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Penalty functions are used to enforce bending and continuity
constraints through modifying the Variational Indicator of thin
axissimetric shells. The procedure is found useful to enforce implicity
rotational constraints in the formulation to impose interelement
continuity and element end constraints. The resulting model procedure
allows the removal of element rotation degree-of-freedom with full
compatibility between shells of different curvatures at the elements
adjoining node. While the process is approximate, good practical
results can be obtained provided an appropriate numerical parameter is
employed and sufficient accuracy is available in the computer. The
formulation has been implemented and test results of some sample
problems are compared to other numerical or analytical solutions to
show its effectiveness.

Funcoes de penalizacao sao utilizadas para preescrever vinculacoes
de flexao e de continuidade atraves da modificacao do Indicador Variacio
nal na formulacao de cascss axissimetricas finas. 0 procedimento e ut [
em garantir vinculos da rotacao transversal. obtida de forma implicita
em relacao aos deslocamentos da.superficie media da casca, de forma a sa
tisfazer as condicoes de continuidade e de engastamento do modelo. A for
mulacao resultante permite a compatibilidade no ponto nodal comum a cas=
cas com diferentes curvaturas. Apesar de ser um processo numerico apro-
ximado, a tecnica de penalizacao fornece bons resultados de ordem prati-
ca mas dependentes da escolha do parametro numerico de penalidade. da
disponibilidade de precisao do computador. A ilustracio da >~ici.nci&
do procedimento da analise de cascas finas de revolucio e ·:~~.entad&
atraves.d~ exemplos numericos comparados com outras solucoe.'~ri,ca.a
au anal1.tlcas.



In previous communications, the basic theory to impose constraint
conditions on a Variational Indicator governing problem has been
presented for the analysis of pipe, pipe mitred and beam elements
[1-3]. Considering the standard finite e.1ement formulation two end
conditions are, in general, required to the element assemblage:
firstly, the continuity condition when elements are joined at a common
node and, secondly, the fixity condition when an element is clamped to
a rigid flange. If these end conditions can be expressed in terms of
derivatives of mid-surface displacements, as it is the case of
negligible transverse shear deformations, a set of compatibility
constraints can be used within the element formulation employing only
translational degrees-of-freedom.

One of the most widely used technique to impose such constraints,
the Lagrange multipliers, suffers the inconvenience of increasing the
number of unknown degrees-of-freedom to be solved for, as well as,
leading to indefinite matrices in linear analysis. An alternative
method to handle the problem of imposing constraints by using "penalty
functions" originates from literature of optimization [4,5]. Although
only recently it has been used explicitly in the finite element
process, in the particular case of equality constraint equations the
technique has shown to be well suited to avoid both difficulties
mentioned in connection with Lagrange multipliers [6]. The basic
technique in this method is to add the constraint to be achieved in the
solution, say

to the Variational Indicator of the problem in -the following penalty -
-function form,

where U and Ware the total strain energy and total potential of
external loads, respectively, and a is the penalty parameter to be
chosen after some numeric experiments. The solution obtainee using Eq.
(2), with on • 0, will satisfy the condition in E4. (1) to a required
accuracy provided a is selected sufficiently large. The penalty
contribution in Eq. (2) corresponds to the potential energy in a
rotational spring with stiffness parameter a, and the solution
obtained depends on the size of a. A large value of a, or a large
spring constant, enforces the compatibility between elements or the
fixity condition,and the results convey to a solution that verifies
the constraint condition.

The displacements used to formulate the axis.imetric e1e-ent are
a.sociated to in-plane kinematics of the mid-.urface of the shell, with
the assumption that straight line. initially perpendicular to the shell
surface r•••.in so after deformation, and with the ••••• 1ength,.ee Ref.
[8J. Con.idering the element in Fig. 1, the i.oparametric cubic
interpolation for dilplaeementl and geometric coordinates are,
respectively,
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~ • isoparametric longitudinal coordinate, -1 ~ ~ S + I,
u .• Cartesian displacements of material point (E),

1.

r, z • Cartesian coordinates of material point (;),
hk(~) • iso?arametric interpolation function [7J,

ku .• Cartesian displacements of nodal point k,
l.

rk,zk • Cartesian coordinates of nodal point k

NODAL. POINTS (8 d8QrMS-of-freecbnl
~ (U • (-9f3·9fl• € -0/16

h2(! j. (9€3.9€1. ! -1)/16

h3 (! l· (27,3_9€ 1,-271.9)/16
h4 (€ ). (-27,3 -9, I. 27€ .91116

R.~ R _• .u:.
• r-r-r'Z" 2 l!

For the axissimetric thin .hell geometry, tran.ver.e shear
deformations are negligible ca.pared to the element lon§itudinal and
circunf.r.ntial strainca.ponent •• These components expr••••d in terB8
of the mid.urfac. di.placements v(~) and w(~)in the no~l and
caDI,atill dirletiOftl, relpeetively, reduce to [8]



The objective is to enforce continuity on the .idsurface rotation
between elements without introducina additi~l degree-of-freedoa. I'll

Classical analysis of be•• structures, this continuity is achieved by
representing the el•••nt kinematic with a rotation degree-of-freedoa.
However, the continuity can be enforced in the formulation by usina a
penalty procedure. Considering the thin ehell element two different
constraint conditione shall be imposed: first, the fixity condition
when an element is cl-.ped to a rigid flange and, secondy the continuity
condition when two elements are adjoined at a common node.

Fixity ConditioK.When an element ie fixed to a rigid flange, the
boundary conditions are that at the end node, say for ~.- I, there are
no displacements or rotations. Hence, correeponding to equation (4) -
TERM 2, the boundary conditions at fixed node i is, see Fig. 2,

Vi • w. • 0 (6)
1

(~ - dW) I • 0 (7)
R, s' dE; E;.-1

dw 4 ~I I wk (8)
dE; ;. -1 k.l d!; ~.-1

The constraint condition in equation (6) simple means that the
displacements at node i must be set equal to zero, whereas in equation
(7) is imposed with a penalty parameter. I'll accordance with equation
(1), we have

CONSTRAINT • [( :!
R1

dw )] I - 0]
s' dt; f;. -1

that substituing into equation (2) and imposing the stationary condition
for n, 6n • 0, results into the following penalty matrix, defined to the
eleme~t degrees-of-freedom,

I/R
1
(f;. -1)

dhi I
s' df; E;.-1

The penalty matrix ~ with a relative large value of a is added to the
element:st:iffne •• matrix to euoue tbe eonltraint in equation (7), by
using the direct stiffness metllod. I'll the next section, an example
illustrates how the appropriate value of a is chosen numerically in
accordance with the ;equilibrium matrix condition.
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where the upper simboi(') on the variable refers to differentia -
tion with resp~ct to t;coordinate,R1 and ~ are principal radii of
curvature of the shell midsurface, see F~g. I, and; is the local
coordinate normal to the shell (h/2 ~ I;; ~ h/2). In equations (4) the
membrane effect is represented by TERM 1 and are due to stretching of
the shell longitudinal and transverse fibers, while TERM 2 accounts
for bending effects defined by the mindsurface rotation and its local
derivate. Combining equations (3), (4) and the rotation transforma -
tion R($),

(1;)]
(I;)

(~)]
(I;)

a set of constitutive equations associated to the element global
displacements is obtained. Thus, using the stress-strain transforma -
tion for the plane strain condition with the above results the element
total strain energy U in Eq. (1) is obtained. The equilibrium
equations that governs the linear response of the element is derived
by invoking the stationarity condition on the n function.

The basic assumption in using the foregoing strain components is
that each differential length of the shell can rotate independently
although by virtue of using equation (3), the midsurface displacements
are continuous within an element and accross the element boundaries.
Therefore, ~he interaction effects in the rotation between elements of
different curvatures (continuity condition) or an element and a flange
(fixity condition) cannot be properly modeled. Basically, only
membrane states ~f stress can be represented in the formulation, and
to render the element applicable to such bending situations, it is
necessary to include in the kinematics a procedure to prescribe
rotations at the end nodes.

The objective of this paper is to show how to amend the basic
finite element formulation in a very simple way to account for the
interaction effects. The imposition of these effects allov the model
to represent bending continuity and bending contraints in an
axissi_tric thin sbell aaalysis. This is achieved by using a penalty
procedure to enforce the required continuity conditions. In the next
Sectionof·thi. paper we discuss the additional constraints included in
the formulation Variational Indicator, as shoWD in equation (I). .~
that the el..-nt i. applicable to the modelling of interaction effects.
The fo~lation haa been Uipl..-nted and in Section 3 the results
obtained in the'analysis of sa.. s..,le probl••• are presented.
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Continuity Condition. At the common node of two shell elements, the
displacement are automatically continuous because both elements share
the same degrees-of-freedom.ln addition the continuity condition,

CONSTRAINT. [( ..!.. _....!.. dW) In _ ( ..!.. _....!.. dW) In+1
R1 s' d~ ~- +1 R1 s' d~ E;--1

representing the equality of midsurface rotation at the common node is
to be imposed. Substituting into equation (2) from equation (12), and
invoking on. 0, the following penalty matrix is obtained

with a~ - l/Rn(~_ +1)1.

b~ -
1 dhi n
-I for i ~ 41. s' d~ E;- +1

n+1 _ 1/Rn+1(~- -1) (14)a. -1.

dhi In+1b~+l.
1. .: doE; E;- -1 for i '"11.
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dh.
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s'i E;--1

The resulting penalty matrix associated to the translational degrees-
-of-freedoa of both ele~nts is then added to the structure stiffness
matrix.

The foregoing fOrDllation haa been implemented and in this Section
the analysis responses predicted using the axissimetric thin shell
element are compared to available numerical and analytical results. In
all analysis the 4-node element model is employed to accurately
represent the shell geometry on the displacement solutions; Gauss
integration scheme is used to evaluate the element matrices and forces,
at a number of stations specified in each example.

E56ut 06 PtIULUq P~ Size-Clue St:JuJIj wUq e.tamped End6.
c~. The cylinder shown in Fig. 3 was analysed under internal
pressure. The purpose of this analysis is to investigate the effects
of the el•••nt size on the response predicted, and thus arrive at some
guidelines for the effectiveness of the penalty procedure on the
imposition of the constraints condition. A seven 4-node element model
was employed in the geometry representation with a fine mesh near to the
cla.ped end of the cylinder to represent bending effects accurately.
N~rical solutions for various size of the penalty parameter was then
obtained for the shell maximum radial displacements, as shown in Table I.

The results indicate that for a wide range of a (105 to lOll) the

L_I.2m
R-O,3m
t - o.OlSIII
E-IOOGPa
·-0.3

p.t ••••

3 2
x--f

• w. 0 CIIld dwJtlE- 0, at node 22
• CantilIity CllIId. at IlIldII 4,7,10,13,18,19

• F"lllity IlIldY conditianl at node 1



AnDlJj6i.4 06 4 Nozzlt.. The geometry of a bending free nozzle
designed for the structural transition between a spherical shell and a
pipe run was established in Refs. [11,12). The objective of this
analysis is to verify th~ numerical solutions obtained with the present
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solutiona are in very good agreement with the aaalytiea1 results.wherea.
for •• 11 or very large value. the solution. are· in error-a positive
indefinite coefic.ient matrix is obtained for Cl • I.E17. In the
formulation. the penalty matrix i. added to the original stiffness
matrix to imp.o.e the constraint conditiona. Thu •• an appropriate value
of the penalty parameter is that the elements of both matrices have the
same order of magnitude (in the present study. k~ • 1.1 E8). Figure 4

11
presents the numerical soltutions for the fixed-end. cylinder radial
displacements with a four element model. and good agr••••nt is then
noted.
Table 1 - Numerical Solution. for the FE Max~ Radial Displacements

for Different Values of Cl (w 1 .0.626xI0-4 • 2x/L • 0.722)ana

a w xl04 2x/L Node
lIIIlX

103 0.6263 0.750 13
105 0.6260 0.722 12
107 0.6260 0.722 12
109 0.6260 0.722 12
10" 0.6260 0.722 12
1013 0.6361 0.694 11
1015 0.6540 0.333 3
1017 MatriX Not:Positive Definite
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formulation for a quite complex geometry shell. but under the membrane
state-of-stress only. An eight 4-node equally spaced element model waa
used for represent the nozzle shown in Fig. 5. under axial loading at
one end and simple supported at the base. Analytical results for the
shell normal displacements. in Fig. 5. and stress resultants. in Figure
6. are compared to numerical solutions obtained with the present
formulation and with the higher-order element formulation implemented
in the CAXEX program described in [13]. A very good agreement between
numerical and analytical results was then obtained. Moreover, the
present model reduced to about one-half the number of degree~f-freedom
required for the shell solution when compared to the numerical solution
including rotation degrees-af-freedom. explicity. The analysis study
required four integration station in the longitudinal direction and two
stations through the shell thickness.

~-iJ:, 06 4 fU.peJI.bo.t.o.uial. TOC4lt!It. The cooling tower constructed of
reinforced concrete was analyzed in [14] with isoparametric
axissimetric shell elements obtained from reduction of the 2/D ring
mod"!'.reported in Ref. [15]. Tne reduced model employed rotation
degc~~-of-fraedom to represent the displacements at points out of tbe
shell midsurface. Prestressed cables apply a ring load P in the radial
direction at tbe top edge of the tower which is simple supported at the
base. The axissimetric element model in this study was used to
represent the shell at same point location refered in [14]. In this
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aaaly.i.. membraneand b.ndinl eff.~t •• r. .ctiv.ted in the shell by
the .pplied lo.d and the eorrelpondina radial displ.cement solutions
is presented in Fig. 7. which repres.nt. the upp.r portion of the
shell, only. Th. lower region i ••••• nti.lly und.r pure membrane
st.te of stress and • good .gre8lMD.t in the r•• ults is observ.d. Th.
n~ric.l integr.tion .-ployed four and two int.gr.tion st.tion. in
the longitudinal and no~l direction., re.pectively.

sa.. experi.oces on the applieation of the as.imetric shell
element pres.nted in [9], th.t .ccounts for bending and membr.ne
effects. and for interactions with rilid flanaes and continuity between
element. are discuss.d. The inter.ction effects are included in a
novel, but very simple and efficient manner usinl a p.nalty function
formulation. Although the re.ults of some sample solution. indicates
the applicability of the element, the tot.l element formulation is
ba.ed on anumb.r of as.umption. and further performance studi.s are
still required to identify the li.it rang. of problems for which the
element can b. further employed.
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