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ABSTRACT

When explicit time marching algorithms are used to reach the steady state of
problems governed by the Euler equs, the rate of convergence is strongly impaired
both in the zones with low Mach number and in the zones with transonic flow,
let say Mach < a and |Mach — 1] < a, with a < .2 . The rate of convergence
becomes slower as a diminishes.

We show in this paper, with analytical and numerical results, how the use of a
preconditioning mass matrix accelerates the convergence in the aforementioned
ranges of Mach numbers.

The Preconditioning Mass Matrix (PMM) we advocate in this paper can be applied
to any FEM/FVM that uses an explicit time-marching scheme to find the steady
state. The method’s rate of convergence to the steady state is studied, and results
for the one- and two-dimensional cases are presented.

In section 1, using the one-dimensional Euler eqns, we first explain why there
exists a slow rate of convergence when the plain lumping of mass is used. Then
the convergence rate to steady solutions is analyzed from its two constituents, that
is, convergence by absorption at the boundaries and by damping in the domain.
Next we give the natural solution to this problem, and with several examples we
show the effectiveness of the proposed mass matrix when compared with the plain
scheme.

In section 2 we give the muitidimensional version of the preconditioning mass
matrix. We make a stability analysis and compare the group velocities and damp-
ing with and without the new mass matrix. To finish, we show the velocity of
convergence for a common test problem.

t Graduate Research Assistant
} Professor and Scientific Researcher




-32-

SECTION 1

1. ONE DIMENSIONAL CASE

1.1 Rate of convergence, statement of the problem :

The 1-D Euler eqns can be written in conservation form as
Uy+F,=U,+AU, =0, (1)

where U is the vector of conservation variables, F the flux vector, and A the
Jacobian of the flux vector.

For the sake of simplicity, we use in this explanation the Steger-Warming splitting
spatially differenced according to the first-order one-sided upwind scheme; never-
theless, the results that are to be drawn bold for any flux splitting, let say Van
Leer’s for example, and for any consistent spatial differencing, let say MUSCL-
type or first- and second-order one-sided differences, or any other {1-2]. Using
the forward Euler discretization in time and one-sided first-order differentiation in
space, for a uniform grid spacing h, we get

At - -
Pt = Uy - T ~ Pl 55 - F) @

in which

here, the Ajs are the matrices that contain the eigenvalues of the Jacobians A js.
To make a linearized analysis of Eq (2), we consider the Jacobian matrix a constant,
and using the similarity transfarmation V; = S7'Uj;;, we get the system decoupled
in three advection eqns, that is

Lo gn Atd,

v 5 Y

3}

. . . fvm—vn A, >0

6;0‘1‘, with S,D’j = {'UE;_'_‘ _“%:J i A' <0

here, v,; stand for the y-th component of V;; .

The maximum At allowable is set by the condition limit of stability
CFLN = At|A,l/h €1, and considering that A = diag(u,u + ¢,u — ¢), we get
Atper = h/(Ju] + c). If At is used, the wave corresponding to the eigenvalue
(lu| 4+ ) moves at a velocty of one grid spacing per time step, while the slowest
wave ( min.(Jul, | ju| — ¢])) moves at

min.{Jul/(lu] + ¢}, (| lu] = e)/(l2' + ¢)} = min {M/(M +1),(IM - 1))/(M + 1)}

elements per time step. It follows that when the Mach number M = |u/¢]
is relatively low or it approaches the unity, there will be an extremely slow
wave that can be annihilated only by damping. But, as is demonstrated in the
following paragraph, if N is the characteristic number of elements in the mesh,
the convergence by damping needs O(N) times work units as compared with the
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convergence by absorption at the boundaries, therefore we have a very slow rate
of convergence.

1.2 One-dimensional linear scalar case, rates of convergence :
Consider the advection equation

yetau,=0 on —00<zx<00 (3)

where @ > 0 is the constant transport velocity and u a scalar quantity. We
may discretize the Cauchy problem defined in Eq. (3) using one-sided first-order
differentiation in space and the forward Euler scheme in time, that is,

gHou=-2lar o) j=-N41.,0,N-LN, @)

and
n+l

uly =up,
here, z = jh, and t = nAt. The adimensional number 2£* is the Courant number,
noted as C hereafter. We imposed periodic boundary conditions in the discrete
problem since in the sequel we will make a Fourier analysis.
The exact solution of Eq. (4) may be written in terms of Fourier components, that
is,

uf = D a(k)efthAvmad, ko B oi=on, w0,y N =1, N,
4

where i = /=1, k is the wave pumber, w the frequency, and L = Nh.

In the same way, the error of any given solution can be resolved by Fourier anal-
ysis in the harmonic components u(k)e*{¥*~«} and anyone of these components
introduced in eq. (2) leads to

(k) = [cie-‘*" -1) + u}(k) = Gu}(k), (5)

here, G is the amplification factor, which must verify the condition |G| < 1 to
have stability. The last condition implies C < 1.
We now turn our attention to the velocity of propagation of the harmonic compo-

nents, that is,

ot = ReW(®)

k
From Eq. (5) we have
eTivAl = Ce™H — 1) +1 = Ae7iY, (6)
here,
A = /(C(cos(kh) — 1) + 1)2 + (Csin{kh))?,
and - Csin(kh)
v=1 ((C(eos(kh) D+ 1)) ‘
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Therefore,

=T r - @mc® Q)

taking the limit when kh — 0 and C ~ 0, we get from Eq. (7) a* = q, the
expected result to have consistency assured.
To evaluate the velocity of convergence we must use the Group Velocity (GV),
that is, the velocity at which a wave packet moves (a wave packet is composed of a
number of short wavelength oscillations modulated by a slowly varying envelope).
The GV is given by the following formula (see {3,4])

=22 ().

k ok

where the frequency & and the wave number k are characteristic values of the
modulating envelope, while w and k are the corresponding values for the short
wavelength oscillations.
From Eq. (6) we obtain
: a" _C__,l ~ikh luAl
% - At

and

Re (%) = %{oos(kh){C(cos(kh) - 1) + 1} + Csin®(kh)}. (8)

In Fig. (1) we can see plots of GV vs C with kh constant.

To evaluate the rate of convergence by absorption at the boundaries, we consider
the number of iterations needed for the reduction of one order in the amplitude
of the relatively smooth harmonic components, because the high frequency modes
are damped out in a few jteration using C = 1/2 as we will see later. The formula
that give us the number of iterations is the following

L L N
Nnh bow. = T AT AL — T A= (9)

where L represents the domain characteristic length that a wave component must
travel to reach the boundary. In the above equation we supposed that the wave is
not totally absorbed at the boundary, but a 10 per cent of its amplitude is reflected
back into the domain.’

Besides of being absorbed at the boundary, the harmonic components may be

damped out as they travel through the mesh. From equations (4) and (6), we
have

ugH-l
Ll-’ﬁ! = |G| = A = V/(C(cos(kh) ~ 1) +1)? + (Csin(kh))?, (10)
2

therefore, those harmonic components for which |G| < 1, will be damped out as
they travel through the mesh. The value of A? = f(kh,C) is shown in Fig. (2).

From Eq. (5) we see that G varies linearly with C from (1,10) for C = 0 to e™%h
for C = 1, therefore, for any k, the distance to the origin |G| will be minimum
for C = 1/2. Using C = 1/2, the maxz.|G]| is the value that limits the rate of
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convergence by damping, and this value is reached for k = ¥ (the case k =0 is
not considered).

The rate of convergence by damping is measured as the number of iterations needed
to reduce in one order the amplitude of the more slowly decaying by damping
harmonic component, that is,

'Gl"""' = l%(c-"'f' + I)IN“"' =10"!,

it follows that
8N%log10

= (1)

Nh-p =

1.3 Rate of convergence, conclusions :

From the above study we can see that the convergence by damping is extremely
slow for smooth errors. For k < x/+/N the convergence by demping is slower than
the convergence by absorption, and the lower the k the slower is the convergence.
This means that after all the modes of high frequency have been damped out,
the convergence by damping is insignificant and we can reach the exact solution
(to reduce the residual several orders) only by advection and absorption at the
boundaries. (Note: we can also work out the problem using a multi-grid technique
for example.)

From Eq. (9) we see that the number of iterations needed to transport the error
component to the boundaries is inversely proportional to the Courant number,
therefore, we must use the maximum allowable time step. On the other hand, we
know that when a system of eqns, like the Euler eqns, has different eigenvalues,
only the eigenmode that has the greatest eigenvalue is integrated with CFLN =1,
all the others are integrated with CFLN < 1 as was explained (see 1.1).

2. PRECONDITIONING MASS MATRIX

As solution to the aforementioned problem, we propose to use a preconditioning
mass matrix which introduced in Eq.(2) give us the following scheme:

1 n - At ) - -
(l“l ry c) IA)'I(‘(JJ'*.l - UJ) = —T(F; - F;—l + F)'-(»l - F)’ )‘ (12)

As before (see 1.1), if we make a Encarized analysis of Eq. (12), we obtain

jo o gn, _ DU +0)
h

» ")

sign(A,) 8.y, (13)

and now, using At ma; set by the condition CFLN < 1, all waves move at the same,
maximum allowable velocity; that is, one grid space per time step for CFLN = 1.
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3. NUMERICAL RESULTS

To compare numerically the rate of convergence of the proposed scheme with that
of the original, we ran scveral test cases, all were run using absorbing boundary
conditions and a CFLN = 90. ,

The first is the case of a Mach = 0.9 uniform flow perturbed with a pressure
peak of high value. The pressure profiles for the original and proposed scheme are
shown every two iterations in Figs. (3) and (4), respectively.

For the original scheme, the wave of eigenvaluc u—c = —0.1¢is 11 times slower than
that of the eigenvalue u + ¢ = 1.1¢, on the other hand, with the proposed scheme
both waves have the same velocity. The density profiles have the same pattern
of wave velocities, that is, for the original scheme there are two slow components,
u—c = —0.1c and u = 0.1c, whereas with the proposed scheme all wave velocities
are the same.

The next test is to check the velocity of formation of a shock wave. The upstream
and downstream boundary conditions correspond with Mach numbers of 1.10 and
.91, respectively. The initial values of the state variables on the central part of
the domain are a linear interpolation between the extreme values. The pressure
profiles for the original and proposed scheme are shown every two iterations in
Figs. (5) and (6). The resulting profiles talk by themselves.

Another interesting case is the passing of a perturbation through a shock wave.
This case was selected mainly because the linearized analysis can not predict the
behavior of the scheme in a flow discontinuity. The perturbation is a pressure peak
and the shock is from Mach=1.5 to 0.70.

The pressure profiles for the original and proposed scheme are shown every two
iterations in Figs. (7) and (8), respectively. We can see that the scheme works
equally well in this case, and again the rate of convergence is extremely high as
compared with the original scheme.

The last case is the velocity of movement of a shock wave whose extreme Mach
numbers (boundary conditions) are not compatible. The pressure profiles for the
original and proposed scheme are shown every two iterations in Figs. (9) and (10).
The original scheme gives a shock velocity extremely slow when compared with
the given by the new scheme.

With a few examples we have shown numerically the fast rate of convergence given
by the proposed modification to the explicit time-stepping scheme. Using multigrid
algorithms, we add to the intrinsic high rate of convergence of the algorithm,
the aforementioned property of equal velocity of propagation for all the wave
components.
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SECTION 2

4. TWO DIMENSIONAL CASE

4.1 Preconditioninig Mass Matrices (PMM) - Diagonalizable systems:

Lets consider a systcm of PDEs of hyperbolic type written in conservation form
U,+ AU, =0, ¥(z,t)€Qx(0,00), (14)

if the system is diagonalizable there exists a similarity transformation that simul-
taneously diagonalizes all the Jacobians, that is, if T = ;%, then U, = TV,
and introducing this transformation in Eq. 14 we get

v,t + Btlv," =0, (15)

where
B, = ™! A.T,

and now the B, s are diagonal matrices.

Making a linearized analysis of Eq. 15, we can see that the new system is a system
of decoupled, scalar, advection equations.

Now if the diagonal matrix C = (B,,B,,)’/? has elements (its eigenvalues) of
different magnitude, physically this means that the transport velocity of the de-
coupled scalar eqns are different, the max. time step for the explicit integra-
tion schemes is imposed by the maximum diagonal element, while the number
of iterations needed to reach convergence is imposed by the minimum diagonal
element. Therefore, the velocity of convergence to the steady solutions is in-
versely proportional to the condition number of C, that is, the greater the quotient
(mazC;;/minC;;) the slower the rate of convergence. The natural solution in this
case is to use C as a preconditioning mass matrix, then Eq. 15 is modified as
follows

CV,+B,V,, =0, (16)

and we can see that only the temporal part is modified while the condition number
of the new system is one. The PMM to be used with the original scheme is

M= T(Bana)lnT-l = (AnAta)ln

4.2 (PMM) - Nondiagonalizable systems of PDEs:

Design conditions for the PMM:

If the system is of Hyperbolic type, then the change in the temporal part must
not change the hyperbolic condition of the system of PDEs.

The number of Dirichlet boundary conditions to be specified on the boundaries
must not be changed by the use of the PMM.

The first condition is related with stability. A system of PDEs of order one must
be hyperbolic (real cigenvalues), otherwise the system is unconditionally unstable.
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For the case of the Euler eqns, it is well known that there exists a similarity
transformation that symmetrizes simultancously all the Jacobians (using the so
called entropy variables [5-7]). Writing the Euler system in this base, we obtain

MU,+4,0, =0, a7
and introducing in Eq. 17 a typical solution ef(2ii=w}  we wet
il—wM + kA, Je 5% = 0.

Considericg that any linear combination of l.t,,‘s is symmetric, ther the eigen-
values w of the eigenvalue problem

ki ., —wM| =0, (18)
are real on the condition that M be a real, symmetric, definite matrix.

The second condition to be fulfilled by the PMM has to be with the number of
ingoing characteristics at the boundary. This number is the number of negative
eigenvalues of the matrix n;A,,, where the n;s are the components of the unit
outward normal to the boundary. We will show that this condition is fulfilled by
positive definite, symmetric Ms.

Using the change of variables defined by M~'/? = 2% then Eq. 17 can be written
as

v.l + E,‘V,,, =0, (19)

where . . ..
B, =M"A M7,

and from Eq. 19 it can be demonstrated ! using the eigenvalue separation prop-
erty, and the theory of determinants, that for the case of simultaneously sym-
metrizable systems, the number of negative eigenvalues of M~2/?(n; A, YM~1/2 jg
the same as that one of n;A,; with the only condition that M be positive definite
with real eigenvalues. .

Condition (1) imposes the symmetry and definiteness of M in the base where the
A ;s aresymmetric. Condition (2) imposes only the positive definiteness because
being M symmetric it is diagonalizable and has real eigenvalues.

5. GROUP VELOCITIES
5.1 Continuous problem:

The analysis of the group velocities for the continuous problem is very important
because for small wave numbers the consistent discretizations approach the dif-
ferential operators, and on the other hand, only the convergence by absorption at
the boundaries works because this is in the nature of the hyperbolic systems.

All the consistent schemes of discretization in space reduce to the continuous
differential operators when the size of the discretization tends to zero. With regard

to the discretization in time, we can use any nonconsistent scheme for driving the
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explicit algorithm. The only conditions that these schemes have to verify are those
related with stability and convergence.
We rewrite the Euler eqns as follows

MU,+A,0,+4,0,=0, (20)

here, M represents the general run of preconditioning mass matrices that generally
give the nonconsistent time-marching schemes we were referring to.

To study the group velocities for the continuous case, we must know the numerical
frequency as a function of the vector wave number k. We can obtain w = w(k) by
introducing in Eq. 20 a typical Fourier component Uei(%ii ==t that is

[—iwMe Bz 4 (ik A, +ikA,)e' ®i%—9)T =0,
therefore, the frequencies can be obtained from the following eigenvalue problem

k1A, + E2A,) - wM] =0, (21)

and the group velocities, that is, the velocities- of wave packets representing part
of the solution error, are [3-4] :

ow
. _ L
GV = 5o,

here, we have the group velocity of the u-th eigenmode in the z;-th cartesian
direction. It is evident from Eq. 21 that a scalar multiple in k modiSes w as
follows

(22)

wy(Ak) = Aw,(k), (23)

therefore the ws are homogeneous functions of degree one in k. Taking derivatives
of Eq. 23 with respect to k;, we obtain

T:] o
.aTj.(w’(Ak)) =2 '5,':"_'(‘-%-(“))-
9 .
A Ei';(wp(k)) = AGV,(k),

where k = Ak. Therefore GV, (k) = GV,(k), and this means that the GVs are
homogeneous functions of degree zero in k.

The locus of points that describe in the (GV; — GV,) plane the group velodty
for the p-th branch of eigenmodes is obtained varying the k—versor on the unit
circle. For each u we obtain a closed curve that is characteristic of the system
we are dealing with. For instance, the curves for the pressure eigenmodes of the
unmodified Euler eqns (M = I) are two circles with center at V and radius ¢. The
remaining two branches of eigenmodes, which represent the vorticity and entropy
transport, reduce to a point, that is the velocity V in the plane of group velocities.
The above description will be more clear after paragraph 5.1.1.

If we consider the CFL condition, we presume, and the real numerical stability
analysis for the discretized cqus confirms it, that the maximum allowable time
step has to be less than h/|GV ... The fastest eigenmode (i, k)mes travels at
a speed of one clement per time step. Other eigenmodes travel at a speed of
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(IGVH(k)|/|GV #me= (K mes)|) clements per time step. The slowest eigenmode trav-
els at a speed of (|GV =" (Kmin )|/|GV*™** (Kmez )|} tlements per time step. We
define

& = |GV (kg )W/ IGV " (K min )]s (24)

as the GV-condition number for the continuous problem. From this definition, we
see that the lower &, the greater the rate of convergence.

5.1.1 Group velocities with the identity matrix as the PMM:

We can rewrite the eigenvalue problem Eq. 21 by using the similarity transforma-
tion A, = ®A,3"!, where A, is the diagonal matrix containing the eigenvalues
of A,, and & is the matnx containing the right eigenvectors of A,.

(k1 Ay + £, 872A,8) —wI] =0. (25)
The solution to this eigenvalue problem is

Wiz = Vk;, and Wae= Vk; + c[kl.

Now we can obtain the group velocities by taking the derivatives of the ws with
respect to the k;s, that is
GVUA = (v,0), (26)

and the pressure eigenmodes have group velocities

GVeA = (Vv ¢ ke (27)

ky
+c=L).
)
We can see that in the (GV; —GV,) plane, the pressure eigenmodes describe circles
of radius ¢ with center in (V,0), and the eigenmodes of vorticity and entropy
transport are represented by s single point of coordinates (V,0).
For k = (1, 0), the group velocities are

GveA = (v,0), GVOA=(Vic,0),
and for k = (0, 1), the group velocities ace

GV =(v,0), GVEY=(V, %)

It can be demonstrated, and for this case is evident from the curves, that the versor
k is perpendicular to the locus of points that represent the different eigenmodes
in the (GV; — GV, plane.

For small wave numbers, all the consistent differential operators represent the
continuous case. Having real eigenvalues, the hyperbolic systems have no damping,
therefore for small wave numbers there is no damping and the only mechanism of
convergence is the absorption at the boundaries.

From Eqns 26 and 27 we can see that for the case V —+ ¢, |GV*|,,in appears for
k = (1,0) and p = 4, that is |GV *|mix = |V — c|. On the other hand, |GV*|mas




appears for k = (1,0) and u = 3, that is [GV*|ua: = [V + c|. Therefore the
GV-condition number for this case is

e V+ed M+
TV=¢e IM-1}

(28)

The number of iterations that the slowest eigenmode needs to pass one element
is Ngamp = £/CFLN, where CFLN makes reference to the value obtained in the
stability analysis for wave numbers (%,,k,) € {(—x,x),(—x, x)]. For example, for
the case M=0.95, CFLN=0.76, and then Nuym, = (140.95)/(1—0.95)/0.76 == 51.
This value can be verified in Fig. (13) curve 1.

5.1.2 Group velocities with (JA.]+|A,])/(c + V) as the PMM:
The PMM is defined as

1
(c+V

In this case, the eigenvalue problem to be solved is

) (Ral + 1R, pmc ) 20A41+ 874, 100870 (29)

IiAs + 127 A,8) ~ A —5) (Al +27IAL0) =0 (30)

In Fig. (11) we cap see in the (GV; — GV,) plane plots representing the group
velocities for the different eigenmodes, for Mach numbers ranging from 0.50 till
0.95 in Fig. (11)-a, and for Mach numbers ranging from 1.05 till 2.00 in Fig.
(11)-b.

Looking at the locus of group velocities for M=0.86, we can see that the charac-
teristic circles of the two pressure wave branches have been distorted in teh loop
ABCB?’. The vorticity transport branch is the triangular shaped figure DED’, and
the entropy transport branch is the point C.

For V — ¢, k; = 1, and &, = 0, the group velocities are

GVOD = (v ,0), GV =(V/2,0), GV® = (::-(M2 —1)¢,0) (31)
and for V — ¢, k; =0, and &, = 1, the group velocities are

GViN = (v ,0), GV =(V/4 and GV‘"=(V/4-"£2') ®2)

c

VB v
From Eqns 31 and 32 we can see that for the case V — ¢, |GV*|pin appears
for k = (1,0) and ¢ = 4, that is |GV*|min = 3[M? — 1|c. On the other hand,
|GV #{mes appears for g = (1,2) and for all k, its value is |GV *| e = V. Therefore
the GV-condition number for this case is

-
T 3M2 -]

The number of iterations that the slowest eigenmode necds to pass one element is
Niemp = . For example, for the case M=0.95, CFLN=1.00, and then Ny o, = 10.
This value can be verified in Fig. (13) curve 3.

(3

(33)
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5.1.3 Group velocities with JA,|/(c + V) as the PMM:

The PMM is defined as
. 1 P

where A, is the diagonal matrix containing the eigenvalues of A., and the columns
of @ are the right eigenvectors of A.. In this case, the eigenvalue problem to be
solved is

ke + () #7 4,8 —w( ) A 1=0 (39)

In Fig. (12) we can see in the (GV; — GV}) plane plots representing the group
velocities for the different eigenmodes and for Mach numbers ranging from 0.50
till 0.95 in Fig. (12)-a, and for Mach numbers ranging from 1.05 till 2.00 in Fig.
(12)-b.

The solution to the eigenvalue problem when M — 1 is discontinuous. First we
consider the case M < 1, the group velocities for this case are

GV = (V,0), GVEI =3 Z

M?
\/—E“_“TT—_ !i,(knk,(m)) (36)

and for the case M > 1 with M — 1, the group velocities are

Gy = v,0), eV o (c ,iﬁ) 37

From Eqns 36 and 37 we can see that for the case V — ¢, |GV#|,nin appears for
k = (1,0), with value |GV*#],,;n = [V]. On the other hand, |GV”|m.s appears
for k = (0, 1), and its value is |GV *| ey = 75‘_'7,' Therefore the GV-condition
number for this case is 1

x= (38)

Comparing this GV-condition numberwith that of M = I, we see that there exist
a great improvement if we limit the analysis to the continuous case.

6. DISCRETIZATION OF THE EULER EQUATIONS

To assess the velocity of convergence using the preconditioning mass matrix, we
have to choose a given scheme to discretize the problem both in space and time.
An explicit, first-order accurate time-discretization is the forward Euler scheme,
that is

U-+l -y
—ar +F; ;(U")=0.
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With regard to the space discretization, we choose 2 FVM that uses the Steger-
Warming flux-splitting. Let the computational domain I be decomposed in dis-
Jjunctive quadrangular elements (subdomains). A restructuring of the quadrangu-
lation is done by constructing a new mesh in which each clement contains exactly
one node of the quadrangulation. This is accomplished by joining the centroids of
the quadrangles having a node as a common corner aad the midpoints of the sides
passing through that node. In Fig. (14) the following notations are used: m is the
pumber of quadrangles that have to N; as a common node, G;; is the centroid of
the j-th quadrangle, I,; the midpoint of the side N;N;;, and Ar(N;) the shaded
area that corresponds to the node N,.

The approximation test function space V, consists of piecewise constant functions,’
constant in each cell. The approximation problem is to find U:'“ € V, such that

Ut -y .
/n( = .)m+LF,-J(U,,)m_o,

Using Green's formula, we get

yrH gy .
S AN + [ FiUp war =o, (39)
T
where
U:. = (U:)nll(u)'

Equation 39 reduces to

nt+1 n m
HﬁAr(N;) + ;H'; =0,
where .
HY = (A*)PUT +(A7)}UT,
here
Ay = (ﬂ:u A+ Nw; A!)*'
and

nij = n}leij—lIijl + n?jllijGijl'

7. FOURIER STABILITY ANALYSIS

Both the stability analysis and the velocity of convergence are evaluated by consid-
ering a constant flow perturbed with an error which written in Fourier components
has the form

U= 3" O, a,yef o, (40)
k1 ks
where, k,, k; are the wave numbers in the z,, x, directions, and ﬁ is the velocity
of propagation of the harmonic component (k,, k;).
The fundamental tool for the stability analysis will be the Von Newmann method,
which ignores boundary conditions, yet still, usually yields the best results [8-
9,10,12].
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The domain with periodic b.c. in the square [(-L,L),(—L,L)], and the wave
number vector are all the combinations

(kr, kz) = (%.%1), na=-N+1,.,~1,0,1,..,N,

where N = L/h, and k is the element size.

The (1,J)-th node of the domain @ = {(z,9)/(z,v) € {(-L,L),(—L,L)]}, has
coordinates (I h,J k). We can rewrite the FV formulation already described as
follows;

M At .
(‘;‘) (Uih-Vn)=—4 [A$ (U - Utiesn)
+AN (UL — Ults-1) + A7 (Ultern = Utny)
+A (UG 241 — U?I.J))] ’

(41)
where AL £]A
Af{ = ’i'z—_ﬁlv with |A,,]= QlAz;IQ-l'

Equation 41 can be put in the following form

n Ate_,_,1 n
Uit = Ulip — M5 [A(Ulra, ~ U ,)

+A,(UTr 541y = U s-n) — 180U, — 2U3 5y + Uiy, )
—1A, (UG, 41y — 2UC 0 + UZ'I,J-:))] s
(42)

and substituting a typical Fourier component of wave number (k;, k;) in the above
Eq., we get

Ul = {I _ %M—I% [An(efMih — e~ B1d) 4 A (e b — =i hab)
_lAsl(el'hh -2+ e—ik;h) - IA'KCH" — 2+e-|’ k;h)]} , (43)

Equation 43 is rewritten for convenience as

0?”) = eilhiIhthaIh-wint1)ar) . —iwht ﬁzl.l) =(I-zB) 0?1,1» (44)
here,
B = B(p, uy,us, Mach,c,/c,, k1, k2) .

The spectral decomposition of B, that is, @AS®~?, is such that in general both
the eigenvectors and eigenvalues are complex. Using this decomposition of B, we
rewrite Eq. 44 as
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¢n+l = e—iuAt ¢" = (I - EA)‘” = Gén, (45)
and to have conditional stability, the amplification matrix G must have all its
eigenvalues within the unit complex circle, that is

(l -'E‘I{C(At‘))z + (EIm(A.))’ <1, i= 1,....,4,

therefore, Re()
- 2Re(Xi
R e S T W _
By making sweepings through a discrete number of angles of the flow with the mesh
( a € [0,45) degrees for the domain [(—L,L),(—L,L)] ), for all the combinations
of wave numbers

(khki) =(

(46)

T mamy
L'L”

where N = L/h, and for a discrete number of flow conditions ( Mach numbers
within the range we are interested in ), we obtain for each combination by using
Eq. 46 the max. ¢ admissible, then the min .(max.(¢)) will give us the Courant
limit C(M) ss a function of the Mach number.

Mz = -N + 1,-.-,—1,0, 1,-.-,N,

7.1 Convergence by absorption at the boundaries, Group velocities:

The group velocity (GV') of each eigenmode for cach (k;,k;), can be evaluated
rewriting Eq. 45 as

—tw At =log(l —€Ny),
where the subscript ! represents the I-th eigcnmode,.md differentiating the above

equation with respect to k; , we obtain the group velocity in the cartesian direction
z; for the I-th eigenmode [3-4]

8w o (-1 (=©) M\ _ ¢ 1
= 5, -R‘(ié(l—a\:) ak;) ‘(h)l‘“(a—a\.) ak,-)' “n

where T represents the value min.(maz.(Z)) obtained from equations 45-46 for all
the combinations (k,, k,, a).

To measure the convergence velocity in terms of the number of iterations needed
for the reduction of one order in the amplitude of the harmonic component by
absorption at the boundary, we define

N - Lme-l - Lmesh
yresr IGV-i-’(At)"'t N E(%)IGVM

where L,,.,s represents the characteristic length of the domain that a wave com-
ponent has to travel to reach the boundary,

= mi 1/ 12 i3
lGV-ul = i_n“.'zn',. 'GV‘I + IG‘,II )

(48)

in‘
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and € is the max. valuc allowed by the stability condition, Eq. 46. In Eq. 48
we supposed that the wave is not totally absorbed at the boundary, but a 10
per cent of its amplitude is reflected back as a result of the obliqueness of the
incidence direction with the normal to the boundary, that is, (k;, k) isn't parallel
to (ny,n2). For the calculations L,,.,» = h =1, and Nyroup refers to the number
of iterations that the eigenmode needs to pass through a single element.

7.2 Convergence by Damping:
From eq. (12) we can observe that when
IA5,] = V(1 - 2Re(X))? + (Am(A))? < 1, (16)

the harmonic component of the errar we are dealing with will be damped out at a
velocity given by
log(10)

Neemr = ~Log(lAn.D)’ an

where Nyym, is the number of iterations needed for the reduction of one order in
its amplitude.

7.3 Rate of Convergence, evaluation:

The two mechanisms of convergence already described work together, therefore to
assess the convergence rate we can use the value

Num. of Iter. = min(N,,..,, Nd.ap)-

For a given Mach number, the evaluation of the rate of convergence is done by
evaluating

Num. of Iter. = max (min(Nyreup, Ndamp))s (51)

10ka,a)

where the as are a number of flow-mesh angles € [0, 45] and the k;s stand for all
the possible combinations of values

Ix
k= m‘, le [-—N +1,..,-1,0,1,.., N],

here h is the mesh spacing usually taken as unity, and a good value for N may be
16.

7.4 Rate of Convergence using PMMs:

The calculation of G'V's for the continuous case was intended to give some insight
into the working of the PMMs. But now we know that the value of Nyrowp must
be considered instead of the single value of GV. From Eq. 48 we see that N

growup
is inversely proportional to the product (|GV,,;.]At), therefore for a given PMM
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IGV,;a] could be very high, while Atp,.. may be so small as to give an exceedingly
high Ny,.,,: and taking into account that Ny m, is also very high for a very low
At,..,,, the resulting rate of convergence will be very slow. This is the case for
= |A;|/(c+V). Bowever, for M = (JA, j+1A,)/(c+V) the rate of convergence
is much higher than that of the identity matrix.
In what follows we give the numerical results that compare the rate of convergence
of the original scheme, M = I, with that of M = (]A,I + |A,|)/(c + V). In Fig.
(15) is plotted the Num. of Iter. vs the wave number for k, = 0, @ = 0 and 45
degrees. From this we can see that the max Num. of Iter. needed is for o = 0 and
wave numbers k, =~ 0.60 with a gain of 250 per cent when the PMM is used. Fig.
(16) shows the case k; = k, with @ = 0 and 45 degrees. In this case again the
max Num. of Iter. appears for k 2 0.60 and for the wave number vector aligned
with the flow direction, that is 45 degrees. For this case the gain is also 250 per
cent.
It was seen from the numerical studies that the max Num. of Iter. always appears
for wave numbers aligned with the flow velocity and that for small wave numbers
the convergence is mainly by absorption at the boundaries, while for medium and
high wave numbers the mechanism of convergence is damping.

8. NUMERICAL RESULTS:

A channel of length 7 and height 3 units contains a circular arc profile of chord
length unity as a part of the bottom solid wall. The circular arc is centered on teh
bottom at a distance of 2.5 units from the inlet. The thickness of the arc is equal
to 4.2% of the chord [11].

The computations were started imposing a uniform flowfield with Mach 0.85 over
the entire mesh. At solid walls, tangential velocity is imposed as the boundary
condition [13,16}. At the inlet and outlet far field boundary, the number of bound-
ary conditions to be imposed depends on the normal Mach number [16]. For this
case, both velocity and density were specified on the inflow boundary and pressure
on the outfiow boundary.

The convergence rate on a coarse 14 x 42 mesh of quadrilateral elements is depicted
in Fig. (17), where the improvement due to the preconditioning mass matrix is
shown with the RMS of Ap/At vs. the Num. of Iterations. It took 600 iterations
to arrive at a residue of order 107* when the PMM was used, while without the
PMM the residue for the same number of iterations is of order 1023,

In Fig. (18) we can see the iso-Mach lines while in Fig. (19) we see the pressure
distribution.

9. CONCLUDING REMARKS:

The numerical scheme presented in this paper is:
(i) very efficient in terms of computing time,
(ii) simple to program,
(iii) so robust as the original scheme,
(iv) the steady solutions are captured in many less iterations as compared with the
same space discretization but without using the PMM.
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Fig. 1. Group Velocity vs Courant Number - One-dimen. scalar case.
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Fig. 2 Damping vs Courant Number - One-dimen. scalar case.
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Fig. 3. Pressure profile of the perturbation - Origiaal schere.
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Fig. 4. Pressure profile of the perturbation - Proposed scheme.
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Fig. 8. Passing of a perturbation through a shock - Prop. scheme.




Fig. 10. Movement of an unstable shock wave - Proposed scheme.




Fig. 11. Group velocities with (|A,| + |A,])/(c + V) as the PMM.
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Fig. 12. Group velocities with |A.|/(c + V) as the PMM.
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Fig. 13. GV-condition number vs Mach number for different PMMs.
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Fig. 14. Finite Volume formulation terminology.
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Fig. 15. Convergence Velocity for different PMMs with mesh {|V.
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Fig. 16. Convergence Velocity for different PMMs with mesh ¢V = 45deg
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Fig. 17. Residual for flow past a profile in a channel at A, = 0.85.
(a) Without the PMMI. (b) Using the PMAL
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Fig. 19. Flow lines of constant Pressure for flow past a profile
in a channel at My, = 0.85.




