prati-
ca mas dependentes da escolha do parametro numérico de penalidade e da
disponibilidade de precisic do computador. A ilustragao da ;»gﬁiciincia
do procedimento da andlise de cascas finas de revolucdo €  apresentada

através de exemplos numéricos comparados com outras solugdes Huméricas
ou analiticas.
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INTRODUCTION

In previous communications, the basic theory to impose constraint
conditions on a Variational Indicator governing problem has been
presented for the analysis of pipe, pipe mitred and beam elements
{1-3]. Considering the standard finite element formulation two end
conditions are, in general, required to the element assemblage:
firstly, the continuity condition when elements are joined at a common
node and, secondly, the fixity condition when an element is clamped to
a rigid flange. If these end conditions can be expressed in terms of
derivatives of mid-surface displacements, as it is the case of
negligible transverse shear deformations, a set of compatibility
constraints can be used within the element formulation emploving only
translational degrees-of-freedom.

One of the most widely used technique to impose such constraints,
the Lagrange multipliers, suffers the inconvenience of increasing the
number of unknown degrees-of-freedom to be solved for, as well as,
leading to indefinite matrices in linear analysis. An alternative
method to handle the problem of imposing constraints by using "penalty
functions" originates from literature of optimization [4,5]. Although
only recently it has been used explicitly in the finite element
process, in the particular case of equality constraint equations the
technique has shown to be well suited to avoid both difficulties
mentioned in connection with Lagrange multipliers [6]. The basic

technique in this method is to add the comstraint to be achieved in the
solution, say

CONSTRAINT = 0 (§))

to the Variational Indicator of the problem in -the following penalty -
~function form,

T e U-=-Wa+ (%) o (CONSTRAINT)? 2

where U and W are the total strain energy and total potential of
external loads, respectively, and o is the penalty parameter to be
chosen after some numeric experiments. The solution obtained using Eq:
(2), with ér = 0, will satisfy the condition in Eq. (1) to a required
accuracy provided o is selected sufficiently large. The penalty
contribution in Eq. (2) corresponds to the potential energy in a
rotational spring with stiffness parameter o, and the solution
obtained depends on the size of a. A large value of ¢, or a large
spring constant, enforces the compatibility between elements or the
fixity condition,and the results convey to a solution that verifies
the constraint condition.

The displacements used to formulate the axissimetric element are
associated to in-plane kinematics of the mid~-surface of the shell, with
the assumption that straight lines initially perpendicular to the shell
surface remain so after deformation, and with the same length, see Ref.
[8]. Considering the element in Fig. 1, the isoparametric cubic
interpolation for displacements and geometric coordinates are,
respectively,
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§ = isoparametric longitudinal coordinate, -1 $ £ § + 1,
u; = Cartesian displacements of material point (£),
T, z = Cartesian coordinates of material point (),
hk(i) = isoparametric interpolation function (7],
u? = Cartesian displacements of nodal point k,
gy = Cartesian coordinates of nodal point k
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FIGURE ¢ - Axissimetric Thin Shell Geometry and Element Mocei Reprasentation

For the axissimetric thin shell geometry, transverse shear
deformations are negligible compared to the element longitudinal and
¢ircunferential strain components. These components expressed in terms
of the midsurface displacements v(£) and w(£) in the normal and
tangential directions, respectively, reduce to [8]
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IMPOSITION OF END CONDITIONS

The objective is to enforce continuity on the midsurface rotation
between elements without introducing additional degree~of-freedom. 1Inm
classical analysis of beam structures, this continuity is achieved by
representing the element kinematic with a rotation degree-of-freedom.
However, the continuity can be enforced in the formulation by using a
penalty procedure. Considering the thin shell element two different
constraint conditions shall be imposed: first, the fixity condition
vhen an element is clamped to a rigid flange and, secondy the continuity
condition when two elements are adjoined at a common node.

Fixity Condition.When an element is fixed to a rigid flange, the
boundary conditions are that at the end node, say for &=~ 1, there are
no displacements or rotations, Hence, corresponding to equation (4) -
TERM 2, the boundary conditions at fixed node i is, see Fig. 2,

V=W, o= 0 (6)
and - X 92)' =0 n
R, ' df £= -1
4
where dw } = ] d—hk | v (8)

dE £m =1 kel dE Em -1 K

The constraint condition in equation (6) simple means that the
displacements at node i must be set equal to zero, whereas in equation
(7) is imposed with a penalty parameter. In accordance with equation
(1), we have

CONSTRAINT = [( ¥ - 1 &,y | - 0] (9)

R1 s' dg L E= =1

that substituing into equation (2) and imposing the statiomary condition
for m, 67 = 0, results into the following penalty matrix, defined to the
element degrees-of~-freedom,

T
where s=a G G
% F F (10)
GF =[ .... a, l:1 a, bz ceee ]
ith a. = 1/R (E= =1)
¥ i ! (1)

bi"—" i
s' df &= -t

The penalty matrix Ki with a relative large value of a is added to the

element stiffness matrix to enforce the comstraint in equation (7), by
using the direct stiffness method. 1In the next section, an example
illustrates how the appropriate value of a is chosen numerically in
accordance with the .equilibrium matrix condition.
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TERM 1 TERM 2
where  the upper simbol(') on the variable refers to differentia -

tion with respect to & coordinate,R, and R2 are principal radii of
curvature of the shell midsurface, see Fig. 1, and % is the local
coordinate normal to the sheil (h/2 < g S h/2). In equations (4) the
membrane effect is represented by TERM 1 and are due to stretching of
the shell longitudinal and transverse fibers, while TERM 2 accounts
for bending effects defined by the mindsurface rotation and its local
derivate. Combining equations (3), (4) and the roctation transforma -
tion R(9),

v (&) Uy &)
=R (¢)
w (&) u, (&)

(5)

a set of constitutive equations associated to the element global
displacements is obtained. Thus, using the stress-strain transforma -
tion for the plane strain condition with the above results the element
total strain energy U in Eq. (1) is obtained. The equilibrium
equations that governs the linear response of the element is derived
by invoking the stationarity condition on the T function.

The basic assumption in using the foregoing strain components is
that each differential length of the shell canm rotate independently
although by virtue of using equation (3), the midsurface displacements
are continuous within an element and accross the element boundaries.
Therefore, the interaction effects in the rotation between elements of
different curvacures (continuity condition) or an element and a flange
(fixity condition) cannot be properly modeled. Basically, only
membrane states of stress can be represented in the formulation, and
to render the element applicable to such bending situations, it is
necessary to include in the kinematics a procedure to prescribe
rotations at the end nodes.

The objective of this paper is to show how to amend the basic
finite element formulation in a very simple way to account for the
interaction effects. The imposition of these effects allow the model
to represent bending continuity and bending contraints in an
axissimetric thin shell analysis. This is achieved by using a penalty
procedure to emnforce the required continuity conditions. In the next
Sectionof this paper we discuss the additional constraints included in
the formulation Variational Indicator, as shown in equation (0, s
that the element is applicable to the modelling of interaction effects.
The formulation has been implemented and in Section 3 the results
obtained in the analysis of some sample problems are presented.
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FIGURE 2 - Fixity ond Continuity Conditions at Node | for the Axissimetric Shell Formulation

Continuwity Condition. At the common node of two shell elements, the
displacement are automatically continuous because both elements share
the same degrees-of-freedom.In addition the continuity conditionm,

CONSTRAINT = [( L - 1 Q¥ )2 _ (¥ _ 1L duyo (12)
R1 s' df E= +1 R1 s' df E= -1
representing the equality of midsurface rotation at the common node 1is

to be imposed. Substituting into equation (2) from equation (12), and
invoking 6én = 0, the following penalty matrix is obtained

c T
lP =0 Gc cc (13)
n,n n.n o+l n+t  nel | n+t
where Gc =[ ... a, b1 a, I>2 cee By b1 a, b2 veo )
with a? = 1/R%(E= +1)
dh,
b:.--—-—ln ; for i 44
s' df  E= 41
e o R (e o) (14)
n+t 1 dhi ln'”
b, s = —
1 '

8; df &= -1 ; for i # 1
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and for the common node of the two elements we have

2l 2 2™ @ 1R M (Ee +1) - 1/B%* N (Em -1

4 1 1 .
. (15)

bnsbnﬂ__(_!_dhi.n _dhin

4 ! 31!. d¢ En +1 s'i Em =1

The resulting penalty matrix associated to the translational degrees-
~of-freedom of both elements is then added to the structure stiffness
matrix,

ANALYSIS RESULTS

The foregoing formulation has been implemented and in this Section
the analysis responses predicted using the axissimetric thin shell
element are compared to available numerical and analytical results. In
all analysis the 4-node element model is employed to accurately
represent the shell geometry on the displacement solutions; Gauss
integration scheme is used to evaluate the element matrices and forces,
at a number of stations specified in each example.

E{fect of Penalty Panameter Size-Case Study wity Clamped Ends.
Cylinder. The cylinder shown in Fig. 3 was analysed under internal
pressure. The purpose of this analysis is to investigate the effects
of the element size on the response predicted, and thus arrive at some
guidelines for the eifectiveness of the penalty procedure on the
imposition of the constraints condition. A seven 4-node element model
was employed in the geometry representation with a fine mesh near to the
clamped end of the cylinder to represent bending effects accurately.
Numerical solutions for various size of the penalty parameter was then
obtained for the shell maximum radial displacements, as shown in Table 1.

S

The resuits indicate that for a wide range of a (10° to 10”) the
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FIGRE 3 - Thin Wolled Cylinder Considered and FE Model Representation
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Analysis of a Nozzle. The geometry of a bending free nozzle
designed for the structural transition between a spherical shell and a
pipe run was established in Refs. [11,12]. The objective of this
analysis is to verify the numerical solutions obtained with the present
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solutions are in very good agreement with the analytical results,whereas
for ssall or very large values the solutions are in error-a positive
indefinite coeficient matrix is obtained for a = 1.E17. In the
formulation, the penalty matrix is added to the original stiffness
matrix to impose the constraint conditions. Thus, an appropriate value
of the penalty parameter is that the elements of both matrices have the

same order of magnitude (in the present study, k:;x

= 1,1 E8). Figure &4

presents the numerical soltutions for the fixed-ends cylinder radial
displacements with a four element model, and good agreement is then

noted.

Table 1 - Numerical Solutions for the FE Maximum Radial Displacements
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formulation for a quite complex geometry shell, but under the membrane
state-of~-stress only. An eight 4-node equally spaced element model was
used for represent the nozzle shown in Fig. 5, under axial loading at
one end and simple supported at the base. Analytical results for the
shell normal displacements, in Fig. 5, and stress resultants, in Figure
6, are compared to numerical solutions obtained with the present
formulation and with the higher-order element formulation implemented
in the CAXEX program described in [13].. A wvery good agreement between
numerical and analytical results was then obtained. Moreover, the
present model reduced to about one-half the number of degrees-of-freedom
required for the shell solution when compared to the numerical solution
including rotation degrees-of-freedom, explicity. The analysis study
required four integration station in the longitudinal direction and two
stations through the shell thickness.

Analysis of a Hipenbofoidat Tower. The cooling tower comstructed of
reinforced concrete was analyzed in [14] with isoparametric
axissimetric shell elements obtained from reduction of the 2/D ring
mod=! reported in Ref. [15]. The reduced model employed rotation
degraz-of-fraedom to represent the displacements at points out of the
shell midsurface. Prestressed cables apply a ring load P in the radial
direction at the top edge of the tower which is simple supported at the
base. The axissimetric element model in this study was used to
represent the shell at same point location refered in [14]. In this
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analysis, membrane and bending effects are activated in the shell by
the applied load and the corresponding radial displacement solutions
is presented in Fig. 7, which represents the upper portion of the
shell, only. The lower region is essentially under pure membrane
state of stress and a good agreement in the results is observed. The
numerical integration employed four and two integration stations in
the longitudinal and normal directions, respectively.

Some experiences on the application of the assimetric shell
element presented in [9], that accounts for bending and membrane
effects, and for interactions with rigid flanges and continuity between
elements are discussed. The interaction effects are included in a
novel, but very simple and efficient manner using a penalty functiom
formulation. Although the results of some sample solutions indicates
the applicability of the element, the total element formulation is
based on a number of assumptions and further performance studies are
still required to identify the limit range of problems for which the
element can be further employed.
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