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Thia paper presents Euler calculations employing several recent develop-
ments :
- a family of upwind finite-element schemes based on approximate Riemann
solvers,
- mesh adaption procedures.

The approximation is a second-order accura.te MUSCL-like scheme, tha.t
includes monotonicity-preserving limiters. Efficiency is achieved by an implicit
formulation. The solution procedure is combined with a mesh enrichment algo-
rithm by local element division, and a node movement a.lgorithmmore specifically
a.dapted to accurately ca.pture 1-D structures (shocks, layers•...).



The 2-D algorithms employed in this contribution were designed in prepara-
tion of the calculation of 3-D flows around complete aircraft configurations. One
way to reach this goal is to develop finite-element methods (FEM) capable of han-
dling unstructured meshes. This approach proved its high reliability in structural
mechanics, but it is still fairly new in the field of compressible CFD.

In our point of view, the construction of the mesh by the engineer should
avoid excessive efforts, and hence the solution method should be robust enough to
perform satisfactorily when fastIy constructed meshes are employed. The method
should apply to unstructured, irregular, even distorted (strongly non-orthogonal)
meshes, and should be self-adapted to the computation. Consequently, our effort
concentrates on "unstructured" FEM and mesh adaption.

Two research groups at INRIA and AMD-BA cooperated in the study of
such schemes:
-Originally, a "Richtmyer-Galerkin" scheme was constructed and applied to 2-D
and 3-D flow problems [1,21. This scheme is presented in details in an AMD-BA
publication [18].
-In the present contribution is presented a more recent method that combines an
upwind FEM [4,5,61with new mesh-adaption devices. The purpose of this
paper is also to present an evaluation of the performance of a newly developed
vectorized version [31of the code in calculations where unstructured meshes are
used.

Many known schemes are derived by writing at each node of the mesh a
consistent spatial approximation of the Euler equations,

that are a set of first-order PDE's. Such approximations are basically equivalent
to a central-differencing approximation + additional terms, that are, essentially,
diffusion terms. It is well known that this diffusion is necessary since the cen-
tral difference cannot be used alone; and one important concern that occupied
numerous CFD scientists and engineers has been to:
-introduce enough diffusion to realize a robust method and smooth results,
-avoid excessive amounts of diffusion that would result in severe accuracy degra-
dation, and
-design the automatic control of the level of diffusion.



The solution to this problem is even more difficult in the context of:
-complex solutions,
-unstructured meshes,
-local mesh refinements.
The proposed upwind schemes have the following properties:
-they are fully conservative,
-they require the adjustment of no parameter,
-they perform well (smooth results) when applied to unstructured, even locally
strongly refined meshes.

The construction of the basic scheme employs some of the ideas of B. van
Leer [7] and was derived by F. Fezoui [4].

We consider a finite-element discretization using triangular elements; the
nodes (supporting the values of all the unknowns) are the vertices of the trian-
gles.

The steady Euler equations are written in conservative form, that is,
F(w)z + G(w)1I = 0, in which the vector w contains the usual variables w =
(p,pu,ptJ,E). An essentially equivalent finite-volume scheme is then constructed
: cells are defined via the medians of the triangles; the discrete system is then
obtained by summation of flux integrals over each bi-segment G 1Ii;G2 with one
evaluation, at Ii; of the integrand (see sketch below). At each integration point
Ii; we define two values Wi; and W;i by interpolating the dependent variable W
in each neighboring cell i and j .



In the firawrder accurate scheme, a constant-by-cell interpolation is em·
ployed :

Then flux-splitting is performed at Iii. In the present calculations, we considered
the following f1ux-spliUinp:

+..= p+ (Wii + Wii) W.. + p- (Wii + Wji) w··I' 2 I' 2'1

where P is the derivative of an appropriate linear combination H of F and G i
Pis diagonalizable, P = TAT-I, A.= (~Io) , and p± = T(~:)T-l .

-the Q-splittmg [7] (IPI = T(I~IoI)T-l ) :

1 11 (W"+W")1+"=-(H(w")+H(woo))+- P I' 'I (w,,-woo)I' 2 I' 'I 2 2 1"1

1 11""1+ii = 2 (H(Wii) + H(wii)) + 2 IP(w)ldw
"'I'

in which by considering a rotation of the axes, the vector h(w) = 7h:F(W)+'7I/G(w)
is split as in the one-dimensional case as detailed in [19].

The Q-splitting and Osher's splitting are employed in the (explicit) spatial
approximation; Vijayasundaram's and the Steger-Warming splittings are used



in the construction of linearized implicit operators. The combination of the Q-
splitting explicitly with Vijayasundaram's splitting implicitly is less computer-
time consuming and suitable to transonic calculations, while Osher's splitting
explicitly with the Steger-Warming splitting implicitly result in a more robust
scheme that is employed to compute the supersonic cases.

The van Leer flux-vector splitting was employed to compute the blunt-body
problem. This splitting is comparable to Osher's splitting since it continuously
differentiable and very robust 120).

Following [7), an elegant way to reach second-order accuracy is to derive
the values wii and Wii from linear interpolations, The dependent variable W
is linearly interpolated on each cell Ci around a vertex i i this interpolation is
computed from the node value Wi and from an approximate gradient (tD••,tDl/)
obtained from the Lagrange interpolant WL as follows :

GreG(Ci) w••(i) = f aaWL dzd'1l10; z

Actually, in the present work, this interpolation has not been applied to the usual
conservative variables but instead to the so-called physical/primitive variables
(density, velocity components, pressure), following van Leer [7). However, the
(coDllervative)corrector step has been expressed in terms of the conservative
variables.

Note that this construction results in a FROMM-like half-upwind scheme.
For the blunt-body calculation, we also considered a half-upwind scheme, but
the construction differred slightly. We averaged the central-differencing scheme
obtained by letting,

1
wii = Wi + i(Wi - Wi)

1
Wii = Wj - i(Wj - Wi)



with the fully upwind scheme defined by,
1-- -:-t

Wij = Wi + "2 VW(Ti)' ']

1-- -wi' = wi - - Vw(Ti)' ij
2

in which the gradients are evaluated by the P1-Lagrange interpolation in the
~pwind triangles" T, and Tj. (Of all triangles whose vertices include node i, To
is the one whose intersection with the line ij is a segment not contained by the
segment ij itself. The triangle Tj is defined in a similar way with respect to node
j. See sketch below.)

A cheap explicit scheme is obtained [4] ,following an idea by Hancock [7],by
combining in a two-step formulation a predictor step that applies a linearized cen-
tral differencing scheme with a corrector step based on the spatial discretization
defined previously.



with a Galerkin approximation [12]and subsequently extended to upwind schemes
[7,8).

Basically, the scheme is derived from two spatial approximations of the sta-
tionary Euler system:
-a second-order accurate approximation: w -+ E2(W) constructed as described
in Section 2.2,
-a first-order accurate linearization: (w,cSw) -+ EHw).cSw constructed via the
linearization involved in the flux splitting : for example, when the STEGER-
WARMING splitting is chosen, the operator E~ is obtained by summation of
fluxes computed from:

In this case, note that constant-by-cell values of w are used in the flux splitting
(first-order accuracy).

Then the global scheme for one time-step can be written :
A. Explicit phase:

To solve (2a), a 4 x 4 block Jacobi nodewise iteration is applied i 10-20
sweeps revealed to be a good strategy from both stability and efficiency stand-
points. Furthermore the matrix E~(w ••) is not recomputed at each time step, but
is frozen over several time-steps, usually 10. A last (significant) improvement is
obtained by using local time-stepping. Typically, the eFL number in the final
phase of the convergence is of the order of a few hundreds. Finally, different
flux splittings are used in the two phases i thus the implicit phase only acts as
a preconditioner of the problem i it does not require the solution of the exactly
linearized system.

Oscillation-free solutions are obtained by introducing a "slope-limiter" in the
explicit phase.



For Case 1.2 and Case 1.3 van Leer-type slope limiters were used.
For Case 1.4 a first-order algorithm was applied.
For Case 1.5, a newly derived upwind TVD scheme [131 was employed.
For Case 2.3, Case 1.2, and for the blunt-body calculations, van Leer-type slope
limiters were used.

Since the solution method is capable of handling unstructured meshes, a
coarse mesh used in a preliminary calculation can be enriched a posteriori and
the new mesh directly utilized to perform a new (and more accurate) calculation
with the same solver, with no modifications to the computer program.

Mesh enrichment is performed by dividing selected triangles in 4; are di-
vided those triangles where the measure of an appropriate criterion (evaluated
using the preliminary solution) exceeds a given tolerance. The tolerance can be
adjusted to control the total number of nodes of the new mesh. The criterion is

->--+ ->
an approximation of the quantity U ."VS where U is the material velocity and S
the entropy. With this definition, the criterion will be small in regions where the
solution is regular provided the scheme is accurate enough.

For Cases 1.2-1.3, the initial mesh is radial and contains 64x17 (=1088)
nodes. This mesh which extends to 20 diameters away from the center is rather
coarse.

For Cases 1.4-1.5, a topologically similar mesh extending to only 2.5 diame-
ters was used.

The enriched mesh that resulted contained:
Case 1.2: 1992 nodes
Case 1.3: 1992 nodes
Case 1.4: 2448 nodes
Case 1.5: 2431 nodes
Case 2.3: 2514 nodes

We stress that in general, the complete calculation (solution on the coarse
mesh + solution on the fine mesh when the preliminary solution is initially inter-
polated to the fine mesh) requires less computing-time than a single calculation
on the fine mesh when a trivial initialization is made (uniform flow).



In a final phase, adaptive mesh movement [101can be applied and allowed to
interact with the Euler solver (Cue. 1.4-1.5). This results in a better capture of
the shock. To realize this, 2000 explicit additional time iteratiou were made and
10 mesh movements were computed. Overall, the computinC time wu doubled.

MClIItof the calculations presented here were performed on a cn HB68 with
a non-optimized -research- computer program, and sometimes many successive
one-hour long runa were necessary. Whence, to obtain a pertinent information
on the efficiency of our numerical methods, one case (Case 1.1) was recompu~d
using a still partially vectorized version of the implicit scheme newly derived
by F. Angrand and J. Erhel [31. The vectorization of codes is a more complex
task in the FEM context than it is in the FDM or FVM context, and to da~, the
vectorization of our programs is not yet comple~. It is realized by first separating
the computations in two parts:
(1) gather and lCat~r operations,
(2) the actual calculation (arithmetic operational.
Part (1) is easily vectorized. Part (2) is partially vectorized for runs on the new
generation of supercompu~ (CRAY XMP, CRAY 2) using coloring methods.
Nevertheless, the computations presented here were made with a CRAY I-S, and
average rates of about 25-30 MJiopa were attained. About 10 see of CPU time
were necessary in a calculation using a mesh of 1088 nodes, the residual being
reduced by a factor of 104•

This work resulted in the development of a robust finite-element upwind
scheme. The method proved to combine well with mesh adaption procedures and
in particular to be very powerful for the accurate resolution of strong shocks.
Efficiency was achieved by the vectorization of the (linearized) implicit scheme.

Many further improvements were made since in the area of efficiency of
implicit schemes lIS) and multigrid schemes [16). The upwind formulation has
also served to initiw a research in the field of hypenonic reactive flow simulation
[171.
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2-D EXTERNAL ROW AROUND A
CIRCULAR CYLINDER

-INRIA -

Test Case 1.2 - MACH = O.SO

2-Step Explicit 2nd-ordcr Upwind Schemc
(beta = 1/2)

Slope limitcrs - Local timestep
Enriched mesh (1992 nodcs).



2·D EXTERNAL R.OW AROUND A
CIRCULAR CYLINDER

- INRIA-

Test Case 1.2 - MACH = 0.50

2-SlCp Explicit 2nd-Order Upwind Scheme
(Beta = 1/2)

Slope Limiters· Local Timestep
Enriched Mesh (1992 nodes)
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2-D EXTERNAL FLOW AROUND A
CIRCULAR CYLINDER

-INRIA -

Test Case 1.3 - MACH = 0.60

2-Step Explicit 2nd-Qrder Upwind Scheme
(Beta = 112)

Slope Limiters - Constant Timestep
Enriched Mesh (1992 nodes)



2-D EXTERNAL FLOW AROUND A
CIRCULAR CYLINDER

-INRIA-

Test Case 1.3 • MACH = 0.60

2-Step Explicit 2nd..Qrder Upwind Scheme
(Beta = 1/2)

Slope Umiters • Constant Timestep
Emiched Mesh (1992 nodes)
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2-D EXTERNAL FLOW AROUND A
CIRCULAR CYLINDER

- INRIA-

Test Case 1.4 - MACH = 3.0

Fust-Order Upwind Scheme
Osher's Flux Splining

Euler Explicit Method OocaI timeslep)
Mesh Enrichment and MovtmCDt (2448 pIS)



2-D EXTERNAL ROW AROUND A
CIRCl.n.AR CYLINDER

·INRIA-

Tesl Case 1.4 • MACH = 3.0

Fllst-Ordcr Upwind Scheme
Osher's Aux Splilting

Euler Explicil Melhod (local timestep)
Mesh Enrichmenl and Movement (2448 pIS)



2-D EXTERNAL FLOW AROUND A
CIRCULAR CYUNDER

·INRIA·
Test Case 1.5 • MACH = &.0

2-5tep Explicit 2Dd-Qrdcr Scheme
(Beta = 1/.2)

Slope Limiters • Local TUDCSICp

Radial Mesh (108'8 aodes)



2-D EXTERNAL ROW AROUND A
CIRCULAR CYLINDER

-INRIA -

Test Case I.S - MACH = 8.0

2-SIep Explicit 2nd-Order Scheme
(Beta = 112)

Slope Limiters - Local Timestep
Radial Mesh (l088 nodes)
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Case 2.3 NACA012 LIFTING AIRFOIL
(M..=O.85- 0=1°)



Case 2.3 NACA012 LIFTING AIRFOIL
(M,. = 0.85 - Q= 1°)

Entropy lines

r



Euler explicit time-integration scheme.
Second-order half-u~wind s~atial approximatlon.
Van Leer's flux-vector s~itting.
Slope limiters




