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ABSTRACT
An efficient method to solve the least weight design of nlane and
space trusses is developed. A realistic truss model, including discre-
te variables and buckling constraints is used.

The solution is obtained solving a sequence of anproximate wro-
blems in the dual space.

The difficulties introduced by the discrete variables and the buck-
ling constraints are successfully overcome.

A couple of examnles shows the effectiveness of the method.

RESUMEN
Se desarrolla un eficiente método para resolver el disero gntimo
de enrejados planos v espaciales. Se usa un modelo realista de enreja-
do, que incluye variables discretas v restricciones de pandeo.

La solucién se obtiene resolviendo una secuencia de nroblemas
aproximados en el espacio dual.

Las dificultades introducidas por las variables discretas v las
restricciones de pandeo se resuelven exitosamente,

Un par de ejemplos muestra la efectividad del método.
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INTRODUCTION.

The field of optimum design of structures is of receat developnment.
At the beginning of the 1960 decade the problem was formulated as one
of nonlinear constrained minimization with inequality constraints [l].
During the following years, the major effort was devoted to develop
efficient methods since the problam of design optimization is normally
characterized for having a large number of degrees of freedom, design
variables ans constraints.

In the study of truss design, to emphasize the search for efficien
cy, a simplified model has been traditionally used. In this model the
variables are assumed continuous and the allowables values for compre-
ssion stresses are constant; see, for example, Refs. 2,3.

This work approaches the problem of least weight truss design
using a more realistic model. It includes discrete variables and buck-
ling constraints. The introduction of discrete variables leads to the
necessity of solving a nondifferentisble problem. In turn, buckling
constraints have allowable values which, instead of being constant, are
complicated functions of the design variables. Moreover, they incor-
porate the radius of gyration as a design variable, in addition to the
cross sectional area, thus defining two independient design variables
per member.

The problem is solved through a sequence of approximate subpro-
blems in the dual space. The approximations make the solution method
more efficient [4,5] and consist of deletion of noncritical constraints
and use of first order Taylor series expansions instead of the exact
constraints. The dual space has the advantage of defining continuous
variables. The difficulties introduced by the buckling constraints
are overcome without losing the essential efficiency advantages of
the simplified model. An algorithm that fits the special features of
the dual problem is used.

DEFINITIOR OF THE DESIGN VARIABLES.

Buckling constraints in trusses depend on two kind of variables,
namely, the cross sectional areas and the radius of gvration associated
with the maximum slenderness. Even though these two types of variables
are independent with respect to each other, for engineering design pur-
poses, it is practical and reasonable to assume that they are dependent.
With this assumption the dimension of the design space may be reduced
to half. The dependence can be established by empirical formulas from
data provided by standard steel sections [6-10].

In Ref. 7 an empirical function of the form

r, "o YA (1)
was found, where ry is the cross sectional minimum radius of gyrationm,
A is the cross sectional area, and 0 is a parameter determined by the
least squares methods. Using Eq. (1), the following values of a were
obtained :
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a = 0,55 for equal-leg angle shapes,
a = 0,75 for equal-leg two angles back to back shapes.

If the radius of gyration corresponding to maximum slenderness
(vhich comtrols the design) is not the minimum, an equation of the type
of Eq.(1) can still be used to relate it with the area. In effect,
for a given type of cross-sectional shape, it is found that both ra-
dius of gyration may be related by an almost constant factor [l.l].

PROBLEYM FORMULATION.

The problem of least weight truss design subjected to several
static load conditions with mixed (continuous and discrete) variables
and constraints on stresses, including buckling, displacements, and
bounds on the variables can be formulated as follows :

Problem (P)
Pind A
- n
such that W(A) = Z Y. L. A, + wmin
S s §
b
subjected to - -
us\lj(A)sﬂ j=~1l,ng (¢3]
~j r j =1 .
- - e
- gk(Ak) L < o)u-(A) € 0 k=1,n
éi £ Ai £ Ai ie1
Ai € ni fie1l 4
vhere
b d 3
A = vector of cross sectional areas,
n = number of truss menbers,
ny = number of displacement constraints,
n, = nunber of load conditions,
Ic = set of indices associated with the continuous variables,
Id = get of indices associated with the discrete variables,
Ai = cross sectional area of bar i,
li = length of bar i,
Yi = gpecific weight of bar i,
Yy = joint displacement j due to load condition r,
Ej’ ;j = lower and upper bounds for joint disnlacements Yyry
Oh'_ = stress in bar k due to load condition r,
a = allovable tension stress for bar k (it is constant),

k
gk(Ak) = allowable compression stress for bar k (it depends on A.k),
H(x) = total truss weight, :




- 94 -

éi’ Ai. = lower and upper bounds for the continuous design variable
Aj (i e Ic)'

Q = set of admissible values for the discrete desigm variable
i
A (ie Id).
(q)
2 - {Ai y q= l.ni).
n, = pumber of discrete values for the design variable Ai' ield.

The value of the allowable compression stress Oy is taken from
the Code AISC-78 [12], and hae the expression :

[1 - % {é—c-}‘] o,

F.S. A < cc
g- \ 3
12 =°E
23 3F AzC
in which
3,32 1A
FS.=3+F & a(c—c—) «)
is the factor of safety for plastic buckling,
2 1" E
Cc- - ()
y

is the slenderness limit between elastic and plastic buckling,
Oy is the yielding stress of the material,

L
x.?l (6)

ig the maximum slenderness, ., is the buckling length, and r the asso-
ciated radius of gyration.

The AISC-78 code states bounds on the slenderness values accor-
ding to

A € 200 for bars in compression, 3
A £ 240 for bars in tension.

Since the buckling lengths do not vary in the design process,
these constraints may be indirectly imposed on the radius of gvrationm,
and, by Eq. (1),on the cross sectional areas, according to

L
A2 (E%;}' for members .in compression,
(8)

ﬁ%a.)z for members in temsion.

Problem (P) is of mixed and nonlinear type having behavior cous-
traint functions that are implicit in the design variables.

Az d
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It is customary to reduce the notation of problem (P) by includ-
ing the stress and displacement constraints in a unique group of cons-
traints gj+ In this wvay, problem (P) can be presented as :

Problem (Pl)

Find 4

n
such as W(X) - Z A\l "i Ai + min
i=l

subject to N
8,8 >0 i=lnmy O]
éi < Ai £ Ai ie Ic
Ai € ni ie Id

where a, is the number of all behavior constraints.
PROBLEM SOLUTION

In the literature of the optimum structural design it is well
known that, in general, a direct application of a mathematical pro-
gramaing algorithm to problem (Pl) leads to a very inefficient solu-
tion. Several successful approximations to improve the efficiency
has been introduced and now are widely used [3,6.5]. They have been
mostly applied to the truss simplified model. In this work, the
efficiency approximations are applied to the model with discrete va-
triables and buckling constraints. They are :

a) Design variable linking, to reduce the space dimension;

b) Nonpotentially critical constraint deletion, to reduce the
number of constraints; and

c) Use of explicit approximate constraint functions generated by
expanding the retained structural resnonse constraint func-
tions in first order Taylor. series in terms of reciprocal variables.

The foregoing measures define an approximate problem which is
convex (if it has only continuos variables), is separable and has ex-
plicit functions (easv to compute). These favorable proverties subs-
tantially facilitate the solution of the problem. However, the answer
to the original exact problem is obtained bv the convergence of the
solutions of a sequence of the approximate subproblems,

Although there exist very appropriate primal algorithms to solve
the approximate problem (especially algorithme of the gradient projec-
tion type), it has been experienced that the solution in the dual spa-
ce is, in general, more efficieat. 1In this work, the latter aporoach
is adopted.

It has been shown [3] that the first order approximations behave
well vhen applied to stress or displacement constraints with constant
allowable values. 1In this work linear approximations of buckling
constraints are obtained by the same procedure used for the other
constraints. Since these approximations usually will not perform as
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as the others, a special move limit technique, introduced in Refs. 13
and 14, is used. By this technique, called "shrinking-expanding”,
the constraint surface is moved closer to the point about which the
linear expansions have been made; this is done with the purpose of
teducing the working region in the design svace at this stage, keep-
ing the approximate functions as close as possible to the exact ones.
In this way, the advance to the minimum may be controlled.

APPROXIMATE PROBLEM
According to the aforementioned approximations, problem (Pl)
leads to the following approximate problem in terms of the linked re-

ciprocal variables :

Problem (PA)

Pind x
-+ - wi
such that W(x) = Z = + ain
f=1 X3
subject to a
8, 30 i =1l (0)
§i<xi‘<xi isxm‘.
x € I'i ie de
where
x = vector of reciprocal variables,
x, - Tik”ﬁg k e 1(i), (11)
T, ™ linking factor between Ak and X
I(i) = set of indices of the areas linked in the group i,
= = number of linked reciprocal variables,
L = number of retained constraints,
Ixc = get of the indices of the continuous linked reciprocal
variables,
de = get of indices of the discrete linked reciorocal varia-
bles,
v: = ynit weight associated with bar group i,
w, =1 vy, a2)
1 ety T "y Tix

Ei"i = lower and upper bounds for xj. They correspond to the
most restrictive bound values within the group i,

Pi = set of discrete valyes for the variable x§. It
contains the intersection of the sets of diacrete values
for the variables in the group 1,

xi)
n_. = nunber of admissible discrete values for the linked re-
ciprocal variable Xgo ie de.

Pi - (xi(q), q=l, ..., n
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It should be noted that xj represents a group of variables Ay
linked in such a way that their relative values are specified and
they do not vary during the optimization process.

N -
Functions g;(x) represent linear approximations of the exact
constraints 8j» and have the form

= 3g.
N b - - _l - - -
8500 =8y + Lag &) Gy - xD a»
=1""1
This expression can be writtea in the form
n
LS -
(x) = - e.. X, 4
8,(x) = g izl 51 % (14)
To compute ;’5 (;), tension and displacement derivates are obtain-
ed according to usual methods of implicit differentiation [3,5]. In
this work it is necessary to calculate, in addition, the comoression
allowable stress derivatives, which are obtained from the explicit
formulas, Eqs. (1), (3), (4), and (6).
DUAL FORMULATION

The approximate primal problem (PA) leads to the following asso-
ciated dual problem [3] :

Problem (DA)
Pind y
such that
-+ E 'i >, E‘ lz‘t -
d(y) = + x_(y) y, .. | ~ Yy, 8, + max (15)
im] xi(;) 1 j-l j J j-l j j
subject to
’j 30 j=1, 0
in wvhich
L9 H Ximin € %
> -
xi(y) = X;nin if x < Ximin < Xi (16)
x5 ®imin > %§
iel
xc
vhere
v 1/2
t:'un'.n ° ne an
) 5 %51
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and
w, Op

—--———————- < i y

@, @D i o 'T‘) @ (18)

xi(;) =- xi(q) if

ie de

and
y = vector of dual variables.

In relation (18)it is assumed that the xi(Q), =} ,nxi, are orde-
red according to decreasing values. If in relation (18) the left
hand inequality becomes equality, the discrete variable may be either
xi(q-l) (q),

or xi ; in turn, if the right hand u;equalx:v becomes equa-
lity, the discrete variable may be either x1 or xl

From Eqs. (16), (17), and (18) the primal variables xji are obtai
ned in terms of the dual variables v§-

Properties of the Dual Functiom.
Function d(;) has the following characteristics [3,15,16]

a) It depends om continuous variables Yj.
b) It is continuous and concave.

¢) It has first order discontinuities in hyperplanes in the dual
space associated with changes of admissible values in the dis
crete variables.

d) It has second order discontimuities in hyperplanes in the
dual space associated with_change of values of the continuous
variables xj from xjmin to xXj Or Xxj.

For continuous primal variables, the solution § of problem (DA)
yields the optimum solution & for problem (PA) through Eqs. (16) and
(17). This is because in this case (PA) is a convex programming pro-
blem having a Lagrangian functiom with a saddle point [17].

In the case of discrete primal variables, the solution § of oro-
blem (DA) gives, through Eq. (18), a solution #(%) which is c-optimal
if %(9) is feasible [16]. That is, if W(R) is the solution of problem
(PA), the following relation is satisfied.

W) € WR) + ¢ (19)

The scalar £ measures a bound of the theoretical error of the solution
W(Z(¥)). An expression for s is given in Ref, 16 :

ng ¥ ¥ &E (20)

Problem (DA) has two additional favorable properties that makes
it attractive in comparison with the primal problem (PA). They are :
i) the number of dual variables is, in general, small comnared with
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that of primal variables, because it is equal to the number of retai-
ned constraints; ii) problem (DA) has very simple constraints consis-
ting of conditions of non negativity on the dual variables.

SOLUTION ALGORITHM

According to the foregoing considerations, the algorithm prono-~
sed in the sequel is based on the following noints :

1. Given a feasible initial point in the linked reciprocal va-
riables space, a feasible region is defined according to the
potentially critical constraints retained at that stage.
2. That feasible region is "shrunk" towards the initial noint
by the shrinking~ expanding technique. To do that, the retai-
ned constraint functions gj are replaced by reduced constraints &gj
given by

88, () = g, ) - (1 - p) g, ) @1

where p is a constant less than or equal to 1 [}3,1@].
3. Constraints 8gj are linearized to define problem (PA). This
problem is solved through its dual (DA).
4, The solution point of (PA) is used as initial for a new pro-
blem. The sequence of points so obtained tends to the solu-
tion of the original problex (P1).

Accordingly, the algoritlm is :

Step 1 : Choose € > 0, 04 1, A>3 -
Compute the linked reciprocal variables x* (Eq. (11)).
Perform a structural analvsis at xX°; ta0.

Step 2 : If t=0, go to Steo 3. If not, perform a structural
analysis at R®t,

Step 3 : Scale ;‘ up to the constraint surface if it is infea-
sible. Comoute the weight Wt,

Step 4 : If t=0, go to Step S.

gt _ el

Ut
>t

Step 5 : Compute the constraints at x .
Delete the non critical constraints.
Reduce the retained constraints according to the
shrinking-expanding technique.
Construct first order aoproximations of the reduced
constraints at xt.

1f £ ¢, Stop.

Step 6 : Construct the aporoximate primal problem and its dual.

Step 7 : Solve the dual problem, getting ;: . (Eas. (16),(17),
and (18)). ¢ ¢
t =¢tHl; X -?:f.
Go to Step 2.
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The optimizer used in Step 7 is a projected sungradient algorithm
specially suited to cope with the non differentiable character of the
dual objective function. It is fully described in Refs. 15 and 16.

It consists of determining the maximum ascent direction at a nondiffe-
rentiable point by choosing the vector of minimum euclidean norm in
the supdifferential 3L(¥) at this point.

SCALING FACTOR

Step 3 of the algorithm states that if the final noint %t from
the preceding stage lies out of the feasible region, it must be ampli-
fied by a scaling factor so that a new point on the constraint surface
is obtained, which will be feasible. The infeasibility of Xt is measu-
red with respect to the exact constraints, and it may occur when the
approximate problem is solved, even though Xt mav be feasible with
respect to the approximate constraints.

Scaling is performed to comstruct the new approximate problem
(DA)t on a convenient basis, since the approximations improve when
a point is closer to the constraint surface; in addition, constraint
deletion may be made more rationally. For the purpvose of construc-
ting problem (DA)Y, the scaled %t does not need to have discrete com-
ponents with admissible values.

For efficiency reasons, the response function values correspoa-
ding to the scaled design must not be determined at the expense of a
structural analysis, but in terms of their initial values, before
scaling. In the case of displacement and tension stress constraints,
which have constant allowable values, the computation of the scaling
factor to the constraint surface and of the scaled values is simple.
In effect, it is well known that in a truss if all the areas are mo-
dified by a factor u, stresses and displacements change with its re-
ciprocal 1/u. Therefore, the scaling factor to reach a constraint
allowable value is :

(22)
Viad

vhere vi represents a tension stress or disolacement and vj,; its
constant corresponding allowable value.

The scaling factor for compression stress constraints, whose
allowable values depend on the design variables (see Eqs. (1),(3),
(6)), is of non trivial computation. Closed form exnressions for this
factor are derived in Ref. l1l. Thevy are :

23\ %, M2 2 a0, /2
ii
T e for 4 3C | %o @n
and
A2 S o. 23 o /2
O [ TP § 2 i
uy 3 { ¢ +3 °y cos (%) for A;< C_ -6?;' (24)
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in which ¢ is the smaller oositive angle such that

3/2 A

cos b = T &,
i i cy

Tt 3
S y

qla
=3

(25)

Considering all the constraints, the scaling factor u to the most
critical constraint intersected by the scaling straight line is comnu-
ted by

¥ = max “i (26)
i

NUMERICAL EXAMPLES

A comnuter program, based on the algoritiwm nronosed herein, is
aoplied to the computation of the least weight design of two classical
trusses. The program was written in FORTRAN G and the examples were
processed in the IBY 370/3031 computer at the Universitv of Chile.

Example 1. Ten bar plane truss.

The least weight design of 10 bar nlane truss showed in Fig. 1 is
solved.

-
914.4

) —
4 T2 x{cm)
463 (kM) 445 [k M)

Fig. 1. Ten bar olane truss.
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The truss is subjected to one load condition described in Pig. 1.
The constraints are as follows :

a) The horizontal and vertical disolacements at joints 1,2,3,
and 4 are limited to be less than 5.08 cm,

b) The tension allowable stress is 172 MPa,

c) The allowable value for compression stress is taken from
AISC-78 Code (Egq. 3).

d) The cross sectional areas have minimum values constraints
coming from AISC-78 Code slenderness restriction (Eq. 8).

All bars are of the same material having the following nroverties:

Density : y = 0.00277 ke/cm?
Modulus of Elasticity : E = 68963 MPa.

Bar cross sectional shaves consist of two angles with lees back to
back (a=0.75). Two values of the shrinking - expanding narameter p are
taken; namely, p=0.8 and o0=1.0.

Two cases are solved. One considers mixed variables, in which the
areas corresponding to bars 1,3,5,7, and 9 are assumed discrete. The
second case includes only discrete variables. Table 1 shows the admissi-
ble values for the discrete variables in both cases.

Table 1. Examnle 1. 10 bar truss.
Adnissible values for discrete variables.

Bar Areas (cm?)

1,2,5, 25.81  32.26 38.71 45.16 48.11 51.61 58.06 64.52
6 70.97 77.42 83.87 90.32 96.77 98.19 103.23 109,68
116.13 122.58 129.03 135.48 135.74 138,90 141,94 148,39
149.68 154.84 161.29 167.74 174.19 180,65 187.10 193,55
196.90 200.09

3.4 38.71  45.16  48.11 51.61 53.06 64.52 70,97 77.42
83.87 90.32 96.77 93.19 123.23 109,68 116,13 122.58
129.03 135.48 135.74 138.90 141.94 148.39 149,68 154.84
161.29 167.74 174.19 180.65 187.10 193.55 196.90 200.00

7,9 51.61 58.06 64.52 70.97 17.42 83.87 90.32 96.77
98.19 103.23 109.68 116.13 122.58 129.03 135.48 135.74
138.90 141.94 148.39 149.68

8,10 77.42 83.87 90.32 96.77 98.19 103.23 109.68 116.13
122.58 129.03 135.48 135.74 138.90 141.94 148.39 149,68
154.84 161.29 167.74 174.19 180.65 137.19 193.55 196.99
200.20

Iteration history related to weight nrogression and the final design
for both mixed and pure discrete cases are detailed in Tables II1 and III,
respectively.




Analyses Mixed case (1) Discrete case
p = 0.8 p=1.0 o=0.8 p=1.0
1 6607.32 6607 .32 6607 .32 6607.32
2 3590.01 3629.43 4463.50 4823,17
3 3478.98 3438.77 3746.82 4002.90
4 3359.32 3397.55 3663.11 3803.56
5 3331.38 3244.56 3637.42 3735.54
6 3252.42 3163.25 3590.12 3678.77
7 3258.66 3278.30 3515.90 3548.37
8 3246.36 3246.64 3506.41 3511.12
9 3234.40 3231.48 3506.76 3571.61
10 3232.58 3221.46 3502.92 3509.91
11 3221.02 3231.82 3487.19 3499.91
12 3220.66 3297.76 3449.01 3491.21
13 3220.43 3200.28 3449.01 3469.09
14 3200.14 3449.03
15 3449.01
Tine
sec~CPU) 3.50 4.84 5.57 6.63

(1) Variables 1,3,5,7, and 9 are discreate.

Table I11. Example 1. 10 bar truss.
Final design. -
Area (cm?)
Member T -
B Mixed case (1) Discrete_case
2 25.88 51.61
3 187.10 250.00
4 131.42 109.68
5 25.81 25.81
6 25.88 51.61
7 51.61 149.68
8 268.63 200.00
9 103.23 70.97
10 79.63 154.84
Final weight|  4,50.14 3449.01
(kg)

(1) Variables 1,3,5,7, and 9 are discrete.

Table II shows that, for this case,the nethod works well for both

values of the parameter p (the values p=l means no shrinking).
0=0.8 required a shorter time and a smaller number of analvses to con-
In turn, the mixed case was solved in a shorter time compared

verce.

to the discrete case.

However ,
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In Table III the final weight corresponding to the mixed case is
smaller than that of the pure discrete case. This result is logical
since the continuous variables, which are half of the total number of
variables in the mixed case, have less restricted values than the dis-
crete ones.

Example 2. 72 bar space truss.
Fig. 2 shows the 72 bar space truss whose least weight design is

sought. The structure is subject to two load conditions described in
Table IV,

1524

152.4

1524

1524

Pig. 2. 72 bar soace tryss.
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Table IV, Example 2.

Load conditions.

72 bar space truss.

Load Number of Joint | Load components (N)
condition |loaded joints| Number

Px Py Pz

1 1 1 22270 22270 |- 22270

2 4 1 0.0 0.0 |- 22270

2 0.0 0.0 |- 22270

3 0.0 0.0 - 22270

4 0.0 0.0 |- 22270

Table V specifies the topology of the bar members.
Table V. Example 2. 72 bar snace truss.
Topology of members.

Initial | Final Initial | Pinal Initial Pinal

B | joint | joint | % | Joine | joint | P2 | joint | joiac
1 1 5 25 7 10 49 9 10
2 2 6 26 6 11 50 10 11
3 3 7 27 8 11 51 11 12
4 4 8 28 7 12 52 11 9
5 2 5 29 5 12 53 9 11
6 1 6 30 8 9 54 10 12
7 3 6 31 5 6 55 13 17
8 2 7 32 6 7 56 14 18
9 4 7 33 7 8 57 15 19
10 3 8 34 8 5 58 16 20
11 1 8 k1] 5 7 59 14 17
12 4 5 36 6 8 60 13 18
13 1 2 37 9 13 61 15 18
14 2 3 38 10 14 62 14 19
15 3 4 39 11 15 63 16 19
16 4 1 40 12 16 64 15 20
17 1 3 41 10 13 65 13 20
18 2 4 42 9 14 66 16 17
19 5 9 43 11 14 67 13 14
20 6 10 44 10 15 68 14 15
21 7 11 45 12 15 69 15 16
22 8 12 46 11 16 70 16 13
23 6 9 47 9 16 7 13 15
24 5 10 48 12 13 72 14 16

In this example the variables are linked (with Tij=»1) according to
the groups defined in Table VI.
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Table VI. Example 2. 72 bar space truss.
Linking of truss menbers.

Group N°® of members Member
member in the group nunbers
1 4 1- &

2 8 5-12
3 4 13-16
4 2 17-18
5 L} 19-22
6 8 23~-30
7 4 31-34
8 2 35-36
9 4 3740
10 8 41-48
11 4 49-52
12 2 53-54
13 4 55-58
14 8 59-66
15 4 67-70
16 2 71-72

All bars are of the same material, with the following properties:

Density t Yy = 0.00277 kg/cn?
Modulus of Elasticity : E = 63963 MPa.

The constraints are :

a) The displacements at joints 1 through 16 must be smaller than
0.634 cm, along the 3 directions x, y, and z.

b) Tensile stresses must be less than the allowable value of
172 MPa.

c) The allowable value for compression stress is taken from AISC-
78 Code (Eq. 3).

d) The cross sectional areas hdve minimum value constraints accor-
ding to AISC-78 Code slenderness restrictions (Eq. 8).

Equal leg angle shapes (a=0.55) are used for the truss members.
Two values of the shrinking -~ expanding parameter are used; namely,
p=0.8 and p=1.0,

A mixed variables case is solved. The variables 1-4, 13-16, 19-22,
31-34, 37-40, 49-52, 55-58, and 67-70 are assumed discrete with admi-
ssible values according to Table VII,
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Table VII. Example 2. 72 bar space truss.
Discrete variables admissible values.

Bar numbers . Areas (cm?)
1- 4,19-22,37-40 | 2.00 2.50 3.00 3.30 3.50 4.00 7.30 8.50
55-58 9.00 9.50 10.00 12.00 12.70

13-16,31-34,49-52 | 8.50 9.00 10.00 12.00 12.70
67-70

Weight progression at each stage and the ootimun design are re-
ported in Tables VIII and IX, respectively.

TABLE VIII. Example 2. 72 bar snace
truss,
Weight progression

Number of Veight (kg)

Analyses p = 0.8 b =1.0
1 683.12 683.12
2 682,58 671.02
3 630.58 641 .50
4 679.53 650,38
5 663,37 638.23
6 650.03 638.10
7 638.10 631.62
8 631.62 630.74
9 620.04 620,04
19 620,04 620.04

Tinme

(sec-CPU) 32.38 35.20
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Table IX, Example 2. 72 bar
space truss.
Final design,

Group Area (ca?)

1 12.70

2 11.36

3 8.50

4 15.05

S 8.50

6 9.40

7 8.50

8 10.46

9 12.00
10 9.40
11 8.50
12 15.05
13 12.70
14 10.34
15 8.50
16 10.46

Final
weight 620.04
_(kg)

In this example, similarly to Example 1, the method behaved well
with both values of the parameter p.

CONCLUSIONS

An efficient algorithm to solve the least weight design of olane
and space trusses is developed. A realistic truss model, including
discrete variables and buckling constraints is used.

Standard approximations, usually applied to simpler models, are
successfully used.

The minimum weight design is found solving a sequence of avproxi-
mate problems in the dual space.

The difficulties introduced by the discrete variables and the buck
ling constraints are solved as follows :

1. The approximate primal problem with discrete variables leads

to a dual problem with continuous variables having a concave
objective function that has first order discontinuities. An algorithm,

specially suited for this nondifferentiable problem, is implemented.

2. The linear approximations of buckling constraints do not beha-
ve as well as those related to constraints with constant allow-
ables. To avoid convergence instabilities in the sequence of approxi-
mate problems, the shrinking ~ expanding move limit technique is applied.
It should be noted, however, that in the two examples included in this
work, all the approximations showed a good behavior.
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3. The troublesome problem of scaling of variables to the cons-
traint surface of buckling constraints, is neatlv solved by de-
termining closed form solutions for the scaling factor,

4. Buckling constraints introduce the radius of gvration as a new
design variable, in addition to the cross sectional area. To
avoid doubling the design space, aporoximate empirical relations bet-
ween these two variables are introduced.

A couple of examples proves the effectiveness of the method.
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