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Abstract. A cohesive interface element is presented for the finite element analysis of crack 
growth in thin specimens. In this work, the traditional cohesive interface model is extended to 
handle cracks in the context of three-dimensional shell elements. In addition to the traction-
displacement law, a bending moment-rotation relation is included to transmit the moment and 
describe the initiation and propagation of cracks growing through the thickness of the shell 
elements. Since crack initiation and evolution are a natural outcome of the cohesive zone 
model without the need of any ad-hoc fracture criterion, this model results in automatic 
prediction of fracture. In particular, this paper will focus on cases involving Mode I/III 
fracture and bending, typical of complex cases existing in industrial applications in which 
thin-walled structures are subjected to extreme loading conditions (e.g., crashworthiness 
analysis). Finally, we will discuss how the three-dimensional effects near the crack front may 
affect the determination of the cohesive parameters to be used with this model. 
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1 INTRODUCTION 

The Cohesive Zone Model (CZM) has gained significant importance in the modeling of 
crack propagation in solids in recent years. Although this model was first proposed by 
Barenblatt in 19621 to describe material degradation and separation in a process zone in front 
of the crack tip in brittle materials and then applied to ductile fracture by Dugdale in 19592; 
most of the advances in the implementation of this model into numerical methods have taken 
place during the last decade3,4,5,6,7.   

The most commonly used technique to incorporate the cohesive zone model into a finite 
element analysis is the discrete representation of the crack which is accomplished by 
introducing cohesive surfaces (or so-called zero-thickness interface elements) along inter-
element boundaries. In most cases, these special elements are governed by a cohesive 
constitutive law that relates the traction with the opening and shear displacement across the 
interface3-7. Although, other techniques that make use of smeared or exact representation of 
the crack regardless the initial mesh have been developed in last few years8,9,10, the utilization 
of interface elements remains attractive essentially due to the simplicity and effectiveness in 
some applications. In fact, the main advantage is that the complexity of crack initiation and 
evolution (including branching, coalescence and arrest) can be modeled as a natural outcome 
of the model, without the need of any additional fracture criterion. 

The first efforts to extend these cohesive models to fully three-dimensional problems have 
been made by Ortiz and co-workers11,12. Thereafter, similar works have found this tool to be 
highly predictable of different kinds of three-dimensional problems13,24. However, there is a 
set of problems involving thin-walled structures (such as the analysis of thin plates, fuselage, 
sheet-metal forming, crashworthiness) where the use of 3D solid elements would be 
prohibitive from the computational viewpoint. Generally, these engineering problems are 
solved with shell or other structural elements14. Li and Siegmund15 made the first attempt to 
extend the cohesive zone model for shell elements. In their work, crack propagation under 
mode I/III conditions was studied in aluminum panels. However, the out-of-plane bending 
deformation was not contemplated in their cohesive model. It should be mentioned that, 
although the extension of the three dimension cases is relatively simple, shell elements 
present the challenge of having additional degree of freedom (i.e. nodal rotations), which may 
help to identify other failure modes, such as surface crack propagating through the thickness 
of shell under bending conditions.  

In this work, the cohesive interface model is extended to handle cracks in the context of 
three-dimensional shell elements. In addition to the traction-displacement law, a bending 
moment-rotation relation is included to transmit the moment and describe the initiation and 
propagation of cracks growing through the thickness of the shell elements. The paper is 
organized as follows: The description of the interface cohesive element and the constitutive 
law is given in section 2. Simulations of simple Mode I/III crack propagation problems and 
bending configuration in a thin elastic plate are discussed in section 3. A study of ductile 
crack propagation of elasto-plastic material, and how this affects the determination of the 
cohesive parameters is included in Section 4. To conclude, the effect of plate thickness into 
the three-dimensional plastic constrain that affects crack growth is discussed in section 4.1. A 
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simple technique is suggested for defining a constitutive cohesive law compatible with two-
dimensional nature of shell model. 

2 MODEL DESCRIPTION  

2.1 Interface Elements for Shell Elements 

The description for the formulation of the interface cohesive element for shell elements is 
based on the zero thickness 4-noded linear interface element described in previous works6,7 
extended to 3-D “line” interface elements connecting two quadrilateral shell elements. These 
interface elements are embedded along shell element boundaries as indicated in Figure 1(a). 

The model assumes that a perfect interface between two surfaces carries forces that oppose 
separation and shear between them until decohesion.  From that point, the two surfaces will 
behave as distinct entities.  The propagation of a crack can thus be simulated as the 
consecutive failure of interface elements. The cohesive relationship is expressed in terms of 
the opening displacement T

ttn uuu },,{ 21=∆  and the traction T
ttn TTT },,{ 21=T , where the 

subscripts n, t1 and t2 denote the component of the traction and displacement in the direction 
of the local axes of coordinates. The magnitude of the opposing forces before debonding is a 
function of the relative normal and shear displacement jumps between the two surfaces, and 
this relationship is given by the constitutive cohesive law, ( )∆= fT . The interface between 
two shell elements is “intact” until the interface traction reaches a maximum value Tmax, and 
reduces to zero until the displacement jump reaches the maximum value. The reduction of 
cohesive traction can be interpreted as the progressive degradation of an otherwise intact 
stress state ahead of the crack tip. Details of the constitutive cohesive laws will be given in 
the next section. 

This shell interface element should be compatible with the formulation of the shell 
element. In this work, the Belytschko-Lin-Tsay shell element16 is considered. This shell 
element, which is the default shell element implemented in explicit finite element software 
DYNA3D17, is widely used in several applications including crashworthiness and structural 
analysis. The formulation of this shell element uses the Mindlin theory of plates18, which 
allows for transverse shear strains through the thickness of the plate. Since the displacements 
in a quadrilateral shell element can be approximated with classical C0 interpolations, each 
node has six degrees of freedom, three translational, (x, y, z) and three rotational, ( zyx θθθ ,, ). 
As shown in Figure 1(a) the geometrical description of the interface element is only given by 
the nodal position. 

2.2 Constitutive Cohesive Law 

In this work, the so-called triangular law introduced by Espinosa and Zavattieri6,7 is 
extended to 3-D interface elements connecting quadrilateral shell elements. In formulating the 
cohesive law, a non-dimensional effective displacement jump is defined by 

2
22

2
2

2
11

22 )/()/()/(
2 ttttnn uuu δβδβδλ ++= , where un, ut1 and ut2 are the actual normal 
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and tangential displacement jumps at the interface estimated by the finite element analysis, 
and δn, δt1 and δt2 are the critical values at which the interface failure takes place. 

 
  

(a) (b) 

Figure 1: (a) Schematics of the separation between two shell elements. The local coordinates are defined in the 
middle line of the interface elements. The upper-left box shows the cohesive interface elements embedded along 
quadrilateral shell elements (For illustration purposes, the shell elements have been separated). (b) Traction 
separation law for pure normal separation. The arrows indicate unloading and loading for crλλ > . 

 
 Assuming a potential of the form ( ) ( )crnttn Tuuu λλλδ −−=Φ 1/2/),,( 2

max11 , then the 
components of the traction acting on the interface in the fracture process zone in the local 
configuration are given by 
 

( )

( )

( )crt

t

tt
t

crt

t

tt
t

crn

n

nn
n

Tu
uu

T

Tu
uu

T

Tu
uu

T

λ
α

δλ
λλ

λ

λ
α

δλ
λλ

λ

λδλ
λλ

λ

−






−=
∂
∂

∂
Φ∂=

∂
Φ∂=

−






−=
∂
∂

∂
Φ∂=

∂
Φ∂=

−






−=
∂
∂

∂
Φ∂=

∂
Φ∂=

1
1

1
1

1
1

max2

2

2

22
2

max1

1

1

11
1

max

   (1) 

 

where )/( 1
2

11 tn δδβα =  and )/( 2
2
22 tn δδβα = . λ  is monotonically increasing and has the 

form ( )λλλ ,max max=  with crλλ =max at the beginning. Once the maximum traction is 
reached, the interface starts failing and the traction reduces to zero up to the maximum 
displacement jump, and any unloading in the range 1≤< λλcr takes place irreversibly. Once 
the effective displacement jump,λ , reaches or exceeds a value of 1, the interface element is 
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broken and the crack is said to have initiated. Subsequent failure of neighboring interface 
elements leads to crack evolution. The most attractive feature of this new law is that this 
irreversible behavior is already incorporated in the law. Figure 1(b) shows the variation of the 
tensile cohesive traction max/TTn with respect to the non-dimensional normal and tangential 
displacement. The area under the curve for normal traction in the absence of tangential 
traction gives the critical strain energy release rate cIG for Mode I, namely 2/maxTG ncI δ= . 

Similarly, the energies for Mode II and III can be obtained as cIcII GG 2
1β= and cIcIII GG 2

2β= , 
respectively. Once crλλ ≥ the cohesive interface begins to dissipate irreversible energy 
defined as )1/()( max crcrIcdis GG λλλ −−= . 

2.3 Fracture by bending 

 In this section, a novel cohesive formulation that accounts for the effect of cracks growing 
through the thickness by bending is proposed. In addition to the traction-displacement law 
(Equation 1), a bending moment-rotation relation is included to transmit the moment and 
describe the initiation and evolution of cracks. In formulating this cohesive law, a non-
dimensional effective displacement jump is redefined by adding an extra term, 

2
max

22
22
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22 )/(ˆ)/()/()/(
2

θθβδβδβδλ ∆∆+++= ttttnn uuu .
 Since cracks are allowed 

to grow along interface elements, and assuming that the crack will grow in the direction of the 
maximum stress produced by bending, only the rotation 1tθ  in the direction 1ˆ te (parallel to the 
middle line) will be considered.  

Assuming the same potential of section 2.2, the expressions of the normal and tangential 
tractions remain the same as in Equation (1), except that λ  has a contribution from the 
rotation; and the bending momentum is given by 
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 where )/(ˆˆ max
2 θδβα ∆= n . Since β̂ is non-dimensional, α̂ has dimensions of 

length/radians and a maximum momentum can be defined as maxmax ˆTM α= . If only pure 
rotation along the axis 1ˆ te , this bending moment-rotation relationship represents a non-linear 
rotational spring carrying a momentum that opposes the bending. Under theses circumstances, 
the cohesive law has the same triangular shape as the one shown in Figure 1(b). The rising 
portion of the curve correspond an intact shell and any loading/unloading takes place linearly 
with an initial bending stiffness given by )/( maxmax θλκ ∆= crM . When the bending 
momentum reaches a maximum value maxM  a surface crack initiates and propagates through 
the thickness. Any unloading in the range ]1,[ crλλ =  will take irreversibly with a bending 
stiffness lower than the initial value. That bending stiffness will decrease as the crack grows 
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until the interface element breaks at 1=λ . 
In early works, the concept of including a rotational spring along shell element boundaries 

has been introduced by Rice and Levy19 and later extended to stationary elastic-plastic crack 
analysis by Parks and White20. In their work, the spring represents the additional compliance 
contributed by the presence of stationary part-through surface cracks. In this new model the 
same idea is applied in the context of the cohesive zone model, allowing the crack to 
propagate due to the bending moment and in-plane stresses.  

3 CRACK PROPAGATION IN ELASTIC THIN PANNELS 

In this section, we will present a simple case of crack propagation in a pre-cracked elastic 
thin panel under three different loading conditions: tension, torsion and bending. The main 
purpose of this study is to compare the new cohesive model for shells with a fully three-
dimensional model based on hexahedral continuum elements an their respective cohesive 
interface elements. Considering that the cohesive zone model has been successful tested for 
solid elements in two and three dimensions3-13, this comparison will allow us to determine 
how well the proposed model for shell elements is capable to predict the same fracture 
behavior using less computational time. 

As shown in Figure 2(a), the length of this panel is L = 30 cm, the width W = 12.7 cm and 
thickness t = 6 mm. The tensile axis is aligned with the y-direction and a crack of initial 
length a0=26 mm lies along the line y = 0.  For all the cases, the specimen is simulated using 
both hexahedral and shell meshes.  The hexahedral mesh has been constructed using the same 
shell elements as base with four hexahedral elements through the thickness. The shell element 
selected is the Belytschko-Tsay shell with five integration points through the thickness. In this 
analysis, cohesive interface elements are only embedded along the line y = 0, so that the crack 
is constrained to grow along the initial crack line. Since the material used for these 
simulations (Steel C300) behaves in a brittle fashion, it is assumed that the crack will only 
grow under pure mode I and crack branching is not allowed. It should be mentioned that this 
kind of assumption is commonly used for several investigators4,11,12,15.  The constitutive 
material parameters for steel C300 are: E = 200 GPa, ν = 0.3, ρ = 7830 kg/m3. The cohesive 
parameters are: Tmax = 700 MPa, δn = δt1 = δt2 = 70 µm, β1 = β2 = 1.0 and λcr = 0.3.  In 
addition to the condition that the element size has to be much smaller than the dimension of 
the block to provide an accurate resolution of the stress near the crack tip, the cohesive 
element size should be also able to resolve the cohesive zone length. Given the material 
parameters, the cohesive zone length is lcz ≈ 20 mm5-7. Therefore to satisfy all the length 
scales a cohesive element size of approximately Le = 1 mm was chosen. In this preliminary 
study, the material is treated as elastic, using the continuum elastic model for large 
deformations available in Dyna3D17. Discussion on elastic-plastic material is given in Section 
4. 
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(a) (c) 

 

Figure 2: (a) Geometry and boundary conditions for the tensile test of the pre-cracked plate (b) Hexahedral 
mesh. (c) Shell mesh. Tensile stress σyy at different times during the propagation of the crack using a shell mesh. 

 
Cohesive interface elements connecting hexahedral elements: Similar to the case of 

shell elements, the formulation of the cohesive interface elements connecting the faces of two 
hexahedral elements is based on a zero-thickness 8-noded quadrilateral “plane” elements. 
Like in any traditional cohesive interface element for 2- and 3-D only the displacement-
traction relationship constitute the cohesive law3-7,11-13.  The components of the opening 
displacement are { } T

ttn uuu 21,,=∆ , and the non-dimensional effective displacement jump 

becomes 2/1222 ])/()/[(
2 ttnn uu δβδλ +=  where ( ) ( ) ( )2

22
2

11
2 /// tttttt uuu δδδ += . As a result, 

the cohesive law employed for these interface elements is the same as the one given by 
Equation 1 considering ttt δδδ == 21 . The main difference between this cohesive law and the 
one proposed for the shell interface element in section 2.1 is that it is not necessary to make 
any difference between the tangential components. 

3.1 Mode I crack propagation: Tension test 

In this case the rectangular thin-walled specimen is subjected to dynamic tensile loading 
on both, upper and bottom boundaries given by a uniformly applied velocity at the top and 
bottom boundaries,  vy = ± 1 m/s as shown in Figure 2(a). The simulations were carried out 
for 200 microseconds until the crack reaches the other end of the plate. Figure 2 shows the 
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tensile stress σyy at the point where the crack starts to propagate. The contours show identical 
stress distribution for both cases.  Figure 2 (a) and (b) show the evolution of the tensile stress 
σyy when the crack propagates from side to side for the fully three-dimensional model and 
shell model at identical times, respectively. The close agreement between both simulations 
indicates that this problem is suitable to be treated with shells. In order to verify the validity 
of these results, two more simulations have been performed at different loading rates. Figure 
3(a) shows the crack tip position as function of the applied displacement for vy = 0.1, 1 and 5 
m/s. The crack tip position is determined by the global position of the integration point in 
which the condition 1=λ  is satisfied. Figure 3(b) shows the normal force for the three 
loading rates. In these figures the solid line represent the simulations with solids and the 
dashed line the simulations with shells. It is clear from these results that both models can 
predict exactly the same the material response.  

  

 
(a)       (b) 

Figure 3: (a) Crack tip position vs displacement for three different loading rates. (b) Normal force vs 
displacement for three different loading rates.  

3.2 Mode III crack propagation: Torsion test 

To further test the model, the same specimen is simulated with solid and shell elements 
under torsion load.  As in previous case, the boundary conditions are only applied on the top 
and bottom boundaries, except that in this case a constant rotational velocity field of 08.0=θ&  
rad/sec is applied. This geometry and loading conditions creates a mode III stress field near 
the crack trip/front. As in previous case, the loading conditions and cohesive parameters are 
similar for both models. Given the asymmetric conditions at the crack plane, the moment-
rotation relationship does not play an important role yet. However, this problem complements 
in some way the one considering only pure mode I. The results of these simulations are 
depicted in Figure 4. The crack tip position as function of time is similar for both cases. The 
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tensile stress σyy when the crack front reaches the middle of the plate is shown for both cases 
in Figure 4(b). Although the stress fields look different for both cases, the reader should note 
that the stress in the shell elements is given in the middle plane as opposed to the solid case 
where the visualized stress field corresponds to the surface. A closer examination of the 
middle plane in the solid case revealed that the stress field is similar to the one with shell 
elements (Figure 4(b) and (c)). 
 

 
 

(a) (b) (c) 

Figure 4: (a) Crack tip position as a function of time for the case where the elastic thin plate is loaded under 
dynamic torsion. (b) Stress σyy distribution for the case modeled with solid elements at 1.7 msec.The window in 
the lower-left corner is cross-section of the middle plane at z=0. (c) Stress field for the case simulated with shell 
elements. Note that the stress in the case with shells is given in the middle plane.  

3.3 Bending test 

In this case, the same pre-cracked plate is loaded in a three-point bending setup. Unlike, 
traditional setups to study crack propagation, in this specific problem the applied load is 
perpendicular to the plane of the plate such that out-of-plane bending is induced. The main 
idea behind this test is to provoke through-the-thickness crack propagation. The layout of this 
experiment is shown in Figure 5(a). Two cylindrical rods are positioned under the plate, each 
one at 10 cm from crack plane.  A third rod aligned with the crack plane is positioned just 
above the plate and it moves towards the plane with a constant velocity vz = 1 m/s. The 
diameter of the rods is 1 cm. It was observed that one of the advantages of this setup is that 
the crack front propagates in two directions:  (1) perpendicular to the plane of the plate, along 
the z-axis from the top to the bottom (through-the-thickness crack propagation) and (2) in the 
direction of the original crack along the x-axis, from the initial crack front to the other side of 
the plate. This leads to a more controlled crack growth, as opposed to the case without initial 
crack where the crack can grow through the thickness in an unrestrained mode. Although, the 
shell model is not able to explicitly predict through-the-thickness crack growth, this 
configuration will test the capability of the model to predict the overall response of the 
structure.  
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(a)       (b) 

Figure 5:  Schematics of the three-point bending setup. (a) Crack tip position as a function of time for case with 
thickness t=6 mm and vz = 1m/s (b) Crack tip position as a function of time for case with thickness t=2 mm and 
vz = 10 m/s 
 

As in previous cases, the cohesive parameters used for the shell model are the same as 
those used in the fully three-dimensional case. However, in this case the moment-rotation 
relationship of Equation 2 becomes an important part of the overall constitutive cohesive law 
and, therefore, the cohesive parameters maxθ∆  and β̂  need to be determined. Several 
simulations were performed with different parameters until good match was achieved. Figure 
5(a) shows the crack tip position as function of time for best case with 05.0max =∆θ rad and 
β̂ =1.0. In this figure, the crack evolution is represented by the x-coordinate of the integration 
points of the interface elements at the time where 1=λ  is satisfied. In the simulation with 
solid elements (red circles), several integration point have the same x-coordinate, however the 
time where the crack front passes through those points may be different. This confirms that 
the crack grows in two directions along the projected crack plane. Furthermore, it was 
observed that the crack initiates originally at the intersection of the initial crack front and the 
bottom surface and propagates to the upper surface as it grows in the x-direction. 

A second configuration is tested to validate the model parameters. The thickness of the 
plate is reduced to 2 mm, and the impact velocity is increased to vz = 10 m/s. The crack tip 
position as a function of time is shown in Figure 5(b). Although the fully three-dimensional 
simulation case shows a strong through-the-thickness crack propagation the shell model is 
able to predict the crack propagation in the x-direction. Moreover, it is observed that the 
overall force needed in the upper rod to break the plate is similar using both models. The 
bottom view of the cracked plate and the stress field are shown in Figure 6 for both models at 
three different times where the crack growth takes place. The position of the crack front/tip 
can be estimated from the stress field. It should be noted that the stress shown in the 
simulation with solid elements is that of the bottom surface of the plate, whereas the one 
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shown in the case with shells represents the middle plane stress field. Therefore, the crack tip 
position of the model with shells as described in Figure 5 can be considered as the position of 
the crack front at the middle plane.  

 
 Solid elements   

   

Shell elements   

   

Figure 6: Tensile stress σyy at different times during the propagation of the crack using a shell and solid mesh 
for the three-point bending configuration for t = 2mm and vz = 10 m/s. 

4 THREE-DIMENSIONAL EFFECTS OF DUCTILE CRACK PROPAGATION IN 
THIN-WALLED SPECIMENS 

The potential of the cohesive zone model to simulate crack propagation in elastic thin 
plates using shell elements has been examined in the last section. The material under 
consideration was only elastic, and in most cases the crack front was straight. Consequently, 
the plane stress formulation used by the shell elements may be suitable to model these kinds 
of problems. However, this desired behavior might not be observed in real ductile materials. 
The study of ductile fracture in elasto-plastic materials raises some concerns regarding the 
mechanical constraint imposed by the plastic deformation in the region near the crack front. 
Moreover, during ductile crack propagation of thin metals, a characteristic phenomenon 
called crack tunneling is observed. Crack tunneling is when the initially straight crack front 
grows more rapidly in the middle of the thin-walled specimen leading to the formation of 
rounded crack front profile. The plastic deformation around the tunneled crack front departure 
from the ideal deformational state observed in the elastic cases. As a consequence, additional 
out-of-plane components of shear stress become significant as the highly plastic deformation 
takes place near the crack region. In addition to crack tunneling, slant crack growth could also 
occur in certain conditions and materials. This is when the crack front turns into a 45o 
direction leading to a mixed mode I/III crack growth problem21. The study of slant fracture 
and its transition from flat crack is out of the scope of this analysis. Thus, we will restrict the 
current study to problems where crack fronts advance in flat mode. 
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(a) (b) (c) 

Figure 7: (a) Crack tip position as function of the applied displacement for a mode I ductile crack problem 
simulated with solid and shell elements. The dashed lines indicate the solution when the material is treated as 
pure elastic. (b) Tensile stress field for the elasto-plastic and elastic material. (c)Details of the crack tunneling 
for the case modeled with 3d solid elements. The red region indicates where .0.1/ =Icdis GG  

 
To illustrate the importance of the three-dimensional effect of tunneling in the crack 

region, an elasto-plastic specimen loaded in mode I is simulated with solid and shell elements. 
Details of this setup and material model are given later in section 4.1. The same configuration 
is simulated with a pure elastic model for comparison purposes; however, the cohesive 
parameters are the same for all these simulations. Figure 7(a) compares the crack tip position 
as a function of the applied displacement for all these cases. Even though there is an excellent 
agreement when the material is elastic (as observed in section 3.1), a noticeable disagreement 
in crack growth between the solid and shell model is obtained for the elasto-plastic case. 
Based on the hypothesis that the three-dimensional simulation contains the most reliable 
information about the true deformation process, there is clearly something missing in the 
model for shells. The three-dimensional tensile stress fields (σyy) for the elasto-plastic and 
pure elastic case are shown in Figure 7(b). For illustration purposes, only one half of the 
specimen from the crack plane is shown. The presence of a more complex three-dimensional 
stress state ahead of the crack front is evident in the elasto-plastic case. The same figure 
indicates the location of the crack front and the cohesive zone defined as the region where 
irreversible energy dissipation takes place 1)/(0 <≤ Icdis GG (see section 2.2). Although not 
shown in this paper, it is also observed the formation of “shear lips” caused by the plastic 
deformation on the free borders. Figure 7(c) shows the predicted crack front formation at 
different stages. The initial straight crack front evolves into a round-shaped crack front. The 
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red region indicates where the material has been totally separated (where 0.1/ =Icdis GG ). A 
thick black line on the free surfaces depicts evidence of thickness reduction. 

 Unfortunately, the localized three-dimensional deformational state near the crack front 
affects the overall response of the structure; and the bi-dimensional nature of the plane stress 
formulation is evidently not adequate to capture this phenomenon22. Nevertheless, it may still 
possible to “lump” this localized behavior into the cohesive zone model. In this section, we 
will study this alternative by explicitly modifying the existing constitutive cohesive law to 
incorporate some geometrical and material factors that would eventually take into account the 
complexity of the tunneling effect. As an example, a mode I crack propagation experiment 
performed by Doods and co-workers23 on constrained center-cracked aluminum panel 
specimens will be used. It should be mentioned that, even though this experiment has been 
modeled with the cohesive zone model using both solid elements (Roychowdhury et al.24) and 
shell elements (Li and Siegmund15), both papers have reported different values of cohesive 
strength. This discrepancy will be discussed later in the section.   

 

 

(a) (b) 

Figure 8: (a) Details of the center-cracked aluminum panel. For simplicity, the solid model considers only one-
eight of the geometry, and the shell model one-fourth. Symmetry boundary conditions are applied accordingly. 
(b) Predicted and measured load-crack growth response using both models. 

4.1 Analysis of a center-cracked aluminum panel 

Following the work by Doods and co-workers23,24, simulations of an aluminum Al2024-T3 
centered-crack panel are performed with the fully three-dimensional model. As described in 
Figure 8(a) the width of the panel is 2w = 75 mm. The initial crack length is a/w = 0.333 and 
the thickness of the plates is t = 2.3 mm. Due to the symmetry of this configuration only one-
eight of the geometry is simulated. Thus, symmetry boundary conditions are employed 
accordingly. Cohesive elements are inserted in the projected crack plane/line. The element 
size in the fracture region is Le = 0.1 mm in the crack direction and Lt =0.16 mm in the 
thickness direction. This provides seven layers of elements across half-thickness. Mesh 
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convergence studied performed by Doods24 demonstrated that this is sufficient refinement to 
capture proper crack growth and tunneling formation. In order to simulate the quasi-static test 
with displacement control loading using an explicit code such as Dyna3D, uniform low 
velocities are applied at the nodes on the top boundary. Previous calculations demonstrated 
that applied nodal velocities of about 500 – 750 mm/sec are slow enough to prevent inertia 
effects in the calculation and satisfactorily fast to improve CPU efficiency. For the continuum 
material, the traditional isotropic elastic-plastic constitutive model that uses the Mises yield 
criterion is utilized. The elastic parameters for the Al2024-T3 are GPaE 3.71= and 3.0=ν . 
The initial yield stress is MPay 345=σ and the plastic regimen is governed by nεσ K= , 

where n
yy E )/( σσ=K , 1.0=n  is the hardening exponent, σ is the true effective stress and 

ε  is the logarithmic strain. Due to the localized high plastic deformation ahead of the crack 
front, fully integrated 8-noded solid elements (hexahedral/brick) are used. The cohesive 
elements are also fully integrated for compatibility. A systematic and parametric study 
performed by Roychowdhury et al.24 led to the following calibrated cohesive parameters: 

MPaT y 5.9317.2max =⋅= σ and 2/19 mkJGIc =  (equivalent to a material toughness 

of mMPaK Ic 5.38= ). Figure 8(b) shows a good agreement between the numerical 
predictions and the experimental load-crack extension data. The simulation with shells will be 
discussed later.  

 
Simulation with shell elements: Following the same scheme, the specimen is simulated 

with quadrilateral shell elements. In this case only one-quarter of the geometry is modeled 
with shells. As shown in Figure 8(a), the shell mesh utilized is identical to one of the faces of 
the fully three-dimensional case. Keeping the same element size, the number of elements is 
therefore reduced from 21,700 solid elements and 1,750 plane cohesive elements to only 
3,500 shell elements and 250 line cohesive elements. However, results using the same 
cohesive parameters as those used in the three-dimensional case are markedly different. Crack 
propagation is slower than in the real case and the applied peak force is significantly over 
predicted. Figure 9(a) shows the crack extension and normal applied force for the three-
dimensional case (dashed line) and the shell simulation (orange solid line). The same effect 
has been observed in later simulations with specimens of different thicknesses. Interestingly, 
the fully three-dimensional simulations show a strong dependency of the overall material 
behavior with the specimen thickness, whereas the shell model predicts the same behavior; 
that is the remote applied stress and crack extension are independent of the specimen 
thickness. It is clear that the cohesive law needs to be modified in order to take into account 
the three-dimensional effect that the shell elements cannot provide.  
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(a) (b) 

Figure 9: (a) Crack extension and force as a function of the uniformly applied displacement obtained with 
the fully-three-dimensional model (black dashed lines) and with the shell model using different cohesive 
strength values (all solid lines). The two dashed lines indicate the crack front position at the middle and outer 
surface of the specimen with thickness t = 2.3mm (b) Correction of the cohesive strength for shell elements as a 
function of the specimen thickness. 

 
Calibration of the shell model: As mentioned before, Li and Siegmund15 demonstrated 

that the cohesive zone model could certainly be used with shell elements to model these kinds 
of problems. Nevertheless, they reported a much lower value for the cohesive strength 
( yT σ2max = ). Prior works on dynamic crack growth in thin sheets also lead to similar 
findings25. This indicates that possible modifications of the cohesive zone model can involve 
a reduction of the cohesive strength. However, to the best of the author’s knowledge, there is 
no work done on defining some sort of scaling law to relate the “true” cohesive strength, 

maxT (in this case, the one used for the three-dimensional calculations) with the “modified” 
cohesive strength, maxT  for a 2D formulation. It is believed that the true cohesive strength 
used in 3D simulations is intrinsic of the material and should not change with geometry or 
loading conditions. On the other hand, the modified cohesive strength for shell elements 
should eventually contain information of the geometry. 

  Looking at this trend, a series of numerical simulations with shell elements was 
performed for various values of the cohesive strength, maxT and keeping the same cohesive 
energy IcG  (the critical displacement is then computed as max/2 TGIcn =δ ). Figure 9(a) shows 
the crack extension and force as a function of the remote applied displacement for different 
values of maxT using the shell model (solid lines).  It is observed that crack grow is delayed for 
higher values of maxT . Conversely, the peak force increases with maxT . In conclusion, it was 
found that, with MPaT y 65088.1max =⋅= σ , the shell model gives similar results to the three-
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dimensional model. The force-crack extension curve was also included in Figure 8(b) for 
comparison purposes. This value is closer to Li and Siegmund’s findings15. 

Certainly this change in the value of maxT is an “ad-hoc” modification of the cohesive law 
to take into account the three-dimensional effects for this specific thickness and material; 
hence, it should be expected that this correction would be different for other thicknesses or 
material (different values of nE y ,,, σν ). Therefore, two more three-dimensional simulations 
were added for two more thicknesses, t = 1 and 3 mm using the “intrinsic” cohesive 
parameters GPaT 5.931max =  and 2/19 mkJGIc = . Then, the same process was repeated for 
these two new specimens. Again, simulations with the shell model were performed for 
different values of maxT for the two cases until good agreement was achieved. Finally, the best 
match was attained with yT σ⋅= 17.2max  for t = 1 mm, and yT σ⋅= 28.1max  for t = 3 mm.  

Figure 9(b) shows the best match maxT versus the specimen thickness. This clearly 
demonstrate that the cohesive model for shell elements is affected by the geometry, at least 
for the modeling of cracks under normal opening,  

It should be mentioned that, although it is common practice to report only the force versus 
crack extension curves for these kinds of experiments (Fig. 8(b)); the individual evolutions of 
these two variables with respect to the applied remote displacement (Fig. 9(a)) are more 
sensitive to the cohesive parameters than just the combination of the two. Therefore, the two 
curves should be used simultaneously for calibration and validation purposes.  
 

“Effective” cohesive law: Another way to look at this problem is by analyzing in details 
the three-dimensional deformational state and extract from the calculations useful information 
that can eventually provide some guidelines to define a cohesive law for shell elements. Thus, 
it can then be possible to look at the bi-dimensional solution as a projection of the three-
dimensional case. For instance, the three-dimensional cohesive zone ahead of the mode-I 
crack front, defined by the normal cohesive traction, is shown in Figure 10(a-upper corner). 
The maximum traction (when maxTTn = ) follows a curved shape similar to the tunneled crack 
front. The same figure shows the profile of the normal traction along the x-axis in the 
direction of the crack growth. Data points represent the normal traction at each integration 
points of the three-dimensional calculation. The average through-the-thickness cohesive 
traction can be easily obtained by ∫=

2/'

0
'/2

t

nn dzTtT  (shown as red dashed line), where t’=t’(x) 

is the current thickness. The averaged maximum traction is then defined as maxT ,which is 
notably lower than the intrinsic cohesive strength. It was observed that this profile, as well as  

maxT , remains constant as the tunneling is fully developed and cracks propagate steadily. 
Three-dimensional simulations of different thicknesses reveal that this averaged maximum 
traction decreases for thicker panels. 
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(a) (b) 

Figure 10: (a) Normal cohesive traction profile developed near the crack front. Each green dot represents the 
value at each integration point and its x-coordinate (initial straight crack front is located at x=0). The dashed red 
line represents its average through the thickness nT . (b) Effective cohesive law ( nT vs. nu ) for three different 
specimen thicknesses. 

  
Conversely, the opposite effect was found with the averaged normal opening (defined as 

∫=
2/'

0
'/2

t

nn dzutu ), in which the averaged maximum critical displacement is greater than the 

intrinsic one and increases with the thickness of the panel. More remarkable is the 
combination of these two variables.  Figure 10(b) shows the relationship between nT  and nu . 
Each dot represents the values at integration points of the plane cohesive elements at various 
stages of the crack propagation simulation. This well-defined “effective” cohesive law is 
shown for three thicknesses t = 1, 2.3 and 3 mm. The original cohesive law 
( MPaT 5.931max = and 2/19 mkJGIc = ) is also shown in dashed lines. Even though the shape 
of the cohesive laws departs from the original triangular shape, the overall cohesive energy 
does not deviate significantly from its original value, which confirms the assumption used in 
the previous section of keeping the same energy and only modifying the cohesive strength. In 
all the cases, the initial stiffness also remains unchanged.  Consequently, these cohesive laws 
have been implemented for shell elements, and simulations for each thickness were 
performed. Although, a similar trend to that described in previous section was observed, the 
crack extension and applied force were not as accurate as the results obtained with the 
“calibrated” cohesive parameters. One possible explanation is that the averaged cohesive are 
slightly greater than those obtained in the calibration process and, hence, do not take into 
consideration the real three-dimensional character of crack growth by only projecting in a 2D 
plane. However, this “effective” cohesive law provides some qualitative insight into the real 
mechanisms that need to be applied in order to define cohesive laws that can be compatible 
with a plane stress formulation.  
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5 CONCLUSIONS 

In this paper, a three-dimensional finite-deformation cohesive element for shell elements 
for the finite element analysis of crack propagation in thin-walled structures was presented. A 
numerical analysis for elastic thin plates was included to assess the capability of the model to 
predict crack growth under mode I/III and bending loading conditions. Unlike previous 
models15, the proposed model incorporates a bending moment-rotation relation to transmit the 
moment and describe the initiation and propagation of cracks growing through the thickness 
of the shell elements. In addition, three-dimensional simulations of ductile crack propagation 
in elasto-plastic materials were used to emphasize the importance of plastic constrain in the 
region near the crack front. This numerical analysis revealed that the two-dimensional nature 
of shell elements together with the cohesive model is not appropriate to accurately predict the 
three-dimensional deformational state ahead of the crack front that evidently affects the 
overall behavior of the material. Therefore, the cohesive law for shells needs to be modified 
to take into account these geometry and material factors. For that reason, a scaling law for the 
cohesive strength is proposed in this work (see Figure 9). Future directions will be focused 
into a dimensional analysis where different geometry, as well as material parameters, will be 
included. Along these lines, it will be possible to come up with a dimensionless function for 
the “modified” cohesive strength as )/,,/,/(/ maxmax yyy TnEltT σσσ Π= , where the thickness 
t may be normalized by the ligament size (l) or the plastic zone length ( pΓ ). 

Finally, the versatility and ability of the model to predict crack growth under various 
loading conditions was then demonstrated in this work. This opens a new set of possible 
solutions for problems involving fracture in thin-walled structures that otherwise could not be 
solved with other models, such as dynamic impact and penetration of plates, deformation and 
failure of tubes and tearing of membranes. Figure 11 shows some preliminary simulations 
performed with this model for various materials. 

 

 
 

(a) (b) (c) 
Figure 11: (a) Rod impacting a brittle plate.   (b) Bending of an aluminum tube (c) Fracture of polymer 

membranes. 
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