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RESUMO

Em virios modelos do método dos elementos finitos e
necessario partir de um campo de tensoes em equilibrio. Em
certos problemas sabe-se de antemao quais as componentes do
tensor das tensoes xmportantes e quais as sem importancia.
Anulando-se as sem importancia, os calculos sao simplificados.

Mostram-~se neste trabalho doze fungoes de tensao em
coordenadas cilindricas e dez em coordenadas esfericas, com
varias componentes do tensor das tensoes nulas.

ABSTRACT

In several models of the finite element method it is
necessary to start with a stress field in equilibrium. In
some problems it is known, beforehand, important and non
important components of the stress tensor. Considering zero
the non important components calculations are simplified.

In this paper twelve stress functions in cylindrical
coordinates and ten in spherical coordinates are shown, with
several components of the stress tensor considered zero.
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INTRODUCTION

In several problems the finite element method using a
polynomial as an interpolation function for displacements is
not the best possible solution. More refined stress fields
can be necessary to use in zones of high-stress gradients.
Then other formulations of the method, based on hybrid or
complementary energy principles are more advantageous.

Using those principles it is necessary to start with a stress
field in equilibrium with body forces, and satisfying
boundary conditions.

To solve an elasticity problem it is necessary to
satisfy equilibrium, compatibility and boundary conditions.
Usually equilibrium is considered the most important
condition, in the sense that if it is infringed, the solution
is not accepted even as an approximation. However the
solutions given in any text-book in strength of materials
don't satisfy compatibility.

In several problems it is possible to know what are the
most important components of the stress field and compoments
of secondary interest. If those small components can be
considered zero, it is possible to choose a stress function
with the important components. Other stress functions can
be added, if necessary, to satisfy boundary conditions.

An equation can be satisfied in two ways: if all terms
appearing in that equation are zero or if at least two terms
are different from zero.

Equilibrium can always be satisfied with one stress
component equal to zero.

With two stress components equal to zero, however
equilibrium cannot always be satisfied.

The existence of a stress function, however, is
guaranteed only if the number of stresses different from
zero is greater than the number of equilibrium equations
not identically satisfied.

STRESS FUNCTIONS
Equilibrium is satisfied if

g =V x B (1)

vhere O {is the stress tensor, P is any second order
tensor, and

3
Vo= 3aT (2

1
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To guarantee the symmetry of the tensor field 3,

P = Q x V (3)
and
g = ¥ x 5 x ¥ (&)
Note that
GxV=- < x a)r (5)

When some stresses are considered zero, several equations
are of the type.

1 3 (BO.) + 1 3 (Do.) = 0 (6)
A(x) ox 1 Czys 51 ]

This equations is satisfied if

1 af | .. 1 3f
I U - TN I ol e M

where f is an arbitrary stress function.

The procedure to obtain stress functions is the following.

All possible combinations of zero stress components able
of satisfying equilibrium are studied. The stress functions
are supposed to depend on three variables. Of these cases,
those that don't permit a stress function are discarded. The
remaining cases are then studigd with eq. (4) or (7). The
arbitrary second order tensor Q is considered syametric with
one or two components different from zero.

STRESS FUNCTIONS IN CYLINDRICAL COORDINATES

The equilibrium equations in cylindrical coordinates

are:
T g o e e a

In these equations R,T and Z are the components of body force per
volume.

Equilibrium can be satisfied in nine cases with two stress

components zero four cases with three stresses and one with four stresses.
1f
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there are two stresses to satisfy two equatxons Clearly it
is not possible to write reiations among G, .,
06 re and an

arbitrary stress function.

All cases with two stress components zero can be used to
get a stress function; really, then four stresses must
satisfy three equilibrium equations.

1f body forces are not zero, a particular solution of
eqs. (8) to.(10) can be obtained considering that all shear
stresses are zero. Then it is easy to verify that the normal
stresses are given by:

C,s - - J-Z dz (11)

JT r 46 (12)
1 r 9 1 I
o = - J / T d8 r - —-J’ Rr dr(13)
rr T r
[¢] 0 0
Case 1 O ™ O = 0 (14)

The stress function can be obtained using eq. (4) with
Q,; = f; and all others Q = 0. The final result is.

32f '
o - - Sl (15)
86 322
z
-1 of
- LA W
orz r 3z (16)
S S 1t 3
°ez r Jz99 (17}
. 1 _ 9f, _ 1 3,
ozz T or Z 26 (18)
Case 2 O r " %9 0 (19)

The stress function can be obtained from eq. (4)

considering Q;2 = Q2; = f, and agg others Qij =0

C. * —%;;1— (20)
Rl 1)
%. = & - —ha 22)
o,, - _22_ 32 (rfy) (23)

r 963r




- 117 -

Case 3 o, = 0O

Proceeding as before with Q;; = Qi

obtained:

- 2 _3f
urr r oz
-1 ¢
S * Tt 330
¢
%6 " 2 337
o =1 2%,
rz r? 262
- a2 £

%. * Tar e

Case 4 %9 = %, * 0

Obtained with Q3 = Q32 = f.

orr T 363;
- - 22 £
orB ¥ 3roz ( T )
| 3t
% r? 3ra@ (rfs)

- 9 £4,9€,
or (r )

Case 5 0:8 = ¢ - oBz =0

The results below were got with Qz; =

a'f;
o = 3

rr

o S | 32 (xfy)
rz r drdz

fs

P W PRI T I

zz
r? r

Lase 8 Oy, "% T Oy = O

f!s

it is

(24)

(25)

(26)
27

(28)

(29)

(30)

31

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39)
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The plane stress system can be solved with Q33 =
all others Qij = 0.

S U X2 T U a;i
r T

-2 (fs
o (r )

rd 363r
Gop" g
ar?
Case 7 LI O,z ™ [

Add cases (3) and (&) with

af
- - 2oh
£s 36
And introduce f, = f.
I 92f, _ _ af,
%™ T 3z [ 367 Tar v By
3
g = - 2 o £
89 ar 96 3z
- 2
o . -1 ge 3°f, , . 3f7 , f7]
re r? 202 ar

. .9 1 3% ) af,
%9, 3r [ r 56; et Br]

Case 8 [+f - g =0

f‘v

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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Case 9 O r = %"= (55)
The results below were found with a systematic use of
eq. (6).
s
o4 - L 2 (56)
¥ r? 3693z?
-1 3'
%0 Y 9rd‘z 57
- 1 2
o = _1_.._3_[_35_, _a_g_z](sa,
rs r? dr (3 x 30
L2 franen o
%y T or [l’ o £ ] (59)
Case 10 %, = % = O (60)
2
o - M (61)
rr 3z?
z
« = 3¥3(r £ )
% ° TIwar 62)
1 3(r £14)
g - (63)
0 T 3rea:
- 3
oz: - 1 ] (t fl‘) (6‘)
r? 8% or
Case 11 Ogy = 9, = O © (65)
3 €37 - £33 - 1 a’f!,
atr = oz [ or r r EX:] ] (66)
3
£
- —2Hin
%0 = T T3¢ 3z (67)
o - 1 a_’fl..i__ (68)
zr r dr 36
- 3
cze - —__B._fLL_ (69)
ar?ae
Case 12 Ogg = Ogr = 0 (70)
S | 3¢
®rr " r 363s )
- 3¢,
Tor (12)
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1 ? 2 9%€,,
O o = — (r ) (73)
z0 e? 3r arde
- 2
o, = L (2 28, (74)
r? 3rdz Ir

STRESS FUNCTIONS IN SPHERICAL COORDINATES

Consider the spherical coordinates ¢, 8, R; # is the
angle between the position vector and the z axis; R is the
distance from the point to the origin and 6 the angle between
x axis and the projection of the position vector in the

the
x y plane. Body force per unit volume have componentes Fe.
F., Fl' Equilibrium equations are:
1 3 2 90
< ==(R°0__) + 1 6R _ 1 9
R 3R RR send 385 (oee+ OM’)* _sen¢ a¢(sen¢(1M) +
*RF =0 (75)
13 sy 41 %0 1 D (sen?e 0. )R F
> %%0’" Send T30 * Sen?§ 30 (S 8¢ 8=0 (76)
R 3R
90
1 3 3 1 $6 L
—~——— ——(R%_,)* + (sen$ 0, )-cotd o -
R2 3R R$ send¢ 96 send [ 66 + R F0 0(77)

To get a particular solution easily, consider 098 =0, 06 =0,
s%resses can

Then equilibrium equations simplify; the rémaining

g = 0.
bs‘found without any difficulty:
gy = - —— sen’yF, dé (78)
L sen?$
1 30y
o - — 0———1 + Rsen¢ F¢)d¢ (79)
* sené¢ )
1
Oer —;;* R(O°¢ R Fk)dk (80)

considered zero the system simplifies

When some stresses are
cases there is an equation with two

and in eleven of thirteen
unknowns, like eq. (6)

The eleven cases are the following

Case 1 oee - oRe = 09' = 0 (81)
o -1 . p 2f1.03%¢€,
°KR ° RK¥senp |7 R ak’aoz (82)
2¢
Tot (83)

1
ck‘ - Rsen® R3¢
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R*sen¢ 3R 3R380

a’_-l 3_(gt 21,
¢ Risend 3R aR
Case 2: o¢‘ = Ogg " 0
2 3 of
0, ® —= " | cotgp fo- =2 ]
kR Rsen’y 20 [ 9
o = a%fy
RO Rsen? [) 3¢aR
- 1 3%f,
%re Ksen'¢ 369K
- 1 ) 2
o = (R ———1)
8 lzsenzo aR
Case 3: o00 = al’ =0
Oy * 1 3%f, , (1+cos?¢) afy
R Rcos¢ 3R36 RsenZ¢coséd 26
. 1 %€, , 1 )
R2sen2¢cosd 28? R2sené 2438
00" 1 3%, _ _2 cotgd 3f, 1 _33f,
Rsendcosé  3RIE? 3R R 3R3¢
1 3 2 af,
0, = — —— (r? —L3
8 32 33 aR
2
099 - 1 ) (R? ) f!)
R cos$ 3R R3O
Case §: 000 - a“ -0
2 2
o -t — 2 L, af, 2,y ]
Rsen? 9938 R2senp 3¢ sen” 202
. 1 af,
lzseno 3¢
o - _cotge 3%fy | 1 a’f,
R¢ 3
Rsen¢ IR Rsen’¢ 3RIB?
2
L S S —2 (g2 ...a_f_;)
R2sen¢ KR 203K
- -1 ? 2 a!f
%9¢ (R ——)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

on

(98)

(99)




Case S5: a” = 000 =0
o =1 _3fs, 25 1 3%fs _ cotge _3f,
BR 2 3R R’ Rlen‘d 262 r? Y

aee = 1 .i_(kz ?—f_i )

R? R R
o = cotgd 3f
R K 3R
i3

Case 6: %a¢ 03‘ =0
o =1 f¢ _ 2cotgd 3% , _ 1 ot
BR  R2%senp 39220 RZsend 3630  Rsené ORIS
. 1 3fg
R2send a0
2
Opgm —L— 2(senty 22L3
Rsen?d ¢ aR3¢
- 2
Oy -l __1__(Rz_3£1)
R? 3RIG 3R
2
°¢° - 1 3 (Rz 3 fi)
R2sen¢ 3R d63R
Case 7:

GR° = Ope * 0

2
Oy 1 [ af, ‘-g N +.I;°tg| 22 44 ]
3¢

stenO l. 36 sen?¢ 202

2 3
opy » [coma_gzd,,f_l_a_id,]
Rsen¢ oR9¢ sen?¢ JRI6?
.13,
60 Rsen¢ ORo¢

2
o ==l a%e,

o¢ Rsen?¢ 3RI6

[+}

Case 8: g, =0 g,, =0

R -]
o ._IH-l %y _ 1 3fy

BR 32| | Rcosé R3¢ Rsenéd 3R

1 XS PR ]
Risen’¢cosd 3926

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)
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1 i,
Opp * (117)
R'senpcosd 34362
- 2
Ogp = =l __ 3% (118)
Ricos$ IR
o w1l _3fs (119)
» Rlgeny R
Case 9 Oy " %g¢ - 0 (120)
Ous .L[?E.—-‘-’-—] (121)
R’ L3¢ senécose
-1 0
G ® —mimen S (122)
5 Risend 26
Op - 1 LA 123
Rsenpcos¢ 208
® 22 g p'sen?d
In eqs. (121) to (124) W is chosen and U is given by
U.-cosc»[ W a + 1 a’ua“*
2 cos’e Rsen%cos" 292
ol —— 2w ] (125)
Reos *¢psend 3¢
Case 10: % " 0 Ogg * 0 (126)
Oop " =1 _73;(31_“.1) azn
Rizen2p R R
2
OQR = —l._ ._.a__.fl (128)
Rsen?d 3¢$3R
c“ - =1 _3.(31 _3_fu) (129)
Risend N n
o * 13 [ 3yy , L af ] (130)
Rsen¢ OR ¢ sen?¢ 20

The stress function f,¢ is arbitrary and £, is obtained
with eq. (131):

fz_-!_;nﬂ sen ' .—a (l f‘.) + azfl. d' de (131)
ok 282
Case 1l1: (V] =0 o - 0 (132}

RR R¢




Case 12: ol‘ = 0 ORO = 0 (133)
Case 13: ORR =0 060 = 0 (134)

Those three cases can be considered together. One
equilibrium equation is satisfied with a function U and another

with a function V. The third equation relates U and V, and is
of the form

2
R _a_:_ + %TV, - L(U) (135)

vhere L is a differential operator. With the change of
variables

z = colog R (136)
eq. (93) is written '
- 2
2. %ﬁ—- - L' () (137)

This equation, studied by several authors (1), {2), is
the heat conduction equation. A relation of the form

vV = L"(U) (138)
is possible to get, but it is so complicated that certainly

will be impracticable.

APPLICATION

Determine a stress field satisfying equilibrium in a
cantilever beam with circular axis with a radius of curvature
R subjected to a torsion moment at the free end.

Shear stress o and ¢ g 2re the most important. Normal
stresses are of secogsary imgortance and then eqs. (43) to
(48) she selected.
" The desired solution must give the well known results for
a2 straight beam when R tends to infinity; therefore the torsion
stress function must be present in the expression of the stresses.
The torsiom stress function ¢ satisfies
iy = - 2 in D (139)
¢ = 0 in 3D (140)

The torsion moment of inertia is given by

o= 2 jwdA (141)
A
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If the stress field adopted is proportional to senm O or

cos O,
2
L1 S
Adopting
fq = —%1—— cost ¥ dr
" .
the stress field is
g T y_
crO Jr cos@ 32
- 2. 1s k1 2
%0 ~ * T ™3
1 T,
s =% & 3 send
T

I1f can be verified that boundary conditions are

satisfied.
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