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ABSTRACT

This work applies the method of parameter differentiation (MPD) to
nonlinear ordinary and partial differential equations of fluid mechanics.
It is shown that the differentiation parameter does not need to be a
physical parameter of the problem, because it can be arbitrarily
selected and placed in any nonlinear term of the differential equatiom,
with the constraint that it takes the value one at the end of the
integration procedure.

Emphasis is placed in two numerical aspects:

a) A nonlinear ordinary differential equation with boundary conditiomns
can be transformed into a simpler problem, which consists of linear
ordinary differential equations with initial conditioms. The solution
is then noniterative.

b) The solution of the steady stream function-vorticity scheme through
finite differences with the overall iterative procedure (Gupta, 1980,
p- 170) can be simplified because inner iterations are eliminated,
and initialization functions are solutions of the problem at each
previous outer parameter iteration.

RESUMEN

Este trabajo aplica el método de diferenciaciéun paramétrica (MPD)
a ecuaciones diferenciales ordinarias y a derivadas parciales no linea-
les de la mec3nica de fluidos. Se muestra que el pardmetro de diferen-
ciacién no necesita ser un pardmetro fisico del problema, porque puede
ser seleccionado arbitrariamente y colocado en el término no lineal de
la ecuscidn diferencial, con la restriccidn que tome el valor uno al fi
nal del procedimiento de integracida. -

Se pone énfasis en dos aspectos numéricos:

a) Una ecuacidn diferemcial ordinaria no lineal con condiciones de con-
torno puede ser transformada em un problema mis simple, que consiste
en una ecuacidn diferencial ordinaria lineal con condiciones inicia-
les. La solucidn es entonces no iterativa.

b) La solucidn del esquema funcidn linea de corriente-vorticidad en es-
tado estacionario a través de diferencias finitas con el procedimien
to iterativo global (Gupta, 1980, p. 170) puede ser simplificado por
que las iteraciones internas son eliminadas y las funciones de inicia
lizacibn son soluciones del problema en cada iteracida paramétrica
externa previa.
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INTRODUCTION

Many mathematical models generated in all branches of engineering
and science involve linear ordinary and partial differential equations
that can be solved either analytically (see, for example, Ince, 1956;
Courant and Hilbert, 1962) or numerically through methods which are
probed to be convergent, consistent and stable (see, for example, Noye,
1978; Smith, 1978). However, this is not necessarily the case of non-
linear differential equations which, in general, require special
treatments and approximations to find a solution, depending these upon
the nature of the nonlinear terms involved.

The method of parameter differentiation (MPD) also known in the
applied mathematical literature as the method of continuation, (see,
for example, Wacker, 1978), has been probed to be a great potential
tool for solving nonlinear algebraic equations and nonlinear ordinary
differential equations of engineering (see, Na, 1979, p. 233). In fact,
nonlinear mathematical models involving a physical parameter that
appears either in the differential equation or in the boundary
conditions, can be solved by integrating the rate of change of the
corresponding solution with respect to this parameter. Therefore, to
proceed in this way, the starting point is a known solution of the
problem for a specified value (zero value) of the physical parameter,
i.e., the differentiation parameter.

The MPD can be carried out because the formulation of the
mathematical problem has to satisfy the requirement of parameter
continuity of the obtained solution. Thus, from a wider mathematical
point of view, the differential equation with its boundary comditions
must satisfy (see, for example, Street, 1973),

- Existence: at least one solution exists

- Uniqueness: there exists at most one solution

~ Continuity: the solution varies continuously in all given data,
including parameters.

so that, the formulated problem is well posed.

The main advantage of the MPD applied to two boundary values
problems of nonlinear ordinary differential equations is: A systematic
procedure for linearization is used. Furthermore, the resulting linear
problem with two point bpundary conditions can be transformed into an
initial value problem, also in a systematic way through the method of
superposition, and solved in its turn by noniterative methods such as
the Runge—-Kutta methods.

This work presents a brief overview of the MPD and its particular
case designated here as the method of parameter iteration (MPI).
Although it is not done in a generalized procedure, we will show for
particular cases the relation between a solution obtained by the MPD
and the one obtained through a regular perturbation expansion when the
final value to be reached by the differentiation parameter is small.

Furthermore, Na (1979, p. 234) has shown that in the application of
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the MPD to a nonlinear algebraic equation, it is always possible to
introduce arbitrarily in any term of this equation, a non physical
parameter which has to take the value one at the end of the integration
procedure so that the original physical and mathematical problem is
recovered. Therefore, we will use this important concept to solve a
nonlinear ordinary differential equation, of which a solution to start
the MPD is not available neither analytically nor without complex
numerical evaluations. To illustrate this aspect of the MPD, we will
solve the third order nonlinear ordinary differential equation
corresponding to the boundary layer theory applied to a plate (see,
Schlichting, 1960, p. 116) which is a particular case of the Falkner-
Skan problem when the physical parameter B involving the angle of a
wadge is zero.

It is interesting to point out here that Rubbert and Landahl (1967)
solved the Falkner-Skan problem through the MPD by starting the
procedure with a known numerical solution for f=0 , i.e., the
solution of the boundary layer theory for a plate (Blasius equationm).
This starting solution was numerical because the Blasius equatiom is
also a nonlinear problem and in addition, it has not any physical
parameter available for application of the MPD. These authors also
solved the Blasius equation by the MPD through the definition of still
a physical parameter. Therefore, it is in this mathematical aspect that
our solution of the Blasius equation by the use of an unphysical
parameter, will show a qualitative advantage and generalization of the
MPD.

} After the analysis of the above mentioned examples, our main
target is to try the application of the MPD, to the solution of partial
differential equations involving Newtonian fluid flows as a substitutiom
of the classical iteratives methods such as the method of succesive
over-relaxation (SOR) (see, for example, Greenspan, 1974, p. 12, 208;
Gupta, 1980, p. 148). In fact, it will be shown that the solution of
the steady stream function-vorticity scheme through finite differences
with the overall iterative procedure (Gupta, 1980, p. 174) can be
greatly simplified in two aspects: a) Inner iteratioms can be avoided
since the method of Gauss-Seidel converges in one step if the increment
of the differentiation parameter chosen is sufficiently small; b) outer
iterations are substituted for a sequence of numerical solutioms in
which two consecutive solutions differ themselves in a small increment
of the differentiation parameter.

I1) METHOD OF PARAMETER DIFFERENTIATION
1I-1) Ordinary Differential Equations (ODE)

Consider a second order nonlinear ordinary differential operator
N_, a scalar function ¢ and a physical parameter ¢ (Reynolds
number, geometrical ratio, etc.) defining the following physical

problem,

N [¢,e]=0 (1)

subject to boundary conditions,

ha[¢,€] =0 , x=a 2)
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hbio,e]-o » x=b (3)

Therefore, the solution #¢(x,£) is required for a<x<b and e€=¢* .

The procedure to apply the MPD is the following:

- Differentiate equations (1) to (3) with respect to ¢ to obtain,

1 (g,6,6] = 0 *
3ha aha
Se + W g=0 R x=a (5)
3hb Bh.b
_a-é_ + W g = 0 N x=b (6)
) ™
8" 3 N

where L% is a linear ordinary differential operator applied to g
because ¢ and its differentiations are considered as known variable
coefficients in equation (4).

- Find the starting solution ¢0 for e=0 ,

N (64,0 =0 (®
h (6501 =0 , x=a O
h 65,01 =0 , x=b (10)

- Find the starting solution gg for €=0 ,

0
Lx[so,®°.0] =0 (11)
aha Qha
_SE_+—8—¢—GO=O , x=a » e=0 . ¢'¢0 (12)
sh 3
b . M
—a'é“+—§$'go’o » x=b ’ €=0 * ¢'¢0 (13)

- Find ¢1 for £=4Ac << 1 as follows,

8, (x,86) - 63(x,0) = g (x,0) Ae + 0(ac’) (13)

- Using equation (4) to (7) find at €=n 4c ,

€

Lx[gn . ¢n’ nde) =0 (15)
Bha ah.
ety B "0 » XTa , emmle, dme (6
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My My

3 + 'y g, - =0 , x=b , €=n Aec , O-on Qan
$pp (5 (2+1)AE) = ¢ (x,n 8€) = g (x,n Ac) B¢ +0(8e?) (18)
n=1,2,... % (19)

e* = N Ac (20)

Therefore wvhen n=N the solution ¢N(x,NA£) =¢(x,e*) is found.

It should be observed that equations (8) to (10) can frequently be
solved analytically and that equations (11) to (13) and (15) to (17)
can be transformed to an initial value problem which solutions are
directly found through noniterative methods like the Runge-Kutta or
Euler methods (see, Na, 1979, p. 13).

In particular, if equations (8) to (10) cannot be solved analyti-
cally, we can introduce a nonphysical parameter )X in any nonlinear
term, provided A=m A\, AA<<l , m=1,2 ... M and M AA=1
Therefore, the application of the MPD yields,

A
NA[60,1,0] = 0 21)
n*04,.1,0] = 0 (22)
a 0"’
A
h\(8),1,0] = 0 @»

The corresponding starting solution ¢0 0 satisfies,
»

0
N[6g 5:0,07 = 0 (24)
2°re. .,0,01 =0 (25)
at%,0°%
0
holdg 5.0,0] = 0 26)
Therefore at A=m AA and for f-—sr N
[f..6 .,m AA] = 0 @7
and  an =70,m
-sr+—a—¢—6 f.’O N xX=3a , A=m AX , ¢0"¢°’. (28)
)
b, ahb
T W& =0 N x=b » A=m AX » ¢°’¢°.- (29)
b0, me1 (0 DAY - 40 (x,m B1) = £ (x, m B1)A + o) (30)

n=1,2...X 1)
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Ak = M AL = 1 (32)

When n=M , the solution ¢0 M(x.M A)\) -¢o(x) is found.

It is also clear that for €=0 and A=l ,

1
N_=N_ (33)
hl =n (34)
a a
1
h = hy (35)

and that X has to be placed into N_ so that Ng is a differential
operator of easy analytical solution.

The method of parameter iteration (MPI) is a particular case of
the MPD and it can be formulated as follows:

-~ The nonlinear operator Nx is decomposed in two parts,

N_ =1 +N)‘ (36)
x x x

where L is again a linear ordinary differential operator and Ni
is the remaining nonlinear part of Nx . Therefore, equation (1) is now

expressed,

A -
wa,e] + A wa.e] 0 (37)

where A can also be taken as equal to the physical parameter ¢ if
the nature of the nonlinear problem is appropriate, i.e., sometimes it
is possible to make A =¢ and obtain,

L ¢,e] + ¢ N§[¢,e) -0 (38)

however, this decomposition is not the general case.

-~ Solve equation (37) for A =0 with its boundary conditions (equations
(2) and (3)).

L léy.ed =0 (39)

- Find the sequence of solution ¢n solving Lx in the following
equation,

L6 (x,n8),€),€] + n &) N:[¢n_l(x,(n-l)Ak,c),eJ -0 (40)

n=12 ... N (41)

NA =1 (42)
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Consequently Qn(x,lA)‘,e) = ¢(x,€) is the approximate solutiom of

equations (1) to (3).

Next, we present four examples to illustrate the use of the MPD
and MPI. The fourth one is a nonlinear ordinary differential equatiom
involving the boundary layer theory of fluid flows.

Example 1

Consider the simple case of a first order linear differential
equation,

y +ey=0 ' (43)
y(0) = 1 (44)

which exact solution is,
y . (45)

In addition, if €<<1 , a regular perturbation solutiom (RPS) of
equations (43) and (44) is equivalent to the series expansion of equatiom
(45) and it cam be writtem,

3T = l-ex+ (en?/2! - (0?3t ... (46)

The MPI implies,

yl" + n Ac Vo1 = 0 (47)
Yn(o) =1 (48)
€ = nAe€ (49)

and we readily obtain for n=3 ,

Pyl = l-ex + (e02/3 - (ex 27 (50)

The MPD however implies,

gt"+nAegn+yn-0 (51)
gn(O) -0 (52)
Yot ~ Yo " 8y Ae + O(Acz) (53)

and also equation (49), which is still valid.

It is then readily probed that y_=1 and =-x , which are the
starting solutions of the MPD. However, it is not necessary to start
from 8o since g, can be obtained without difficulty using Yo and
without & - We can find directly g, as follows,




gy +he g +y,=0 (54)
§,(0 =0 (55)

and,
g = o (¢F-1) (56)

From equation (53) and since e€=A4c for n=1,

y)ltPD - e-ex (57

Thus, the MPD gives the exact solution in ome step.

The followin‘é results for £€=0.5 and . x=0.5 tre interesting to
compare: vEX-yMFD.0.7788 | ygf‘s = 0.7812 and ygﬂ, = 0.7703 .

It is here appropriate to place emphasis on that the MPD can also
be applied by starting with gy~ X to obtain,

v, = 1 - Ae x (58)
g, =x - Z (e-Acx -1 (59)
1 Ae
then,
_dex

v, = 1+ 20 -1 (60)

what is the same as,
EX

y;“’“ =1+2 (e Z-1) (61)

and for e£<<1 ,
YR deex + (@0?/L - (ex) /24 (62)

Although this example is- very simple, it can easily show the
relationship between vMPD and yRPS in a clear procedure. To place
emphasis on the relation between yMPD and yMP1 | Table 1 shows
numerical solutions of equations (43) and (44) obtained through the
MPD and MPI in 1000 and 10000 steps respectively, for e=1 and
Ax = 1/2000

Example 2
Consider the case of a nonlinear first order differential equationm,
y' + € yz =0 (63)
y(0) =1 (64)
which exact soiution 18:
EX 1
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TABLE I
y'+ey =0 , y(0) =1
- - —-!— - —l_
€ ’ Ax = 3560 » be = 1565
EX WP

. y D ST
0.00000 1.00000 1.00000 1.00000
0.10000 0.90484 0.90472 0.90473
0.20000 0.81873 0.81851 0.81853
0.30000 0.74082 0.74050 0.74054
0.40000 0.67032 0.66992 0.66999
0.50000 0.60653 0.60606 0.60616
0.60000 0.54881 0.54828 0.54841
0. 70000 0.49659 0.49599 0.49616
0.80000 0.44933 0.44869 0.44889
0.90000 0.40657 0.40588 0.40612
1.00000 0.36788 0.36715 0.36743

1 1
€ ’ Ax = 5500 be = To660
EX MPD MPI
x y y y

0.00000 1.00000 1.00000 1.00000
0.10000 0.90484 0.90482 0.90481
0.20000 0.81873 0.81870 0.81868
0.30000 0.74082 0.74079 0.74076
0.40000 0.67032 0.67030 0.67025
0.50000 0.60653 0.60648 0.60645
0.60000 0.54881 0.54879 0.54872
0.70000 0.49659 0.49652 0.49649
0.80000 0.44933 0.44930 0.44923
0.90000 0.40657 0.40651 0.40647
1.00000 0.36788 0.36782 0.36778
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The following approximate solutions are found whemn €<<1 ,

ngS =] -ex+ (t:x)2 + 0(53) (65)
MPI 3,.02_3,..\3

y, =1-ex+3(ex) Te(Ex) (66)
yy D~ e+ o) (67)

The last solution yHPD has been obtairned by dropping terms of
0(Ae®) to avoid heavy algebraic manipulations in the determination of
81 M

For €¢=0.1 and x=1 , it is interesting to compare the following
results,

y, - = 0.9100
y, =0.9048 , Ac = 0.05

y, =0.9000 , Ac=0.1

yy L =0.9049 , Ac = 0.05
YT =0.9065 , A = 0.0333...
yZ‘PI =0.9073 , Ae = 0.025
Therefore, it is observed how the MP1 approximates to the
RPS y PP
y by increasing the number of steps used to reach the final value
€e=0.1 .

Table II shows numerical solutions of equations (63) and (64)
obtained through the MPD and MPI for different values of A& when
€=1 . Solutions yMPD and yMPl coincide in four digits when
Ae = 1/1000 for almost all values of x .

Example 3

Consider the case of a second order nonlinear differential equation
with two points boundary conditions,

y' +eAy'y =0 (68)
y(0) = 1 (69)
y'(1) =} (70)

In the particular case of €<<1 , the approximate solutions are,
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TABLE 11
y' te yz -0 |, y(0) =1
Ax = 1/100 e=1
. 2D ST

0.00000 1.00000 1.00000
0.10000 0.90737 0.90745
0.20000 0.83036 0.83065
0.30000 0.76531 0.76587
1 0.40000 0.70962 0.71050
be= {5 0. 50000 0.66139 0.66261
0.60000 0.61921 0.62080
0.70000 0.58201 0.58396
0.80000 0.54893 0.55126
0.90000 0.51934 0.52203
1.00000 0.49270 0.49576
0.00000 1.00000 1.00000
0.10000 0.90820 0.90821
0.20000 0.83188 0.83191
0. 30000 0.76743 0.76748
1 0.40000 0.71226 0.71235
Be =55 0.50000 0.66450 0.66463
0.60000 0.62276 0.62292
0.70000 0.58595 0.58615
0.80000 0.55325 0.55348
0.90000 0.52401 0.52428
1.00000 0.49770 0.49801
0.00000 1.00000 1.00000
0.10000 0.90829 0.90829
0.20000 0.83204 0.83205
0.30000 0.76765 0.76766
. 0.40000 0.71254 0.71254
8¢ = 550 0.50000 0.66484 0.66484
0.60000 0.62314 0.62314
0.70000 0.58637 0.58637
0.80000 0.55372 0.55371
0.90000 0.52451 0.52450
1.00000 0.49824 0.49823
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Yyt = l+x+eAl3x/2-x/2-x3/6] +
+ €2 5x/6- 3% /4 - x2/3+x876 4+ x° /301 + 0(ae ) a7y
vy L= 14 x+eAldx/2 - x2/2- /6] (72)
D L @

Furthermore, comparison of the above three soclutions shows that,

D
yrlu,s = y)l!P = y;[” (74)

Thus, yHPD approximates yRPS in less steps than yHPI does it.
The next step in this example is to reduce this nonlinear problem
with boundary conditions to a linear problem with initial conditioms,

through the combination of the MPD and the method of superposition.

Differentiation of equations (68) to (70) with respect to € and
application of the MPD vields,

11 ' ' = - '
g, +n AeAyn gn+nAeAyn g, " "Ay, v) (75)
gn(O) =0 (76)
gn(l) =0 77
Byn
8n " e (78)

The starting solutions are,

Yo = 1 + x (79)

g = ~AGC/2 + x/6) + 3ax/2 (80)

The method of superposition (see Na, 1979, p. 13) can then be
applied. Define,

g, = Fn oy Gn (81)
where vy is a comstant.
Combining equations (75) and (81) we obtain,

F:+nA€Ayn F"‘+nAcA y") Fn-—Aynyl“ (82)
C" +4al0cAy G +nAcAy' G =0 (83)
n n o a n

since equation (76) has to be satisfied,
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F (0) = G (0) = 0 (84)

It is also possible to choose arbitrarily an additional initial
condition for Fn and Gn as follows,

F (0) = G;(O) =0 (85)

because equation (77), the remaining boundary conditiomn, is used only
to evaluate un . Thus,

gl'l(l) -I";(l) U G:'l(l) =0 (86)
and

M, == F"l(l)/G"‘(l) (87)

Once equatioms (82) to (85) have been solved through the Runge-
Kutta or Euler methods at each step A€ , equations (87), (81) and (78)
are used to find &, and A until n=N and NAe=¢g% .

Table III shows numerical results of equations (68) to (70) when
equations (75) to (87) are applied for two different step sizes Ae .
The two runs are coincident in the three first digits, hence further
refinements in Ac and Ax are comsidered unnecessary

Example 4

The experience gained in Example 3 is now applied systematically
to solve the boundary layer flow problem for a plate, (Blasius problem).
The corresponding equations are, (see Schlichting, 1960, p. 117)

2" + X f" £ = 0 (88)
n=0 , f'=0 £=0 (89)
n > o N f' =} (90)

where ) is an unphysical parameter such that for A=1 the physical
problem involving the boundary layer theory is recovered (see also
equation (37)).

To solve this problem through the MPD the starting solution f

is necessary; then for X=0 , 0

£3' =0 91)

- ! - =
n=0 , f£3=0 , f£,=0 (92)
n+e £l (93)

However, the solution f thus formulated does not exist, the MPD cannot
be applied. This difficu?ty is overcame by adding nonhomogeneous terms
to equation (88) which are multiplied by (1-A) so that they are zero
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TABLE 111
y" + eAy'y = 0 R y(0) = 1 R y'(l) = 1

Ax = 0.05 , e=1 , A=0.1

x yMPD
0.00000 1.00000
0.05000 1.05849
0.10000 1.11667
0.15000 1.17453
0.20000 1.23205
0.25000 1.28922
0. 30000 1.34603
0.35000 1.40245
0.40000 1.45848

i 0.45000 1.51410
Ae = 1000 0. 50000 1.56930
0.55000 1.62408

0.60000 1.67841

0.65000 1.73229

0.70000 1.78570

0.75000 1.83864

0.80000 1.89110

0.85000 1.94306

0.90000 1.99452

0.95000 2.04548

1.00000 2.09548

0.00000 1.00000

0.05000 1.05856

0.10000 1.11682

0.15000 1.17475

0.20000 1.23234

0.25000 1.28958

0.30000 1.34644

0.35000 1.460292

0.40000 1.45900

1 0.45000 1.51468
he = 100 0.50000 1.56993
0.55000 1.62474

0.60000 1.67911

0.65000 1.73303

0.70000 1.78647

0.75000 1.83944

0. 80000 1.89192

0.85000 1.94390

0.90000 1.99538

0.95000 2.04634

1.00000 2.09634
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for A=1 . In fact, Blasius problem can be rewritten as follows,

20 4 X £ £ = =2(1=2) e (94)

where the nonhomogeneous term is an obvious choice if the boundary
conditions at n + ® has to be satisfied. For A=1 , equation (94)
reduces to the expected physical problem.

Now, the starting solution can be found by placing A=0 , in
equation (94) to obtainm,

£' = - N 95)
which solution is,
£ = e 4n-1 (96)
0 n

Also, it is readily shown that the MPD implies,

2g0" +n A (£5 g + £ gl = -na) e M- £ f 97
8,(0) = g (0) =0 (98)

gi(=) = 0 (99)

frpg = I = 8, A (100)

Using the method of superposition as in Example 3 we obtain,

gy = G, +u B (101)
26" +nAA(E" G+ f G') =-nAhe ) - £ ¢ (102)
n n n n a n n
6 (0) =0 , GO0 =0 ,  GNO) = 1 (103)
"y " -
2HY' + w Ak (€5 B + € HY) =0 (104)
= ' = " -
H(0) =0 ,  H!(O0) =0 . HNO) =1 (105)

where G"(0) and H:(O) are arbitrarily imposed. Therefore, it is
clear that,

uo" [gn(') -6 (=] /Hn(') = =G (=) /B (=) (106)

U, can be obtained at each value of n with solutions Gn and Bn ’
which are in their turns evaluated from equatioms (102) to (105)
through a noniterative method as in Example 3. Once vn is known, 8,
is a result of equation (101).
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The integration procedure is performed in N steps such that
NAA =1 ; also AA-+0 as N>,

1t should be observed that

ga(0) = T+u (1on

which is designated as the missing second derivative in the classical
shootting method that have been used to solve the Blasius problem
(White, 1974, p. 261).

Table 1V shows our results for Ai= 10-6 and AMn=0.2 and they
are compared with those obtained by Howard (Schlichting, 1960, p. 121).

TABLE IV
26" 4+ A £ £ = L2(0-0) eV, £(0)=0 , £'(0)=0 , £'(») =1

A=1 , A= 1/10000 , An = 0.2

n f £' £ f'" (Howard)
0.00000 0.00000 0.00000 0.33199 0.33206
0.20000 0.00661 0.06637 0.33190 0.33199
0.40000 0.02655 0.13275 0.33125 0.33147
0.60000 0.05971 0.19900 0.32850 0.33008
0.80000 0.10615 0.26470 0.32335 0.32739
1.00000 0.16559 0.32937 0.32015 0.32301
1.20000 0.23790 0.39340 0.31335 0.31659
1.40000 0.32295 0.45607 0.30150 0.30787
1.60000 0.42033 0.51637 0.28875 0.29667
1.80000 0.52950 0.57412 0.27675 0.28293
2.00000 0.64998 0.62947 0.25740 0.26675
2.20000 0.78129 - 0.68095 0.23625 0.24835
2.40000 0.92236 0.72820 0.21655 0.22809
2. 60000 1.07257 0.77151 0.19600 0.20646
2.80000 1.23096 0.81071 0.17420 0.18401
3.00000 1.39685 0.84555 0.14810 ’ 0.16136
3.20000 1.56918 0.87517 0.12841 0.13913
3.40000 1.74692 0.90085 0.11035 0.11788
3. 60000 1.92952 0.92292 0.08765 0.09809
3. 80000 2.11609 0.94045 0.07260 0.08013
4.00000 2.30570 0.95497 0.05841 0.06424
4.20000 2.49808 0.96665 0.04335 0.05052
4. 40000 2.69236 0.97532 0.03590 0.03897
4., 60000 2.88821 0.98250 0.02485 0.02948
4. 80000 3.08536 0.98747 0.01925 0.02187
5.00000 3.28320 0.99132 0.01399 0.01591
5.20000 3.48189 0.99412 0.00940 0.01134
5. 40000 3.68085 0.99600 0.00855 0.00793
5.60000 3.88029 0.99771 0.00541 0.00543
5.80000 4.07989 0.99939 0.00304 0.00365

! 6.00000 4.27960 1.00000 0.00000 0.00240
L 6.20000 4.47948 1.00000 0.00000 0.00155




- 223 -

11-2) Partial Differential Equatiomns

In this section, the MPD is used to generate a procedure that
solves the steady Navier-Stokes equation applied to two directional
fluid flows. This equation can be written in dimensionless form in
terms of the stream function § as follows (see, for example, the
review work of Gupta, 1980, p. 163).

BRe [w‘. ¢

=B *XXXX +28B WXXIY + ¥ (108)

vhere Re is the Reynolds number. Since X=x/a and Y=y/b , and
(a,b) are the characteristic lengths of the dimensional coordinates
(x,y) , it is clear that B=b/a , O0sX<l1l and OsYS1 .

Equation (108) is a difficult nonlinear partial differenmtial
equation to solve and hence it can be linearized systematically through
the MPD using for example B as the differentiation parameter. The
resulting linear partial differemtial equation for f(X,Y) defined as

f--%% s with variable coefficients that depend on $(X,Y) , is still
very complex and, therefore, this linearization procedure is oot
recommended (see also comments of Gupta, 1980, p. 163, on computing
directly equation (108) through finite difference methods). Instead,
it is possible to introduce the definition of the vorticity  in
order to reduce equation (108) to two coupled linear partial differen-
tial equatioms as follows,

2
Q=B Yyy + Vyy

BRe(dy Oy - ¥y 0)) = 5’ Qe + Uy (110

Following Gupta (1980, p. 171) (see also Greenspan, 1974, Chapter
VII) equations (109) and (110) can be solved through finite differences
with the overall iterative procedure (outer-inner iterations) described
in the following steps:

(109)

a) Start with some initial approximations for 00 and Qo .

b) Solve the discrete form of equation (104) to obtain ¥ - This
implies inner iterations if a direct method is not used to solve
equation (104).

c) Obtain the boundary values of Q using wi .

d) Solve the discrete form of equatzon (105) to obtain P . This
implies inner iteration as in (b).

e) Repeat steps (b), (c) and (d) with new values of w and Qn for
n=1,2,
The outer iterations (steps (b) to (e)) are terminated when,
£) (On.ﬂn) and (Wn+l

) are close to a given norm; say:

Soel

e R N WA el IR N




- 224 -
ij _ nij ij
max '“n “n—xl / lszn ] < 8,

where i,j indicates a mesh point and 4 and 4§, are the allowed
1 2
tolerances to the norm.

g) The outer or inner iteration procedures diverges.

h) The pre-assigned maximum value of computing time is exceeded.

The use of the MPD can improve the above procedure in two important
numerical aspects; first, at each step, the numerical problem is
initialized with a numerical solution of the previous step instead of
iterative trial numbers; second, inmer iterations can be avoided since
the method of Gauss-Seidel converges imn one step, if the increment of
the differentiation parameter is chosen sufficiently small and if
diagonal dominance of the coefficient matrix is assured (see Upwind
discretization, Gupta 1980, p. 154). It should be also observed that
direct methods to solve the discrete partial differential equations of
Yy and N are more difficult to implement than the simple Gauss-Seidel
method.

Consequently, the starting solutions in the MPD for B=0 are,

ﬂo =- Om (111)

nm-o (112)

which are easy to solve. Then, differentiation of equations (109) and
(110) with respect to B yields,

(113)

2
g, = (ABY £ 0+ £+ 08B Y

nABRe (f g R 0= f y Ty +¥y Box~ Vox Buy) * Re (py Sy -¥oy Gyy) =
2
= (08B)" g 4y + 8 gy * 2008 Q (114)
Qo1 ~ 8y = 8 A8 (13
Vor1 ~ ¥ " anB (116)
n=1,2,...N ain
B* = NAB (118)

Therefore the starting solutions g and fo are,

g - fOYY (119)

Eoyy = © (120)

vhich can also be readily solved.
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It should be observed that boundary conditions for ¢ and 0
have also to be differentiated with respect to B . Therefore, it is
also expected that this boundary parameter differentiation has a
damping effect upon the over and under estimates of vorticity at the
boundary (see Gupta, 1980, pp. 172 and references) frequently found at
step c) in the overall iterative procedure described above.

Although we do not present here an example involving the applica-
tion of the MPD to the solution of partial differential equations, the
reader is referred to the proceeding of MECOM' 85 where the authors have
evaluated the thermal efficiency of a hot water geothermal reservoir
through the MPD.

Finally, the MPI is still easier to apply to the solution of
equation (109) and (110). Thus, the following equations are readily
obtained,

Qn-'nAB wnxx+w (121)

nYY

2
nl BRe (wnY nnx - "nx QnY) = (nAB) QnXX + QnY‘! (122)

which have as starting solution those obtained from equation (111) and
(112).

CONCLUSION

Along the previous applications of the MPD to nonlinear problems
of fluid mechanics, we conclude the following remarkable aspects:

- The MPD offers a systematic procedure for linearizatiom of ordinary
and partial differential equatioms.

- The MPD allows to initialize with analytical solutions the numerical
procedure for solving differential equationms.

- The differentiation parameter does not need to be a physical parameter
of the problem, because it can be arbitrarily selected and placed in
any nonlinear term of the differential equation, with the comstraint
that it takes the value ome at the end of the integration procedure.

- The solution of the steady stream function-vorticity scheme through
finite differences with the overall iterative procedure can be
simplified because inner iteratioms are eliminated and initializatiom
functions are solutions of the problem at each previous outer
parameter iterations. Although the MPD has also been applied to stream
function-vorticity in this work, we believe that the MPD still
requires an intensive research to better understand its application
to partial differential equations.
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