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ADefficieot _thacl to solve the l.st _i~ht de.ig;n of nlane and
space trusses is d"eloped. A realistic truss .ode!. ineludinV;dbc"'r_
te variable. aDdbuck1~ eonstraiDt. is used.

The 5Olutioll is obtained 5Olvin" a sequence of antlroxi.-ate !'t'o-
bl•• s in the dual space.

The difficultie •• introduced by the discrete variables and the buck-
linlJ cOllstraints are succe.sfully overc~e.

Se desarrolla un eficiente lIIetodoDar. resolver el dise;;o ont ilDo
de enrejados plano. y estl8ciales. Se usa un MOdelorea1ista de enre;a-
do, que incluye variables discretas v restriccione. de nandeo.

La soluci6n se obtiene resolviendo una secuencia de Drob1ema~
aproximadoseo e1 espacio dual.

Las dificultade. introducida •• por la. variables disereta. y 1a.
restricciolle. de pandeo se resuelveo exitosalDente.



The field of optt.um design of structures is of reCeDt develo~ent.
At the besiDning of the 1960 deeme tbe prohl. was fomulated as one
of nonlinear constrained .iDt-ization with inequ~lity constraints [IJ.
DuriDgthe following years, the _jor effort vas devoted to develop
efficieat lIIethodsaince the probl•• of design optt-ization is nor-ally
characterized for havin! a large _ber of degr••• of freedOll, desip
variable. ans constraint ••

In the study of truss design, to emphasize the search for efficien
cy, a aiJaplif ied -adel has been traditionally used. In tbis _del the-
variables are a._ed continuous and the allowables value. for cOllpr••.
saion .tre •••• are constant; see, for exa.ple, aef •• 2,3.

This work approaches the problera of lea.t weight truss design
using a IDOrereali.tic .odel. It include. dieerete variables and buck-
ling constraints. The introduction of discrete variables leads to the
necessity of solving a nondifferentiable probl.. In turn, buckling
constraints have allowable values which,in.tead of beine constant, are
complicated functions of the d•• ign variables. rior_r, they iDcor-
porate the radius of gyration aa a deaign variable, in addition to the
cross sectionsl area, thus defininc two independient design variables
per aeraber.

The problem is solved through a sequence of approximate auboro-
ble •• in the dual srce. The approxiaations Dlau the solution lIethod
-are efficient [4,5 and consist of deletion of noacritical constraints
and use of first order Taylor s~ies expansions instead of the exact
constrainta. The dual apace hea the advantage of defining continuous
variables. The difficulties iDtroduced by the bucklia& constraints
are overcomewithout loaing the essential efficiency advanta~ea of
the st-plified IIIOdel. AnallOritba that fita the apecial features of
the dual probl. is used.

Buckling constraints iD trusses depend on two kind of variables,
namely,the cross sectional areas and the radius of gwation associated
with the IIlaxiJaullslenderness. Even though these two types of variables
are independent with respect to each other, for engineerinl design pur-
poses, it is practical aod rea80nable to as_e that they are dependent.
With this aSSUlllptionthe dimension of the design space lIay be reduced
to half. The dependencecan be established by empirical foraulas frail
data prcwided by standard a~eel aections [6-10].

In Ref. 7 an _pidcal functiOll of the fon

was found, where r. is the cross sectional .1n1mumradius of gyration.
A is the cross sectional area, and Q is a parameter deterained by the
least squares lIIethods. Oaina~. (1), the following .aloe. of Q were
obtained :



C a 0.55 for equal-leI aGIle .hane••
c a 0.75 for equal-leg two angl.s back to back .haP•••

If the radius of gyratioa correspcmdin~ to uxiaua slenderne.s
(which controls the de.ign) i. not the ainiJaua. an equation of the type
of Eq.(l) can .till be used to relate it with the are.. In effeet,
for a liven type of cross-.ectional .hape, it i. foulld that both ra-
dius of gyration MV be related by an almo.t constant factor [11].

The probl_ of lea.t _ight truss de.isIn 8Ubjected to s_eral
static load collditions with ••ixed (eontinuou.snd discrete) variable.
and constraints on .tre ••••• including buc:ltlin~. displacenaent•• and
bound. on the variable. can be fOt'1llUlatedas follows :
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a vector of ero•• sectional areas.

a nu.ber of truss llI_bers.

• numberof displacement constraints.

• numberof load collditiona.

a set of indices associated with the continuous variables,

• set of indices associated with the discrete variable ••

a cross sectional area of bar i,

a length of bar i,

• specific _ight of bar i,

• joint displacement j due to load condition r.

a lower and upper bounds for joint disnlacements Ujr,

• stress in bar It due to load condition r.

• allowable ten.ion Itrell for bar k (it is eoftst~nt).
• allowable compression stress for bar It (it depends on "k)'

• total truss _ight,



• l_r and upper boaads for tha continuous desisn variable
Ai (i £: Ic)'

• set of adtlIissible valu •• for the discrete des. variable
Ai (i £ Id),

{ (q) }• Ai ,q. l,ni '
• nu.be of discrete values for the desi~n variable Ai' kId'

The value of the allowable cOlllpressionstress ~ is taken frOlll
the CodeAISC-18[12J, and has the expre•• ion : -

{ [1 - t {~c}l] ay
~ < CF.S. c

a· (3)
12 .2E ~ ~ CcniT

in which

F.S. S 3 ~ 1 ~ J (4)• - + - - - - {;....}
3 8 Cc 8 Cc

is the factor of safety for plastic bucklintl,

C • 12 wi E (5)
c ay

is the slenderness 1t-it between elastic aad plastic bucklin~,
ay is the yield ing stre •• of the •• urial.

1••~..-.:;.
r

is the maximUIIIslenderness, 1p is the buckling len~th. and r the asso-
ciated radius of gyration.

The AISC-18code states bounds on the slenderness values accor-
di.. to

~ ~ 200 for bars in co-pression,
A , 240 for bars in tension.

Since the buckling lengths do not vary in the des~n process,
these constraints .ay be indirectly imposedon the radius of gYration.
and, by Eq. (l),on the cross sectional areas, accordin~ to

I.
A ~ {2~}1 for _.bers.in cOlIIpression,

I.
A ~ {24&.}1 for aembers in tension.

Probl. (P) is of .ised and nonlinear type having behavior cons-
traint fuactions that are ialtlicit in the design variabl.s.



It is custoaary to reduce the notation of probl.. (P) by includ-
ing the stress and displaceaent constraints in a unique group of cons-
traints gj' In this _y, probl_ (P) can be presented as :

Proble (PI)

Find A

subject to +Ij (A) ~ 0 j • l,~ (9)

~i ~ Ai ~ Ai i £ Ic

Ai £ 0i i £ Id
where ••• is the _ber of all behavior constraints.

In the literature of the optt.uB structural desi~n it is well
kaown that, in general, a direct application of a aatheaatical pro-
sr_ing algorittD to problem (PI) leads to a very inefficient solu-
tion. Several successful approxu.ations to i.prove the efficiency
has been introduced and IlOV are widely used [3.4,5J. They have been
IIOstly applied to the truss siJsplified lIOde1- In this work, the
efficiency approxu.ations are applied to the lIOde! vith dbcrete va-
riables aad buclr.ling constraints. They are :

It) Ifonpotentially critical coaatraint deletion, to reduce the
nuaber of constraints; lIDd

c) Use of explicit approxilute constraint functions generated by
expanding the retained structural res\')Onse constraint func-

tions in first order Tayler. series in teras of reciprocal variabl_.

The foregoing _asures define aD approximate problem which is
convex (if it bas only continuos variables), is separable and bas ex-
plicit functions (easv to compute). These favorable uronerties subs-
tantially facilitate the solution of the probl... Rovever, the answer
to the original exact proble is obtained bv the convergeoc:e of the
solutions of a sequence of the approxu.ate subproblems.

Although there exist very appropriate priaal al~orithms to solve
the approxu.ate proble (especially algorithms of the gradient projec-
tion type), it has been experienced that the solution in the dual spa-
ce ia, in general, more efficient. In this work, the latter approach
ia adopted.

It haa been shown [3] that the first order approximAtions beh~ve
well when applied to atress or displacement constraints with constant
allowable valuea. In this work linear approxi~&tions of bucklin~
constraints are obtained by the aame procedure used for the other
constraint.. Since these approxi-.tions usually will not perfora as



as the others, a special move It-it technique, introduced in Refs. 13
and 14, is used. By this technique, called "shrinltin,,-expandin~ III,

the constraint ~rface is moved closer to the point about which the
linear expansions have been made; this is done with the purpose of
reducing the working region in the design soace at this sta~e, keep-
ing the approxisate functions as close as possible to the exact ones.
In this _y, the advance to the mini.Dlua may be controlled.

Accordi~ to the aforementioned approximations, problem (PI)
leads to the following approximate problem in terms of the linked re-
ciprocal variables

+Find x

such that we;)

-!i ~ Xi ~ Xi

Xi £ fi

. j • l,nr

i £ lxc
i £ IXd

Xi • tik/~ k £ I(i), (11)
tik • linking factor between ~ and Xi'
I(i) set of indices of the areas linked in the group i,

• nuaber of linked reciprocal variables,
• nuaber of retained constraints,
• set of the indices of the continuous linked reciprocal

variables,
• set of indices of the discrete linked reciorocal varia-

bles,
- unit weisht associated with bar group i,

- r T t T ,k£1(1) It-k ilt

!i,Xi - lower and upper bounds for Xi' They correspond to the
IIOst restrictive bound values within the ~roup i,

- set of discrete val~es for the variable Xi. It
contains the intersection of the sets of discrete values
for the variables in the sroup i,

- {Xi (q), q-l, ••• , Ilxi}
• number of admissible discrete values for the linked re-

ciprocal variable Xi' i £ Ixd'



It should be noted that xi represents a group of variables Ak
linked in such a way that their relative values are specified and
they do DOt vary during the optimization proce.s.

'" ..Functions Ij(x) represent linear approximations of the exact
constraints Ij. and bave the fora

'" .• .• a 31. .•g.(x)-gj(x)+ fr(x) (xi-xi) (13)
J 0 i-1 Xi 0

To cOllpute~j (;). tension and displacl!nlentderivates are obtain-
ed according to usual aethode of im~licit differentiation (3.5]. In
this work it is necessary to calculate. in addition. the comoression
allowable stress derivatives. which are obtained frOllthe explicit
foraulas. Eqs. (1). (3). (4). and (6).

The approximate primal problem (PA) leads to the following asso-
ciated dual problem [3] :

Problem (OA)

such that
• [ w. .•de;) - f -!.+ + x.(y)

i-1 xi(Y) 1

in which

{ !i if Xirlin" !i
x.(;) if -x. ! < Xirlin< x.
1 lIIIin 1

Xi if xillin ~ ii



x (,) • x (q)
i i

w.
1

_ (q) (q-l)
Ai Xi

+
1 - vector of dual variables.

In relation (18)it is assumed that the xi(q), Q-l,nxi, are orde-
red according to decreasing values. If in relation (18) the left
hand inequality bec~e. equality, the discrete variable •• , be either
xi(q-l) or xi(q); in turn, if the right hand ipequalitv becomes equa-
lity, the discrete variable •• , be either xi(q) or xi(q+I).

From Eqs. (16), «(7). and (18) the primal variables xi are obtai
ned in ter.s of the dual .ariabl •• Yj'

Properties of the Dual Punctioa.

Punctioa de;) baa the following characteristic. [3,15,16]

a) It depends OIl continuous variables Yj'
b) It is continuous and concave.
c) It has first order discontinuities in byoerplanes in the dual

space associated withch_ps.s of ad.issible values in the di~
crete variables.

d) It has second order diseontiauities in hYJ)er'lllanesill the
dual space associated with change of .alues of the continuous

variables Xi from xialin to Ii or xi' .

For continuous 'Ilr~l variables. the solution v of problem (DA)
yields the optimum solution i for problem (PA) throuSh Eqs. (16) and
(17). This is because in this case (PA) is a convex programming pro-
blem having a Lagrangian fUllctiOll with a saddle PC)iat [17].

In the case of discrete prialal variables. the solution ~ of uro-
blem (OA) gives, through Eq. (18). a solution x(y) which is £-optillllli
if x(y) is feasible [16]. That ia, if W(i) ia the solution of problem
(PA), the following relation is satisfied.

The scalar £ measures a bound of the theoretical error of the solution
W(~(Y». An expression for £ is given in Ref. 16 :

Problem (DA) has two additional favorable properties that makes
it attractive in comoarison with the primal problem (PA). Theyare
i) the number of dual variablea ia, ia leneral, ••• 11 comoared with



that of priaal variables, because it is equal to the number of retai-
ned constraints; ii) proble. (DA) has very st-ple constraints consis-
tina of conditions of non negativity oa the dual variables.

According to the foregoing considerations, the al~oritln 1)t'OOO-
sed in the sequel is based on the folloving noints :

1. Given a feasible initial !'Ointin the linked reei"roeal va-
riables space, a feasible re~ion is defined according to the

potentially critical constraints retained at that stage.
Z. That feasible region is "shrunk" to_rds the initial noint

by the shrinkiBg- expanding technique. To do that, the retai-
ned constraint functions gi are replaced by reduced coastraints 68i
giTen by .... ..

68i(X) • gi(X) - (1 - p) ~i(xo) (21)

where p is a constant less than or equal to 1 [13,14J.
3. eonstraints 6~i are linearized to define probl•• (PA). This

probl•• is solved through its dual (DA).
4. The solution !'Ointof (PA) is used as initial for a new Dro-

bl... The sequence of points so obtained tends to the sola-
tioa of the original probl•• (PI).

Aceordinaly. the algoritla is
Step 1 : Choos. £: > O. p", 1. 1- > o.

Com?ute the linked reciprocal variables ;- (Eq. (11».
Perform a structural analysis at l-; t-G.
If t-O, go to Step 3. If not, 1)erforma structural
analysis at te.

Step 3 Scale;t up to the constraint surface if it is infea-
sible. Comoute the vei~ht \ft.

Step 4 If t-O. 10 to Step 5.

If I wt
~twt-l I~t. Stop.

Step 5 Compute the constraints at ;t.
Delete the non critical constraints.
aeduee the retained constraints accordina to the
shrinltinll-exl)andingtechnique.
Construct first order aPDroxiaations of the reduced
constraints at :t.

. .•t (Solve the dual probl••• gett~na xf • (Eos. 16),(17).
and (L8», t .•t
t • t+l; t - xf•Go to Step 2.



Tbe o~timizer used in Ste~ 7 is a proiected sun~radient al~oritha
specially suited to CODe with the non differentiable character of the
dual objective function. It is fully described in Refs. 15 and 16.
It consists of determinin~ the maximum ascent direction at a nondiffe-
rentiable point by choosing the vector of minimum euclidean norM ia
tbe supdifferential 31(1) at this ooint.

Step 3 of the algorithm states that if the final ~oint tt fr~
the precedin~ stage lies out of the feasible r~ion, it must be aMPli-
fied by a scalin~ factor so that a new point on the con~traint surface
is obtained, which will be feasible. The infeasibility of ~t is measu-
red with respect to the exact constraints, and it mav occur when the
approximate problem is solved, even though Xt mav be" feasible with
respect to the approximate constraints.

Scaling is perf~rmed to construct the new approximate problem
(DA)t on a convenient basis, since the approxt-ations improve when
a point is closer to the constraint surface; in addition, constraint
deletion may be made more rationally. For the purpose of construc-
ting problem (DA)t, the scaled tt does not need to have discrete com-
ponents with admissible values.

For efficiency reasons, the response function values correspon-
ding to the scaled design must not be dete~ined at the expense of a
structural analysis, but in terms of their initial values, before
scaling. In the case of displacement and tension stress constraints,
which have constant allowable values, the computation of the scaling
factor to the constraint surface and of the scaled values is simole.
In effect, it is well known that in a truss if all the areas are mo-
dified by a factor u, stresses and displacements chan~e with its re-
ciprocal 1/u. Therefore, the scaling factor to reach-a constraint
allowable value is :

where Vi represents a tension stress or diSPlacement and viad its
constant corresponding allowable value.

The scalin~ factor for com~ression stress constraints, whose
allowable values depend on the design variables (see Eqs. (1),(3),
(6», is of non trivial computation. Closed form eXDres~ions for this
factor are derived in Ref. 11. Thev are:

4 [A..I S 0'1 [23 tJ ]1'1) 2~eI +) 0; cosl (~ for A.i< Cc -60
1

i _
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Considerin~ all the constraints. the sealin~ factor II to the .ost
critical constraint intersected by the seali~ strai~ht line is coanu-
ted by

\I • 1II&X Jl i
i

., COIIIouterpro,;r_. based on the al~orittn !)rOfM)S~herein. i'J
aoplied to the c~PUtatioQ of the least wei~bt deai~n of two cl.Rsic~l
trusses. The progr_ vas written ill FOR.T1U..1If G MId the exalll~leswere
processed ill the In 370/]031 c~t.r at the Oniy_Bit" of Chile.

The l.at _~bt d_i3Il of 10 bar "b•• truss sbawd ill 'ilJ. 1 is
solved.
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The truss i~ subjected to one load condition described in Pi~. 1.
The constraints are as follows

a) The horizontal and vertical disnlac~ents at ioints 1,2,3,
and 4 are H.ited to be less than 5.08 cm.

c) The allowable value for compression stress is taken from
AlSC-78 Code (Eq. 3).

d) The eross sectional areas have m~n~mum v.lues constraints
coming from AISC-78 Code slenderness restriction (~' 8).

Density
~odulus of Elasticitv

y • 0.00277 ~/C1lIJ

E • 68963 "tl"a.

Bar cross sectional shanes consist of two an~les with le~s back to
~ack (a-0.75). Two values of the shrinkin~ - expandin~ narameter 0 are
taken; n~ely, 0-0.8 and 0-1.0.

Two cases are solved. One considers mixed variables, in which the
areas corresponding to bars 1,3.5,7, and 9 are assumed discrete. The
second case includes only discrete variables. Table I shows the admissi-
ble values for the discrete variables in both cases.

Table r. ExamDle 1. 10 bar truss.
Adlllissible values for discrete variables.

Bar Areas (C1ll1)

1,2,5. 25.81 32.26 38.71 45.16 48.11 51. 61 58.06 64.52
6 70.97 77.42 83.87 90.32 96.77 98.19 103.23 109.68

116.13 122.58 129.03 135.48 135.74 138.90 141. 94 148.39
149.68 154.84 161.29 167.74 174.19 18!'l.65 187.1 f) 193.55
196.90 200.00

3.4 38.71 45.16 48.11 51.61 53.06 64.52 70.97 77.42
83.87 90.32 96.77 9':1.19 103.23 109.68 116.13 122.58

129.03 135.48 135.74 138.90 141. 94 148.39 149.68 154.84
161. 29 167.74 174.19 180.65 187.10 193.55 196.90 200.00

7.9 51.61 58.06 64.52 70.97 77 .42 83.87 90.32 96.77
98.19 103.23 109.68 116.13 122.58 129.03 135.48 135.74

ll:::~141. 94 148.39 149.68
8.10 83.87 90.32 96.77 9':1.19 103.23 109.68 116.13

122.58 129.03 135.48 135.74 138.90 141. '}4 148.311 149.68
154.84 161.29 167.74 174.19 180.65 137.10 193.55 196.9':>
200.00 ----- ---------

Iteration history related to wei~ht ~ro~ression and the final desi~n
for both mixed and pure discrete cases are detailed in Tables II and III,
respectively.



alyses Mixed case (l) Discrete case

p - 0.8 p - 1.0 o • 0.8 p • 1.0

1 6607.32 6607.32 6607.32 6607.32
2 3590.01 3629.43 4468.50 4823.17
3 3478.98 3438.77 3746.82 4002.90
4 3359.32 3397.55 3663.11 3803.56
5 3331.38 3244.56 3637.42 3735.54
6 3252.42 3163.25 3590.12 3678.77
7 3258.66 3278.30 3515.90 3548.37
8 3246.36 3246.64 3506.41 3511.12
9 3234.40 3231.48 3506.76 3571.61

10 3232.58 3221.46 3502.92 3509.91
11 3221. 02 3231.82 3487.19 3499.91
12 3220.66 3297.76 3449.01 3491. 21
13 3220.43 3200.28 3449.01 3469.09
14 3200.14 3449.03
15 3449.01

i'lle 3.50 4.84 5.57 6.63sec-CPU' -

Final desin. -
Area (cat)

Member
lllf

-----
~ixed case Di""r~t~_c"-

2 25.88 51. 61
3 187.10 21)0.no
4 131.42 109.68
5 25.81 25.81
6 25.88 51.61
7 51.61 149.68
8 268.63 200.00
9 103.23 70.97

10 79.63 154.84

Final veiRht 3220.14 3449.01
(kg)

. -

Table II shows that, for thi. ~alc,the ~ethorl works well for both
values of the parameter p (the values p-1 ~eans no shrinkinc). However,
0-0.8 required a shorter time and a smaller number of analYses to con-
ver~e. In turn, the .ixed case was solved in a shorter t~e compared
to the discrete case.



In Table 111 the final weight corresponding to the lIIixedease is
smaller than that of the pure discrete case. This result is lORical
since the continuous variables, which are half of the total number of
variables in the .ixed ease, have less restricted valute than the dis-
crete ones.

Fig. 2 shovs the 72 bar s~ce truss whose least wei~ht desi~n is
SOught. The structure is subject to two load conditions described in
Table IV.

T
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Table IV. Exalaple 2. 72 bar space trul's.
Load conditions.

Load Numberof Joint Load components (M)
condition loaded joints Nu.ber

l'x Py Pz

1 1 1 22270 22270 - 22270
2 4 1 0.0 0.0 - 22270

2 0.0 0.0 - 22270
3 0.0 0.0 - 22270
4 0.0 0.0 - 22270

Table V. Example 2. 72 bar sMce trul's.
Topology of members.

Bar Initial Final Bar Initial Final Bar Initial Final
joint joint Joint joint joint joint

1 1 5 25 7 10 49 9 10
2 2 6 26 6 11 50 10 11
3 3 7 27 8 11 51 11 12
4 4 8 28 7 12 52 11 9
5 2 5 29 5 12 53 9 11
6 1 6 30 8 9 S4 10 12
7 3 6 31 5 6 55 13 17
8 2 7 32 6 7 56 14 18
9 4 7 33 7 8 57 15 19

10 3 8 34 8 5 58 16 20
11 1 8 35 5 7 59 14 17
12 4 5 36 6 8 60 13 18
13 1 2 37 9 13 61 15 18
14 2 3 38 10 14 62 14 19
15 3 4 39 11 15 63 16 19
16 4 1 40 12 16 64 15 20
17 1 3 41 10 13 65 13 20
18 2 4 42 9 14 66 16 17
19 5 9 43 11 14 67 13 14
20 6 10 44 10 15 68 14 15
21 7 11 45 12 15 69 15 16
22 8 12 46 11 16 70 16 13
23 6 9 47 9 16 71 13 15
24 5 10 48 12 13 72 14 16

In this example the variables are linked (with Tij-l) accordin~ to
the groups defined in Table VI.



Table VI. Exam~le 2. 72 bar s~ace truss.
Linking of truss members •

Group .- of aembers Kember
.ember in the group nUlllbers

1 4 1- 4
2 8 5-12
3 4 13-16
4 2 17-18
5 4 19-22
6 8 23-30
7 4 31-34
8 2 35-36
9 4 37-40

10 8 41-48
11 4 49-52
12 2 53-54
13 4 55-58
14 8 59-66
15 4 67-70
16 2 71-72

Density
Modulus of Elasticity

y • 0.00277 kg/cat
E • 68963 liPa.

a) The displacements at joints 1 through 16 must be smaller than
0.634 ca, along the 3 directions x, y, and z.

b) Tensile stresses must be less than the allowable value of
172 MPa.

c) The allowable value for compression stress is taken from AISC-
78 Code (Eq. 3).

d) The cross sectional areas have minimua value constraints accor-
ding to AISC-78 Code slenderness restrictions (Eq. 8).

Equal leg angle shapes (a-a.55) are used for the truss members.
Two values of the shrinking - expanding ~rameter are used; namelv,
P-O.S and p-l.O.

A mixed variables ease is solved. The variables 1-4, 13-16, 19-22.
31-34, 37-40. 49-52, 55-58, and 67-70 are assumed discrete with admi-
ssible,values according to Table VII.



Table VII. Exalllple2. 72 bar space truS!l.
Discrete variables admissible values.

Bar numbers Areas (C1ll2)

1- 4,19-22,37-40 2.00 2.50 3.00 3.30 3.50 4.00 7.30 8.50
5S-58 9.00 9.50 10.00 12.00 12.70

13-16,31-34,49-52 8.50 9.00 10.00 12.00 12.70
67-70

Weir,ht progression at each sta~e and the o~ti~ desi~ are r•.•
ported in Tables VIII and IX, respectively.

TABLE VIII. Example 2. 72 bar ~nace
truss.
Wei~ht pro~ression

Number of Weight (~)

Analysell p • 0.8 p • 1.0

1 683.12 683.12
2 682.58 671.02
3 630.58 641.50
4 679.53 650.38
5 663.37 638.23
6 650.03 638.10
7 638.10 631.62
8 631.62 630.74
9 620.04 620.04

10 620.04 620.04
Tillie 32.38 35.20(sec-cPtJ)

.



Table IX. Exaapl. 2. 72 bat'
.Nce truss.
Fi I dna eS1.lIn.

Gt'OQP Area (cal
)

1 12.70
2 11. 36
3 8.50
4 15.05
5 8.50
6 9.40
7 8.50
8 10.46
9 12.00

10 9.40
11 8.50
12 15.05
13 12.70
14 10.34
IS 8.50
16 10.46

Final
weight 620.04

(0)

In this example. similarly to Exa.~le 1. the .ethod behaved well
with both values of the ~ar •• eter p.

An efficient algorithm to solve the least weight design of olane
and space trusses is developed. A realistic truss model, includin~
discrete variables and buckling coustraints is used.

Standard approximations, usually ap~lied to simpler models. are
successfully used.

The minimum weight design is found solving a sequence of ao~roxi-
mate problems in the dual space.

The difficulties introduced by the discrete variables and the buc~
ling constraints are solved .s follows

1. The approximate primal problem with discrete variables leads
to a dual ~robl_ with continuous variables having a concave

objective function that has first order discontinuities. An al~orithm,
specially suited for this nondifferentiable probl~, is implemented.

2. The linear approximations of bucklin~ constraints do not beha-
ve as well as those related to constraints with constant allow-

abIes. To avoid convergence instabilities in the sequence of a~~roxi-
mate probl~s, the shrinking - expanding move limit technique is applied.
It should be noted, however, that in the two ex~?les included in this
work, all the approximations showed a good behavior.



3. The troublesome problem of scalin~ of variables to the con.-
traint surface of buckling constraints. is neatlY solved by de-

termining closed fora solutions for the scalin~ factor.

4. Buckling constraint. introduce the radius of gyration as a new
design variable. in addition to the cross sectional area. To

avoid doubling the design space. aporoximate .-pirical relations bet-
ween these two variables are introduced.
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