OPTIMUM DESIGN OF TRUSSES UITH DISCRETE vartables and buckling constraints

Juan H. Cassis

Departamento de Ingeniería Civil. Universidad de Chile.
Casilla 5373. Santiago, Chile.
Abdón Sepülveda
Departarento de Obras Civiles.
Universidad de Santiago de Chile.
Santiago, Chile.

Abstract

An efficient method to solve the least weight design of nlane and space trusses is developed. A realistic truss model, including discrete variables and buckling constraincs is used.

The solution is obtained solving a sequence of anproximate oroblems in the dual space.

The difficulties introduced by the discrete variables and the buckling constraints are successfully overcone.

A couple of examples shows the effectiveness of the mechod.

RESUMEN

Se desarrolla un eficiente método para resolver el diseño óntiro de enrejados planos espaciales. Se usa un modelo realista de enrejado, que incluye variables discretas v restricciones de nandeo.

La solucibn se obtiene resolviendo una secuencia de nroblemaq aproximados en el espacio dual.

Las dificultades introducidas por las variables discretas y las reatricciones de pandeo se resuelven exitosamente.

Un par de ejemplos muestra la efectividad del mêtodo.

INTROOUCTION.

The field of optimun design of structures is of recent developnent. At the beginning of the 1960 decade the problem was formulated as one of nonlinear constrained minimization with inequality constraints [1]. During the following years, the major effort was devoted to develop efficient methods since the problem of design optimization is normally characterized for having a large number of degrees of freedon, design variables ans constraints.

In the study of truss design, to emphasize the search for efficien cy, a simplified model has been traditionally used. In this model the variables are assumed continuous and the allowables values for compression stresses are constant; see, for example, Refs. 2,3.

This work approaches the problem of least weight truss design using a more realistic model. It includes discrete variables and buckling constraints. The introduction of discrete variables leads to the necessity of solving a nondifferentiable problem. In turn, buckling constraints have allowable values which, instead of being constant, are complicated functions of the design variables. Moreover, they incorporate the radius of gyration as a design variable, in addition to the cross sectional area, thus defining two independient design variables per neaber.

The problen is solved through a sequence of approximate suboroblems in the dual space. The approximations make the solution method more efficient $[4,5]$ and consist of deletion of noncritical constraints and use of first order Taylor series expansions instead of the exact constraints. The dual space has the advantage of defining continuous variables. The difficulties introduced by the buckling constraints are overcome without losing the essential efficiency advantages of the simplified model. An algorithe that fits the special features of the dual problen is used.

definition of the design variables.

Buckling constraints in trusses depend on two kind of variables, namely, the cross sectional areas and the radius of greation associated with the maximua slenderness. Even though these two types of variables are independent with respect to each other, for engincering design purposes, it is practical and reasonable to assume that they are dependent. With this assumption the dimension of the design space may be reduced to half. The dependence can be established by enpirical formulas from data provided by standard steel sections [6-10].

In Ref. 7 an empirical function of the fora

$$
\begin{equation*}
r_{n}=a / A \tag{1}
\end{equation*}
$$

was found, where $r_{\text {a }}$ is the cross sectional minimum radius of gyration, A is the cross sectional area, and a is a parameter deternined by the least squares methods. Deing Eq. (1), the following values of a were obtained :
a $=0.55$ for equal-leg angle shades,
$\alpha=0,75$ for equal-leg two angles back to beck shapes.
If the radius of gyration corresponding to maximua slenderness (which controla the design) is not the minimu, an equation of the type of Eq.(1) can still be used to relate it with the area. In effect, for a given type of cross-sectional shape, it is found that both radius of gyration may be related by an almost constant factor [11].
probley formilation.
The problen of least weight truss design subjected to several static load conditions with mixed (continuous and discrete) variables and constraints on stresses, including buckling, displacements, and bounds on the variables can be formulated as follows:

Probles (P)
Find \vec{A}
such that $W(\vec{A})=\sum_{i=1}^{n} \gamma_{i} \ell_{i} A_{i} \rightarrow$ min
zubjected to

$$
\begin{array}{rlrl}
\underline{u}_{j} & \leqslant u_{j r}(\vec{\Lambda}) \leqslant \bar{u}_{j} & j=1, n_{d} \tag{2}\\
-\underline{\sigma}_{k}\left(\Lambda_{k}\right) & \leqslant \sigma_{k r}(\vec{\Lambda}) \leqslant \bar{\sigma}_{k} & k=1, n_{c} \\
A_{i} \leqslant A_{i} \leqslant \bar{\Lambda}_{i} & i \in I_{c} \\
A_{i} \in \Omega_{i} & i \in I_{d}
\end{array}
$$

where

$A_{i}, \bar{A}_{i}=$ lower and upper bound for the continuous design variable $A_{i}\left(i \in I_{c}\right)$.
$\Omega_{i} \quad$ - set of admissible values for the discrete desiga variable $A_{i}\left(i \in I_{d}\right)$,
$n_{i} \quad=\left\{A_{i}(q), q=1, n_{i}\right\}$,
$\mathbf{n}_{\mathbf{i}} \quad$ - number of discrete values for the design variable A_{i}, ie I_{d}.

The value of the allowable compression stress \underline{o}_{k} is taken from the Code AISC-78 [12], and has the expression :

$$
\underline{\sigma}=\left\{\begin{array}{cl}
\frac{\left[1-\frac{1}{2}\left(\frac{\lambda}{C_{c}}\right)^{2}\right] \sigma_{y}}{F \cdot S .} & \lambda<c_{c} \tag{3}\\
\frac{12 \pi^{2} E}{23 \lambda^{2}} & \lambda \geqslant c_{c}
\end{array}\right.
$$

in which

$$
\begin{equation*}
\text { F.S. }-\frac{5}{3}+\frac{3}{8} \frac{\lambda}{c_{c}}-\frac{1}{8}\left(\frac{\lambda}{c_{c}}\right)^{3} \tag{4}
\end{equation*}
$$

is the factor of safety for plastic buckling,

$$
\begin{equation*}
c_{c}-\sqrt{\frac{2 \pi^{2} E}{\sigma_{y}}} \tag{5}
\end{equation*}
$$

is the slenderness limit between elastic and plastic buckling, σ_{y} is the yielding stress of the anterial,

$$
\begin{equation*}
\lambda=\frac{l_{p}}{r} \tag{6}
\end{equation*}
$$

is the maximum slenderness, L_{p} is the buckling length, and r the associated radius of gyration.

The AISC-78 code states bounds on the slenderness values accordiag to

$$
\begin{align*}
& \lambda \leqslant 200 \text { for bars in coupression, } \tag{7}\\
& \lambda \leqslant 240 \text { for bars in tension. }
\end{align*}
$$

Since the buckling lengths do not vary in the design process, these constraints may be indirectly imposed on the radius of gyration, and, by Eq. (1),on the cross sectional areas, according to
$A \geqslant\left\{\frac{l_{p}}{200 \alpha}\right\}^{2}$ for meabers in compression,
$A \geqslant\left\{\frac{{ }^{\ell} p}{240 a}\right\}^{2}$ for nembers in tension.
Problen (P) is of nixed and nonlinear type having behavior constraint functions that are inplicit in the design variables.

It is customary to reduce the notation of problem (P) by including the stress and displacement constraints in a unique group of constraints 8 j . In this way, problen (P) can be presented as :

Problen (PI)

Find $\boldsymbol{\lambda}$

such as $W(\vec{A})=\sum_{i=1}^{n} \gamma_{i} \ell_{i} A_{i}+$ min
subject to

$$
\begin{array}{ll}
g_{j}(\vec{A}) \geqslant 0 & j=1, n_{b} \tag{9}\\
A_{i} \leqslant A_{i} \leqslant \bar{A}_{i} & i \in I_{c} \\
A_{i} \in \Omega_{i} & i \in I_{d}
\end{array}
$$

where A_{b} is the mumber of all behavior constraints.

prosler solution

In the literature of the optimum structural design it is well known that, in general, a direct application of a mathematical programing algorithe to problem (Pl) leads to a very inefficient solution. Several anccessful approximations to improve the efficiency has been introduced and now are widely used $[3,4,5]$. They have been mostly applied to the truss simplified model. In this work, the efficiency approximations are applied to the model with diecrete variables and buckling constraints. They are :
a) Design variable linking, to reduce the space dirension;
b) Monpotentially critical constraint deletion, to reduce the number of conatraints; and
c) Use of explicit approxinate constraint functions generated by expanding the retained structural reanonse constraint functions in firgt order Taylor series in terms of reciprocal variables.

The foregoing measures define an approximate problem which is convex (if it has only continuos variables), is separable and has explicit functions (easy to compute). These favorable oroderties substantially facilitate the solution of the problen. However, the answer to the original exact problea is obtained by the convergence of the solutions of a sequence of the approximate subproblems.

Although there exist very appropriate primal algorithms to solve the approximate problem (especially algorithms of the gradient projection type), it has been experienced that the solution in the dual space is, in general, more efficieat. In this work, the latter aporoach is adopted.

It has been shown [3] that the first order approximations behave well when applied to stress or displacenent constraints with constant allowable values. In this work linear approximations of bucking constraints are obtained by the same procedure used for the other constraints. Since these approximations usually will not perform as
as the ochers, a special move limit technique, introduced in Refs. 13 and 14 , is used. By this technique, called "shrinking-expanding". the conatraint surface is moved closer to the point about which the linear expansions have been made; this is done with the purpose of reducing the working region in the design soace at this stage, keeping the approximate functions as close as possible to the exact ones. In this way, the advance to the minimum may be controlled.

APPROXIMATE PROBLEM

According to the aforementioned approximations, problen (Pl)
leads to the following approximate problen in terms of the linked reciprocal variables :

Problen (PA)
Find \vec{x}
such that $W(\vec{x})=\sum_{i=1}^{i} \frac{W_{i}}{x_{i}} \rightarrow \min$
subject to

$$
\begin{array}{rl}
\tilde{g}_{j}(\underline{x}) & \geqslant 0 \tag{10}\\
\underline{x}_{i} \leqslant x_{i} \leqslant \bar{x}_{i} & j \in 1, n_{i} \\
x_{i} \in r_{i} & i \in I_{x d}
\end{array}
$$

where
$\overrightarrow{\mathbf{x}}-$ vector of reciprocal variables,
$x_{i}=T_{i k} / A_{k} \quad k \in I(i)$,
$T_{i k} \quad$ linking factor between A_{k} and x_{i},
$I(i)$ - set of indices of the areas linked in the group i,
m number of linked reciprocal variables,
$n_{r} \quad$ number of retained constraints,
$\mathbf{I}_{\mathrm{xc}}=$ set of the indices of the continuous linked reciprocal variables,
Ixd a set of indices of the discrete linked reciprocal variables,
$\mathbf{w}_{i}=$ unit weight associated with bar group i,
$w_{i}=\sum_{k \in I(i)} Y_{k} l_{k} T_{i k}{ }^{\prime}$
$\underline{x}_{i} ; \bar{x}_{i}=$ lower and upper bounds for x_{i}. They correspond to the most restrictive bound values within the group i,
$r_{i}=$ set of discrete values for the variable x_{i}. It contains the intersection of the sets of discrete values for the variables in the group 1 ,
$r_{i}=\left\{x_{i}{ }^{(q)}, q=1, \ldots, n_{x_{i}}\right\}$
$n_{x i}$ number of admissible discrete values for the linked reciprocal variable x_{i}, $i \varepsilon I_{x d}$.

It should be noted that x_{i} represents a group of variables A_{k} linked in such a way that their relative values are specified and they do not vary during the optinization process.

Functions $\tilde{g}_{j}(\vec{x})$ represent linear approximations of the exact constraints g_{j}, and have the form

$$
\begin{equation*}
\tilde{g}_{j}(\vec{x})=g_{j}\left(\vec{x}_{0}\right)+\sum_{i=1}^{m} \frac{\partial g_{j}}{\partial x_{i}}\left(\vec{x}_{0}\right) \quad\left(x_{i}-x_{i}^{0}\right) \tag{13}
\end{equation*}
$$

This expression can be written in the form

$$
\begin{equation*}
\tilde{g}_{j}(\vec{x})-\bar{g}_{j}-\sum_{i=1}^{m} c_{j i} x_{i} \tag{14}
\end{equation*}
$$

To compute $\tilde{g}_{j}(\vec{x})$, tension and displacement derivates are obtained according to usual methods of inplicit differentiation [3,5]. In this work it is necessary to calculate, in addition, the comoression allowable stress derivatives, which are obtained from the explicit formulas, Eqs. (1), (3), (4), and (6).
dual pornulation
The approxinate primal problem (PA) leads to the following associated dual problen [3]:

Problea (DA)
Find \vec{y}
such that
$d(\vec{y})=\sum_{i=1}^{n}\left[\frac{w_{i}}{x_{i}(\vec{y})}+x_{i}(\vec{y}) \sum_{j=1}^{n_{r}} y_{j} c_{j i}\right]-\sum_{j=1}^{n_{r}} y_{j} \bar{B}_{j}+\max$
subject to

$$
y_{j} \geqslant 0 \quad j=1, n_{r}
$$

in which

$$
x_{i}(\vec{y})= \begin{cases}x_{1} & \text { if } x_{i n i n} \leqslant x_{i} \tag{16}\\ x_{i m i n} & \text { if } x<x_{i m i n}<\bar{x}_{i} \\ \bar{x}_{i} & \text { if } x_{i n i n} \geqslant \bar{x}_{i}\end{cases}
$$

where

$$
\begin{equation*}
x_{i n i n}=\left[\frac{w_{i}}{\sum_{j=1}^{n_{r}} y_{j} c_{j i}}\right]^{1 / 2} \tag{17}
\end{equation*}
$$

and

$$
\begin{align*}
x_{i}(\vec{y})=x_{i}^{(q)} \text { if } \frac{w_{i}}{x_{i}^{(q)} x_{i}^{(q-1)}}<\sum_{j=1}^{n_{r}} y_{j} c_{j i}<\frac{w_{i}}{x_{i}^{(q)} x_{i}(q+1)} \tag{18}\\
i \in I_{x d}
\end{align*}
$$

and
$\overrightarrow{\mathbf{y}}=$ vector of dual variables.
In relation (18)it is assumed that the $\mathrm{xi}^{(q)}, 0=1, \mathrm{n}_{\mathrm{xi}}$, are ordered according to decreasing values. If in relation (18) the left hand inequality becomes equality, the discrete variable may be either $x_{i}{ }^{(q-1)}$ or $x_{i}{ }^{(q)}$; in turn, if the right hand inequality becomes equality, the discrete variable pay be either $x_{i}(q)$ or $x_{i}(q+1)$.

Prom Eqs. (16), (if), and (18) the primal variables x_{i} are obtai ned in terns of the dual variables y_{j}.

Properties of the Dual Function.
Function $d(\vec{y})$ has the following characteristics $[3,15,16]$:
a) It depends on continuous variables y_{j} -
b) It is continuous and concave.
c) It has first order discontinuities in hyperplanes in the dual space aspociated with changes of admissible values in the dis crete variables.
d) It has second order discontinuities in hyperplanes in the dual space associated with_change of values of the continuous varisbles x_{i} from $x_{i m i n}$ to x_{i} or \bar{x}_{i}.

For continuous primal variables, the solution $\hat{\mathrm{v}}$ of problem (DA) yields the optimum solution \hat{x} for problem (PA) through Eqs. (16) and (17). This is because in this case (PA) is a convex programang problem having a Lagrangian function with a saddle point [17].

In the case of discrete primal variables, the solution $\hat{\gamma}$ of problem (DA) gives, through Eq. (18), a solution $\vec{x}(\hat{y})$ which is e-optimal if $\vec{x}(\hat{y})$ is feasible [16]. That is, if $W(\hat{x})$ is the solution of problem (PA), the following relation is satisfied.

$$
\begin{equation*}
w(\vec{x}(\hat{y})) \leqslant w(\hat{x})+\varepsilon \tag{19}
\end{equation*}
$$

The scalar ε measures a bound of the theoretical error of the solution $W(\vec{x}(\hat{y}))$. An expression for ε is given in Ref. 16 :

$$
\begin{equation*}
\varepsilon=\sum_{j=1}^{n_{r}} \rho_{j} \hat{g}_{j}(\vec{x}(\hat{y})) \tag{20}
\end{equation*}
$$

Problen (DA) has two additional favorable properties that makes it attractive in comparison with the primal problem (PA). They are : i) the number of dual variables is, in general, mall comnared with
that of primal variables, because it is equal to the number of retained constraints; ii) problen (DA) has very simple constraints consisting of conditions of non negativity on the dual variables.

SOLUTION ALGORITHM

According to the foregoing considerations, the algorithm proposed in the sequel is based on the following soints :

1. Given a feasible initial point in the linked reciprocal variables space, a feasible region is defined according to the potentially critical constraints retained at that stage.
2. That feasible region is "shrunk" towards the initial point by the shrinking- expanding technique. To do that, the retained constraint functions gi_{i} are replaced by reduced constraints $\boldsymbol{\delta}_{\mathrm{gi}}$ given by

$$
\begin{equation*}
\delta g_{i}(\vec{x})=g_{i}(\vec{x})-(1-\rho) \quad g_{i}\left(\vec{x}_{0}\right) \tag{21}
\end{equation*}
$$

where ρ is a constant less than or equal to 1 [13,14].
3. Constraints $\delta_{g i}$ are linearized to define problem (PA). This problem is solved through its dual (DA).
4. The solution point of (PA) is used as initial for a new problem. The sequence of points so obtained cends to the solution of the original problem (P1).

Accordingly, the algorith is :
Step 1 : Choose $\varepsilon>0,0 \leqslant 1$, A $^{+}>$J. $_{\text {. }}$
Compute the linked reciprocal variables $\overrightarrow{\mathbf{x}}^{-}$(Eq. (11)). Perform a structural analysis at \vec{x}^{*}; $=0$.

Step 2 : If to0, go to Sten 3. If not, perforn a structural analysis at 芝.

Step 3 : Scale \vec{x}^{t} up to the constraint surface if it is infexsible. Comoute the weight Ht.

Step 4 : If $t=0$, so to Step S.
If $\left|\frac{W^{t}-W^{t-1}}{W^{t}}\right| \leqslant \varepsilon$, Stop.
Step 5 : Compute the constraints at \vec{x}. Delete the non critical constraints. Reduce the retained constraints according to the shrinking-expanding technique. Construct first order approximations of the reduced constraints at \mathbf{x}^{t} 。

Step 6 : Construct the approximate primal problen and its dual.
Step 7 : Solve the dual problem, getting \vec{x}_{f}^{t}, (Eas. (16), (17), and (18)).
$t=t+1$; $\vec{x}^{t}=\vec{x}_{f}^{t}$.
Go to Step 2.

The optimizer used in Step 7 is a projected sungradient algoritha specially suited to cope with the non differentiable character of the dual objective function. It is fully described in Refs. 15 and 16. It consists of determining the maximurn ascent direction at a nondifferentiable point by choosing the vector of mininum euclidean norn in the supdifferential $\partial \ell(\vec{y})$ at this point.

SCALING FACTOR

Step 3 of the algorith states that if the final noint \vec{x}^{t} from the preceding stage lies out of the feasible region, it must be amplified by a scaling factor so that a new point on the constraint surface is obtained, which will be feasible. The infeasibility of \vec{x}^{t} is measured with respect to the exact constraints, and it may occur when the approximate problen is solved, even though \vec{x}^{t} may be feasible with respect to the approximate constraints.

Scaling is performed to construct the new approximate problem (DA) ${ }^{t}$ on a convenient basis, since the approximations improve when a point is closer to the constraint surface; in addition, constraint deletion may be made more rationally. For the purpose of constructing probler (DA)t, the scaled t_{t} does not need to have discrete components with adsissible values.

For efficiency reasons, the response function values corresponding to the scaled design must not be determined at the expense of a structural analysis, but in terms of their initial values, before scaling. In the case of displacement and tension stress constraints, which have constant allowable values, the computation of the scaling factor to the constraint surface and of the scaled values is simple. In effect, it is well known that in a truss if all the areas are modified by factor μ, stresses and displacements change with its reciprocal $1 / \mu$. Therefore, the scaling factor to reach a constraint allowable value is:

$$
\begin{equation*}
u_{i}=\frac{v_{i}}{v_{i a d}} \tag{22}
\end{equation*}
$$

where v_{i} represents a tension stress or disolacenent and viad its constant corresponding allowable value.

The scaling factor for compression stress constraints, whose allowable values depend on the design variables (see Eqs. (1), (3), (6)), is of non trivial computation. Closed form expressions for this factor are derived in Ref. 11. They are:

$$
\begin{equation*}
\mu_{i}=\left[\frac{23 \lambda_{i}^{2} \sigma_{i}}{12 \pi^{2}}\right]^{1 / 2} \quad \text { for } \quad \lambda_{i} \geqslant c_{c}\left[\frac{23 \sigma_{i}}{60}\right]^{1 / 2} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i}=\frac{4}{3}\left[\frac{\lambda_{i}^{2}}{2 c_{e}^{2}}+\frac{5}{3} \frac{\sigma_{i}}{\sigma_{y}}\right] \cos ^{2}\left(\frac{y}{3}\right) \text { for } \lambda_{i}<c_{e}\left[\frac{23}{-\frac{i}{6 \sigma_{y}}}\right]^{1 / 2} \tag{24}
\end{equation*}
$$

in which is the saller nositive angle such that

$$
\begin{equation*}
\cos =\left[\frac{3}{\frac{\lambda_{i}^{2}}{2 C_{c}^{2}}+\frac{5 \sigma_{i}}{3 \sigma_{y}}}\right]^{3 / 2} \quad \lambda_{i} \sigma_{i} \frac{\sigma}{c}^{\delta \sigma_{y}} \tag{25}
\end{equation*}
$$

Considering all the constraints, the scaling factor u to the most critical constraint intersected by the scaling straight line is commuted by

$$
\begin{equation*}
u=\underset{i}{\max } \mu_{i} \tag{26}
\end{equation*}
$$

WIERICAL EUNTPLES

A connuter program, based on the algorith mronosed herein. is applied to the computation of the least weight design of two classical trusses. The progran was written in FORTRAN G 3nd the examples were processed in the IBY $370 / 3031$ computer at the Daiversitv of Chile.

Example 1. Ten bar plane truas.
The least weight design of 10 bar plase truss showed in Fig. 1 is solved.

Fig. 1. Ten bar olane truss.

The truss is subjected to one load condition described in Pis. 1. The constraints are as follows :
a) The horizontal and vertical disolaceraents at joints $1,2,3$, and 4 are limited to be less than 5.08 cm .
b) The tension allowable stress is 172 MPa .
c) The allowable value for compression stress is taken from AISC-78 Code (Eq. 3).
d) The cross sectional areas have minimum values constraints coming from AISC-78 Code slenderness restriction (Eq. 8).

All bars are of the same material having the following nrooerties:

Density	$: \gamma=0.00277 \mathrm{~kg} / \mathrm{cm}^{3}$
Modulus of Elasticity : $E=68963 \mathrm{yPa}$.	

Bar cross sectional shaves consist of two ancles with legs back to back ($\alpha=0.75$). Two values of the shrinking - expanding parameter 0 are taken; nazely, $0=0.8$ and $0=1.0$.

Two cases are solved. One considers mixed variables, in which the areas corresponding to bars $1,3,5,7$, and 9 are assumed discrete. The second case includes only discrete variables. Table I shows the admissible values for the discrete variables in both cases.

Table I. Examole 1. 10 bar truss.
Adnissible values for discrete variables.

Bar	Areas (cm^{2})							
$\frac{1,2,5}{6}$	25.81	32.26	38.71	45.16	48.11	51.61	58.06	64.52
	70.97	77.42	83.87	90.32	96.77	98.19	103.23	109.68
	116.13	122.58	129.03	135.48	135.74	138.90	141.94	148.39
	149.68	154.84	161.29	167.74	174.19	180.65	187.10	193.55
	196.90	200.00						
3.4	38.71	45.16	48.11	51.61	53.06	64.52	70.97	77.42
	83.87	90.32	96.77	99.19	103.23	109.68	116.13	122.58
	129.03	135.48	135.74	138.90	141.94	148.39	149.68	154.84
	161.29	167.74	174.19	180.65	187.10	193.55	196.90	200.00
7,9	51.61	58.06	64.52	70.97	77.42	83.97	90.32	96.77
	98.19	103.23	199.68	116.13	122.58	129.03	135.48	135.74
	138.90	141.94	148.39	149.68				
8,10	77.42	83.87	90.32	96.77	93.19	103.23	109.68	116.13
	122.58	129.03	135.48	135.74	138.90	141.94	148.39	149.63
	154.84	161.29	167.74	174.19	180.65	137.10	193.55	196.97
	200.00							

Iteration history related to weight nrogression and the final design for both mixed and pure discrete cases are detailed in Tables II and III, respectively.

Analyses	Mixed case (1)		Discrete case	
	$\rho=0.8$	$\rho=1.0$	$0=0.8$	$0=1.0$
1	6607.32	6607.32	6607.32	6607.32
2	3590.01	3629.43	4468.50	4823.17
3	3478.98	3438.77	3746.82	4002.90
4	3359.32	3397.55	3663.11	3803.56
5	3331.38	3244.56	3637.42	3735.54
6	3252.42	3163.25	3590.12	3678.77
7	3258.66	3278.30	3515.90	3548.37
8	3246.36	3246.64	3506.41	3511.12
9	3234.40	3231.48	3506.76	3571.61
10	3232.58	3221.46	3502.92	3509.91
11	3221.02	3231.82	3487.19	3499.91
12	3220.66	3297.76	3449.01	3491.21
13	3220.43	3200.28	3449.01	3469.09
14		3200.14		3449.03
15				3449.01
Tize				
(sec-cPu)				

(1) Variables $1,3,5,7$, and 9 are discrete.

Table III. Example 1. 10 bar truss.
Final design.

	Area (cmal design.	
Member	Mixed case (1)	Diserese.cace
2	25.88	51.61
3	187.10	290.00
4	131.42	109.68
5	25.81	25.81
6	25.88	51.61
7	51.61	149.68
8	268.63	200.00
9	103.23	70.97
10	79.63	154.84
Final weight	3220.14	
(kg)		

(1) Variables $1,3,5,7$, and 9 are discrete.

Table II shows that, for this case, the method works well for both values of the parameter p (the values $p=1$ means no shrinking). However, $0=0.8$ required shorter time and a smaller number of analvses to converge. In turn, the mixed case was solved in a shorter time compared to the discrete case.

In Table III the final veight corresponding to the mixed case is saller than that of the pure discrete case. This result is logical since the continuous variables, which are half of the total number of variables in the mixed case, have less restricted values than the discrete ones.

Example 2. 72 bar space truss.
Fig. 2 shows the 72 bar apace truss whose least weight design is sought. The structure is subject to two load conditions described in Table IV.

Fig. 2. 72 ber soace tryss.

Table IV. Example 2. 72 bar space truss.
Load conditions.

Load condition	Number of loaded joints	Joint Number	Load components (N)		
			Px_{x}	Py	P_{2}
1	1	1	22270	22270	-22270
2	4	1	0.0	0.0	-22270
		2	0.0	0.0	-22270
		3	0.0	0.0	-22270
		4	0.0	0.0	-22270

Table V specifies the topology of the bar members.
Table V. Example 2. 72 bar space truss.
Topology of members.

Bar	Initial joint	Final joint	Bar	Initial Joint	Final joint	Bar	Initial joint	Final joint
1	1	5	25	7	10	49	9	10
2	2	6	26	6	11	50	10	11
3	3	7	27	8	11	51	11	12
4	4	8	28	7	12	52	11	9
5	2	5	29	5	12	53	9	11
6	1	6	30	8	9	54	10	12
7	3	6	31	5	6	55	13	17
8	2	7	32	6	7	56	14	18
9	4	7	33	7	8	57	15	19
10	3	8	34	8	5	58	16	20
11	1	8	35	5	7	59	14	17
12	4	5	36	6	8	60	13	18
13	1	2	37	9	13	61	15	18
14	2	3	38	10	14	62	14	19
15	3	4	39	11	15	63	16	19
16	4	1	40	12	16	64	15	20
17	1	3	41	10	13	65	13	20
18	2	4	42	9	14	66	16	17
19	5	9	43	11	14	67	13	14
20	6	10	44	10	15	68	14	15
21	7	11	45	12	15	69	15	16
22	8	12	46	11	16	70	16	13
23	6	9	47	9	16	71	13	15
24	5	10	48	12	13	72	14	16

In this example the variables are linked (with $T i j=1$) according to the groups defined in Table VI.

Table VI. Example 2. 72 bar space truss. Linking of cruss menbers.

Group meaber	\mathbf{N}° of members in the group	Member nurbers
1	4	$1-4$
2	8	$5-12$
3	4	$13-16$
4	2	$17-18$
5	4	$19-22$
6	8	$23-30$
7	4	$31-34$
8	2	$35-36$
9	4	$37-40$
10	8	$41-48$
11	4	$49-52$
12	2	$53-54$
13	4	$55-58$
14	8	$59-66$
15	2	$67-70$
16	2	$71-72$

All bars are of the same material, with the following properties:
Density $: Y=0.00277 \mathrm{~kg} / \mathrm{cm}^{\mathrm{s}}$
Modulus of Elasticity : $\mathrm{E}=68963 \mathrm{MPa}$.
constraints are :

The constrainta are
a) The displacements at joints 1 through 16 must be swaller than 0.634 cm , along the 3 directions x, y, and z.
b) Tensile stresses must be less than the allowable value of 172 MPa .
c) The allowable value for compression stress is taken from AISC78 Code (Eq. 3).
d) The cross sectional areas have minimum value constraints according to AISC-78 Code slenderness restrictions (Eq. 8).

Equal leg angle shapes ($\alpha=0.55$) are used for the truss members. Two values of the shrinking - expanding parameter are used; namely, $\rho=0.8$ and $\rho=1.0$.

A mixed variables case is solved. The variables 1-4, 13-16, 19-22, 31-34, 37-40, 49-52, 55-58, and 67-70 are assumed discrete with admissible values according to Table VII.

Table VII. Example 2. 72 bar space truss. Discrete variables admissible values.

Bar numbers	Areas (cm^{2})							
1-4,19-22,37-40	2.00	2.50	3.00	3.30	3.50	4.00	7.30	8.50
55-58	9.00	9.50	10.00	12.00	12.70			
$\text { 13-16, } \begin{gathered} 31-34,49-52 \\ 67-70 \end{gathered}$	8.50	9.00	10.00	12.00	12.70			

Ueipht progression at each stage and the ootimus design are reported in Tables VIII and IX, respectively.

TABLE VIII. Example 2. 72 bar snace
truss.
Weight progression

Number of Analyses	Weight (kg)	
	$\rho=0.8$	$\rho=1.0$
1	683.12	683.12
2	682.58	671.02
3	690.58	641.50
4	679.53	650.38
5	663.37	638.23
6	650.03	638.10
7	638.10	631.62
8	631.62	630.74
9	620.04	620.04
10	620.04	620.04
Tine	32.38	35.20
(sec-CPU)		

Table IX. Example 2. 72 bar
space truss.
Final design.

	Final design.
Group	Area (cm^{2})
1	12.70
2	11.36
3	8.50
4	15.05
5	8.50
6	9.40
7	8.50
8	10.46
9	12.00
10	9.40
11	8.50
12	15.05
13	12.70
14	10.34
15	8.50
16	10.46
Final	
weight	620.04
(kg)	

In this example, similarly to Example 1 , the method behaved well with both values of the parameter p.

CONCLUSIONS

An efficient algorith to solve the least weight design of olane and space trusses is developed. A realistic truss model, including discrete variables and buckling constraints is used.

Standard approximations, usually applied to simpler models, are successfully used.

The minimum weight design is found solving a sequence of approximate problems in the dual space.

The difficulties introduced by the discrete variables and the buck ling constraints are solved as follows :

1. The approximate primal problem with discrete variables leads to a dual problem with continuous variables having a concave objective function that has first order discontinuities. An algorithm, specially suited for this nondifferentiable problew, is implemented.
2. The linear approximations of buckling constraints do not behave as well as those reliated to constraints with constant allowables. To avoid convergence instabilities in the sequence of approximate probleas, the shrinking - expanding move limit technique is applied. It should be noted, however, that in the two exmples included in chis work, all the approxinations showed a good behavior.
3. The troublesome problem of scaling of variables to the constraint surface of buckling constraints, is neatly solved by determining closed form solutions for the scaling factor.
4. Buckling constraints introduce the radius of gyration as a new design variable, in addition to the cross sectional area. To avoid doubling the design space, aporoximate empirical relations between these two variables are introduced.

A couple of exanples proves the effectiveness of the method.
ACKNOUL EDGMENT.

The authors are grateful to the Department of Research Development, University of Chile, for the partial financing of this work through Project 1-1747-8533.

REFERENCES

[1] Schait, L.A., "Structural Design by Systematic Synthesis", Proc. 2nd. Nat. Conference on Electronic Computation, Pittsburg, PA, J. Struct. Div. ASCE 1960, pp. 105-122.
[2] Berke, L., and Khot, N.S., 'Use of the Optimality Criteria Yethods for Large Scale Systhems", Structural Optimization, AGARD-LS-70, Technical Editing and Reproduction Led., London, Sept. 1974, pp. 1.1-1.29.
[3] Schait, L.A., and Fleury, C., "An Improved Analvsis / Synthesis Capability Based on Dual Methods - Access $3^{\prime \prime}$. Proc. of the AIAA/ ASME/AHS 20th. Structures, Structural Dvnamics and Materials Conference, Vol. 1, St. Louis, Missouri, Anril 1979, no. 23 - 55.
[4] Schmit, L.A., and Farshi, B., 'Some Approximation Concepts for Efficient Structural Svnthesis", AIAA J., Vol. 12, $\mathrm{N}^{\circ} 5,1974$, po. 692 - 699.
[5] Schmit, L.A., and Yiura. H., "Annroximation Concepts for Efficient Structural Synthesis", NASA CR-2552. 1976.
[6] Brown, D.M., and Ang, A.H.S., 'Structural Optimization bv Nonlinear Programuing", J. of the Struct. Div., ASCE, Vol. 92, $\mathrm{N}^{\circ} \mathrm{ST}$, ${ }^{\text {, Dec., }}$ 1966, pp. 319 - 340.

7] Lapay, K., and Goble, G., "Ontimum Design of Trusses for Ultimate Loads", J. of the Struct. Div., ASCE, Vol. 97, X*1, Jan. 1971, pp. 157 - 173.
[8] Fedalto, J.A., and Cassis, J. 'Projeto otino da reometria de Trelicas Planas". Proc. of the Simposio sobre Sistemas Computacionais para Engenharia Civil, Vol. 2, Rio de Janeiro, Brasil, Oct. 1977, pp. 383 -401.
[9] Cassis, J.. and Guzmân, J., "Diseño Automático de Pórticos de Acero Aplicando Criterion de Ontimidad", "roc. of the XIX Jornadas Sudanericanas de Ingeniería Estructural, Vol. II. Santiago, Chile, April. 1978, po. F. 11-1 - F.11-22.
[10] Cassis, J., and Aravena, S., Diseio Optimo de Enreiados te Acero". Proc. of the XX Jornadas Sudamericanas de Ingenierin Estructural. VI Sinoosio Panamericano de Estructuras, Vol. III, Córdoha, Argentina, July, 1979, no. E.8-1 - E.8-22.
[11] Cassis, J., and Sepülveda, A., "Ontimun Design of Trusses with Buckling Constraints', J. of Struct. Eng., ASCE, Vol. III, $\mathbf{x}^{\circ} 7$. July, 1985, pp. 1573-1539.
[12] Anerican Institute of Steel Construction, manual of steel Construction', 3th. Ed., AISC Inc.. New York, N.Y., 1973.
[13] Cassis, J., and Sctrait, L., "Optimum Structural Design with Dvnamic Constraints", J. of the Struct. Div., ASCE, Vol. 102, $\mathrm{N}^{\circ} \mathrm{STIO}$, Net., 1976, pp. 2053-2071.
[14] Cassis, .T., 'Ontimum Desizn of Structures Subjected to Dunamic Loads', UCLA, Eng.-74S1, Univ. of California, Los Angeles, Calif., June, 1974.
[15] Sepúlveda, A., and Cassis, J., "Aplicaciốn de Dualidad en el Diseño Optimo de Enrejados con Variables Discretas y Mixtas', Pub. SES I $2 / 84$ (191), Deoartamento de Ingeniería Civil, Univ. de Chile. Santiago, Chile, 1984.
[16] Sepulveda, A., and Cassis, J., 'An Efficient Alqorither for the Ootimum Design of Trusses with Discrete Variables", to be nublished in the Int. J. of Numerical Methods in Enpineerine.
[17] Lasdon, L., "Optimization Theory for Large Sustems", Yac Yillan, New York, 1970.
[18] Lemarechal, C., "An Algoritha for Yinimizing Convex Functions", IRIA - LABORIA, North Holland, Rocquencourt 78, France. 1974.

