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RESUMEN

El trabajo reviss los fundamentos y aplicaciones del Método de
Bandas Finitas en placas plegadas prismiticas. En la primera parte se
comenta sobre la motivacidn de estudiar esos problemas en el contexto
de estructuras de ingenierfa civil. En la segunda parte se discuten
1os conceptos energéticos de estabilidad de los gue surgen las ecuacio-
nes de equilibrio, y los campos de desplazamientos usados en la aproxi-

‘macién de bandas finitas. La (ltima parte esté orientada a aplicaciones

de los fundamentos de estabilidad y bandas finitas a la solucidn de pro
blemas de bifurcacién, equilibrio poscritico e interaccién modal. Las
splicaciones muestran que la técnica permite resolver muchos problemas
de estabilidad de placas plegadas prismiticas, con las restricciones de
las condiciones de contorno que pueden satisfacerse en problemas de pan
deo global.

ABSTRACT

The fundamentals and applications of the Finite Strip Method to
instability of prismatic plate assemblies are reviewed. 1In the first
part of the paper the motivation to study such stability problems in
the context of civil engineering structures is stated. In the second
part both the emergy concepts of stability from which the equilibrium
equations are obtained, and the displacement fields used for the finite
strip approximations are discussed. The last part is oriented to ap-
plications of the stability and finite strip fundementals to the solu-
tion of bifurcation buckling, post buckling equilibrium and wode inter-
action. The applications show that the technique is capable of hand-

1ing almost every problem of stability of prismatic plate assemblies,

with the restrictions of the boundary conditions thet can be satisfied
in global buckling problems.
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MOTIVATION OF THE STUDY IN CIVIL ENGINEERING STRUCTURES

Structures composed by assemblies of flat, thin plates (either
folded plates or thin walled beams) are often susceptible to buckling.
In steel structures, in which each plate is very thin, local buckling
may occur in a similar way to buckling of simple supported plates.
However, the plate assembly usually has considerable post buckling
strengthand it may carry loads well over the local buckling load and
before actual collapse of the structure occurs. For such class of
structures the evaluation of the post buckling response and the
prediction of advanced states of deformation are of great interest.
Even an elastic analysis (coupled with a plasticity criterion) will
render good estimates of maximum loads which the structure may carry
in very thin plate situations. For somewhat thicker structures,
plasticity effects are important and elasto-plastic constitutive equa-
tions should be considered if real collapse needs to be approximated.
For such kind of study, the influence of geometric imperfections may
considerably affect the response.

In reinforced concrete structures local buckling is unlikely to
occur because of the thickness of the plates, and global modes will
lead to the lowest buckling loads. Two types of modes may occur in
this case: either flexural or torsional modes, depending on the load~
ing system and stiffness of the cross section. A study of the post
buckling behaviour of reinforced concrete folded plates and thin
walled beams is a very difficult task, but relatively small post buck-
ling strengthis to be expected. For such concrete structures, small
increments in post buckling load produce large deflections and conse-
quent deterioration of the material in the form of cracks, and this
induces the collapse of the whole structure at a load slightly higher
than the bifurcation load. Thus, bifurcation buckling (even elastic)
seems to be a good estimate of real collapse loads in reinforced
concrete plate assemblies.

Mode interaction in the instability process is only likely to oc-
cur in steel structures.For certain cross section and length character
istics, coupling between local and overall buckling modes may lead to
reduced buckling loads displaying imperfection sensitivity and
unstable post buckling behaviour.

Thus, the type of instability study to be carried out depends on
the characteristics of the structure (both, geometry and material) and
loading conditions. According to that, the following instability
studies may be necessary:

1) Bifurcation load, from a linear, elastic fundamental path in a
perfect structure. This leads to an eigenvalue problem.

2) Initial post-buckling path, that is, evaluation of the curva-
ture of the post buckling path at the bifurcation point fol-
lowing Koiter's energy analysis.

3) Post buckling path, in which case the non-linear equations
have to be solved to obtain equilibrium states beyond the bi-
furcation point. This is usually done for structures which
show a stable post-buckling path in the elastic range.
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4) Mode interaction in the post-critical range.
5) Non-linear fundamental path for imperfect structures.
NUMERICAL METHODS FOR STABILITY STUDIES

The two most general techniques for the analysis of structures
composed of plate assemblies are the finite difference and the finite
element methads in which a two dimensional discretization is made for
each constituent plate. As such, theyhave no limitations regarding
boundary conditions which can be satisfied; can also take into account
local discontinuities such as openings and transverse stiffeners in
thin-walled beams; and need not distinguish between short and long
end-supported structures. However, the linear static analysis of thin
shells and folded plates using such two-dimensional discretizations re
quires a large number of degrees of freedom and the assembled system
of equations to be solved is often extremely large. And if eigenvalue
or non-linear problems, such as those discussed in the previous sec-
tion, are to be solved, the computational effort may become prohibi-
tive.

PFor the class of problems of end-supported structures which are
continuous between supports, a semi-analytical technique may be used
with advantages over a full two-dimensional discretization. The
Finite Strip Method (FSM), which falls into the category of semianaly-
tical (finite element) methods, has become very popular since 1970,
its development being associated with the name of Cheung since the
mid 1960s. It has been applied with success to compute stresses and
natural frequencies of plates and plate assemblies; but although the
book of Cheung {[2] makes almost no reference to instability problems,
the FSM has in it one of the most important fields of application be
cause of the economies that may be obtained with respect to the tradi-
tional two dimensional discretizations.

The aim of this paper is to give a picture of the state of the
art of applications of the FSM to instability problems in structures
composed by plate assemblies., The paper will centre on investiga-
tions related to critical loads, which is the starting point of
most stability studies, but will also briefly review the work done to
determine post-buckling behaviour. First, the stability problem is
discussed using the total potential energy functional; second, the use
of compatible and incompatible finite strip displacement fields is re-
viewed., Third, applications of the FSM to compute bifurcation loads
in both axially loaded and transversely loaded plate assemblies are
presented. The last section gives a survey of some important applica-
tions of the FSM to determine post buckling behaviour and collapse
of the structures under consideration.

FORMULATION OF THE STABILITY PROBLEM

The study of equilibrium states of slender structures may show
instability in basically two different ways: either at a bifurcation
point or at a limit point. 1In real structures, bifurcation is not
observed because the presence of even small imperfections in geometry
and load have the effect of transforming the bifurcation of two dif-
ferent equilibrium paths into a single non-linear path. But still the
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concept of bifurcation is a very usefull one because it provides an
initial measure of the instability process, and in many cases it is
closely associated to collapse.

The energy approach to study critical and initial post-critical
states in elastic structures was developed by Koiter in 1945 {10}
and used by himself and a number of authors in the context of plate
and shell structures (see, for example, the review by Tvergaard [18]).

For a thin walled-structure such as the one shown in Pig. 1, in
which the glcbal coordinate axis are X, (r = 1,3) and the local co-
ordinate axis for each plate are x,, the change in total potential
energy T between a state without stresses and deformations, and an
arbitrary deformed state may be written as

) ¢
t
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in which njj, mjj represent the stress and moment resultants in the
thickness t of the plates; Ejj, Xj; are the deformations and
changes in curvature; uj, ujy the displacement components; pj, P3
the distributed load components; and Py the axial loads applied at
the ends x4 =0 and xy =1 in which the structure is supported.

Line loads applied at joints between plates may also be included with-
out difficulties. The strain-displacement and stress-strain relation-
ships that may be used are given in Appendix I.

If bifurcation occurs away from the fundamental equilibrium path
into a secondary path, the displacements in the latter can be written
in the form

(2)

in which ( )s represents displacements in the secondary path; ( )f
refers to the fundamental state, and variables without supraindex are
incremental displacements measured from the fundamental state.




Figure 1 - (a) Coordinate axis for plate assembly;

(b) Finite Strip Configuratiomn
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Variables indicated by ( }' depend linearly on the incremental
displacements, while ( )" indicate quadratic dependence on incremen-
tal displacements, as given in Appendix I. Just one load parameter
is considered for the whole structure, in the sense that all the loads
that are increased until and beyond bifurcation may be characterised
by a single parameter. For increasing transverse loading, the external
load may be written as -

s _ £ '
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(s)
£
Pyt APyt

while for increasing axial load,
PP= 2 p (6)

The load components pi, p! are those which occur in some cases when
the structure deforms in t&e incremental mode. Replacement of (2 -6)

into (1) leads to
T - Wg o= Wy o+ Wy o+ X3 o+ oW, (%))

in which %3 is the total potential energy in the fundamental state;
LY contains those terms which are linearly dependent on incremental
displacements, and is the first variation of the potential energy; w3
contains those temms which are quadratic in incremental displacements
(associated to the second variation of the functional * ); and similar-
ly for w3 and ¥, . Explicit forms for each of these energy con-
tributions are given in Appendix II.

Since the fundamental state is in equilibrium, the first variation
of ¥ must be zero :

" = 7 =0 (8)
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Similarly, if an incremental state of equilibrium exists, then
the secondary path may be evaluated from the non-linear system

8ry +8x3 + 8%, = 0 (9)

To obtain the bifurcation point, one may restrict the incremental
displacements to be infinitesimal, in which case higher order terms
in incremental displacements can be neglected and the load parameter

A at bifurcation is obtained from

[ mn, = 0 (10)

The field of incremental displacements which is associated to the low
est value of ) determined from the eigen-system (1) is the bifurca-
tion mode. This, however, provides no information on the nature of
the secondary path,

Following Koiter's theory, the initial curvature of the post-
buckling path results from the non-linear equation

6_'2 + 6‘!’3 = 0 (11)

The PSM will be applied to represent displacement fields and
thus obtain approximate solutions to equations (9 -11),

BOUNDARY CONDITIONS AND FINITE STRIP DISPLACEMENT FIELDS

In the . PSM, the displacement field is specified by overall shape
functions in one direction (usually trigonometric functions) as in the
Ritz method, and by local polynomial functions in the other direction,
as in the finite element method. The most complicated part in the
choice of displacement functions is the analytical function, which must
satisfy:

i) Compatibility along the junctions between plates;
ii) End boundary conditions.

For the analysis of folded plate structures, Cheung [2] has
proposed an element called LO2 (lower order, 2 nodal lines) in which
linear functions are used for membrane displacements, while the uj
displacement 1is interpoclated by cubic polynomials. Most of instabi-
lity studies using the FSM _are based on this element, and simple sup
ported boundary conditions simulating diaphragms are satisfied at both
ends. Higher order elements could also be used, but the L02 element
has proved to be efficient for stability problems. The trigonometric
functions used depend on the equations that have to be approximated Thus,
for the linear fundamental path and for critical loads, the L0O2 ele-~
ment as described by Cheung [2] is convenient, but in the post-
buckling path, different functions are needed. If the perturbation
technique is applied, then each set of equations requires different dis-
placement fields according to the order of the perturbation set.

In the following, the specific functions used in the literature
wil be discussed.
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Compatible Field [2-5, 12)

In its original version, the LO2 element defined the following
interpolation functions:
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1

are satisfied; and at the junction between plates compatibility of
displacements is preserved since u, and u, are defined by the same
trigonometric functions.

The element degrees of freedom (d.o.f.), in a local coordinate
system, are

im m im P 2m 2n 2 }

m m
u-{u1,u2,u3,62,u,u,u (n
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Use of appropriate transformation matrices R leads to a set of
d.o.f in the global system: ) ’

"= R J® (18)
in which
m m m m m P 2m 2m 2m
"'{“1'"2'“3' B, UL, UL, UL, 82} (19)

The displacement field defined by eqn. (12 - 19) has been used to
evaluate bifurcation loads in References [3-5].

In the evaluation of the secondary path, Sridharan [13, 15, 17]
has applied a perturbation technique to the differential equations
which govern the problem, and ocbtained the following interpolation
for the second order displacement field:

M v x1
a, = I ¢m sin 2m
1 1 1
m=1
M " x1 °
u, = z ¢g cos 2m 1 + u, {20)
b ]
M TX
u, = I ¢- cOs 2m + u°
3 m=1 3 1 3

Notice that although eqn. (20) may satisfy compatibility aliong the
junctions between plates, it is uncapable of satisfying the simply
supported boundary conditions at the ends. For local buckling this is
not a severe limitation [13, 15] , and it has been used for inter-
active buckling with success (17] .

Incompatible Fields [6, 8, 13}
A different set of trigonometric functions has been used in [6,

13] for the post buckling analysis of plate assemblies under axial
loading, and in which buckling occurs in local modes:

M X 1
u, = L ¢T sinm—— + X (5 -x)
m=1
M T x
u, = L ¢; cos m— (21)
met
M . T x
u, = I G; sin n—7
m=1

If the perturbation technique is used to evaluate the post buck-
ling path, the displacement functions (21) are suitable to satisfy the
second order in-plane equilibrium equations, in which the effect of
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the uj3 displacements cannot be neglected [6] . Bowever, compatibil-
ity at the junctions between plates cannot be mantained because u)
and u3 are represented by different trigonometric series. For local
buckling, the end boundary conditions may represent the actual ends of
the structure, or the extent of the local buckle. But if no signifi~
cant global displacements occur, the u3 displacement at the junctions
may be neglected, with the consequence that in-plane and out-of-plane
displacements are now uncoupled between plates and the conditions

u, = N, = 0 (22)

are satisfied at junction lines, This, in turn, introduces some res-
trictions to the type of structures that may be analyzed. No global
coordinate system is defined for this element, and all variables are
treated in local systems.

Another incompatible field has been introduced by Hancock [8],
again for local buckling under axial loads, in the form

X X
= ] sin cos !
Y 1 1 1 .
" x
u, = ¢ (sin L )2 (23)
2 2
X
uy = 03 sin i

in which 1 is the extent of the local buckle.

\

SN2 TTXy

\,

Figure 2

Figure 2 shows that compatibility of displacements (23) at the junc~
tion between two orthogonal plates can only be obtained at certain
pointe, Por angles other than /2, incompatibility at the junction
becomes more severe. According to Hancock [8] for right angle
junctions the lack of compatibility does not influence the post buck-
ling path for loads lower than twice the bifurcation load.
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The introduction of incompatible displacement fields is associa-
ted to the reduction in the number of d.o.f. that may be obtained.

BIFURCATION LOADS
Eigenvalue Problem
Bifurcation buckling loads for plate assemblies may be obtained
from the second variation of potential energy, egn. (10}, which is
often written in the general form
(XK - 2 KC) g = 0 (24)
where K is the linear stiffness matrix of the plate assembly, K; is

the load-gecmetry matrix; and @ is the eigenvector associated to the
eigenvalue A. Matrices K and K; are calculated for each element as

k= ! § 8" p B dx, dx, (25)
X X
k= ! 1 6T 5 6 ax, ax (26)
G 1 &%
X1 x2

in which B 1is the linear strain-displacement matrix; D is the

elasticity matrix; G the geometry matrix, containing the non linear
terms in incremental displacements; and o the matrix of stresses in
the fundamental state. For simple supported plate assemblies, the in-
tegrations required in (13 - 14) may be carried out in an explicit form.

For buckling under purely axial load, the eigenvalue problem is
expressed as is egn.{24). For buckling under increasing axial load,
but with non-zero lateral loads, eqn.(24) should be written as

(x + KLL - A KG) g = 0 (27)
in which Kpp 1is a matrix due to the presence of lateral load.

Under purely lateral load, flexural buckling may be modelled by
eqn. (24) . For buckling under increasing lateral load but with non-zero
axial loads, the following eigenvalue problem results:

(K + KAL - A KG) g = 0 (28)

where Kp; is a matrix due to the presence of axial load.

Lateral-torsional buckling under lateral loads produce the eigen-
value problem:

[x-x(xcnzp)]a- 0 (29)

in which K is a matrix associated to the second order loads that

exist in thE incremental atate of displacement of the structure |3},
For lateral-torsional buckling under transverse water loading, a new
effect has to be considered due to the movement of the liquid as the
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cross section rotates. This produces a new matrix xu, and eqn.(10)
may now be stated as [3]

[(x¢x')—xxG]a- 0 (30)

1f self weight is considered together with increasing water loading,
eqgn. (30) is written as

[(x+xw+xp)-x|:c]¢- 0 (31)

Calculation of matrices Ky;, KaL, Kp, Ky can be found in the li-
terature [3 - 5] , and simple explicit forms may be obtained in most
cases to improve the efficienty of the computations.

The computational effort to obtain the solution by the FSM is
basically associated to the number of coupled harmonics that have to
be included in the analysis. As such, we may distinguish between
problems in which the deflected shape of the buckled structure may be
represented by one harmonic component, and by a number of coupled
harmonics.

Single harmonic analysis [3, 4, 12, 18, 20, 21]

In most problems in which global (bifurcation) buckling modes
occur, the eigenmodes may be approximated by the first harmonic compo~
nent of the displacement field. This is the case of instability in a
flexural or a lateral-torsional mode under transverse uniform loading,
and of global buckling modes under axial loads. Such a solution may
also represent a good approximation for global buckling under partial
lateral load; and for local buckling problems in which the length of
the plate assembly is larger than the extent of local buckle.

As an example of the use of the FSM in evaluation of critical loads,
Pig. 3a shows an angle section beam, which is supported on diaphragms
at the ends. The beam is made of reinforced concrete, with

t =0.06m, 1 =25 m, each plate being 1.38 m wide. The complete
cross section is discretized using 8 strips and one harmonic component,
m = 1, The load is applied as a self weight and is constant in the
longitudinal direction; thus, eqn.(29) is solved. Buckling occurs in
a torsional mode with insignificant changes in the shape of the cross
section. Fig. 3b shows results of section critical moments at mid-
span, Mc, as a function of angle o of the plates, and it is there
seen that the critical moment increases with o until o = 60°, and
for a > 60° the critical moment decreases; thus, the largest torsio-
nal stiffness in this example is obtained for ¢ = 60°. As a ref-
erence solution, the analytical results for constant moment loading
from Meck [11] are also indicated in Fig. 3b; they are seen to agree
reasonably well with the FSM in view of the differences in the
fundamental state of stresses assumed in each solution.

As an example of the use of eqn.(31), the angle section beam
under increasing water loading studied in [3] is reproduced in Fig. 4.
Solution of the eigenvalue problem considering a fundamental state of
stresses produced by unit dead weight yields a value of )\ = 7.27,
and a critical dead weight P. = 7.27 kN/m is obtained. The buckling
mode corresponds to a rotation of the cross section with very small
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Figure 3 -
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Torsional buckling of angle section beam under dead
weight.

{(a) Data for the problem;
(b) Critical sectional moment.
—=~Finite Strip Method; ——Analytical, Meck ([11].




05m.

(a)

Figure 4 - Lateral-torsional buckling under water loading.
) (a) pata for the problem;

(b) Critical load
——eqgn. (32); ——— eqn. (32) for pd=0 ;
--- critical load. From Ref. [3].
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out of plane deformations, and the angle of rotation follows a half
sine wave between supports.

Let h be the water level at a certain loading condition; the
total load per unit length applied to the beam is given by

2
P Py * Ywh tan a (32)

where py is the self weight of the beam; and Y v the specific
weight of the liquid. For buckling under water loading both, egn.(31)
and (32) have to be satisfied, that is, the eigenvalue 1} is associa-
ted to a certain water height h. Both equations could be solved
simultanecusly as an eigenvalue problem subject to restrictions; but
it is simpler to evaluate separate solutions and thus obtain the load
state that is common to both. This is illustrated in Fig. 4b, and it
is seen that both curves intersect at a value h = 0.42 m, for which
buckling is predicted at P. = 5.6 kN/m. The influence of water load-
ing in this particular case is to reduce the buckling load due to dead
weight by 238,

The reduction in buckling load when movements of water are taken
into account depends on a number of factors, such as the geometry of
the cross section, the length between supports and the self weight of
the beam. For the angle section beam studied, if dead weight of the
beam is neglected, the curve of applied load is reduced and buckling
cannot occur.

Other examples of finite strip applications to lateral-torsional
buckling of thin walled open section beams may be seen in [3 - 4] .
Of particular interest to the designer is the parametric study of dif-
ferent section profiles, ranging from an angle V section to a U
section beam. It has been shown [4] that buckling loads for U beams
(both, dead weight and water loaded) are higher than for V beams,
but maximum reduction in buckling loads due to water influence is
produced in U section beams.

Coupled harmonic analysis (S}

For certain loading conditions, thin-walled plate assemblies must
be studied with the aid of more than one harmonic component. In the
linear fundamental path, the use of m harmonic components results in
m uncoupled systems of equations. However, for evaluation of criti-
cal loads, if the fundamental state of stresses is defined as a linear
combination of m harmonics, then there is a single eigenvalue
problem in which the = harmonics are coupled.

Fig. 5 shows a box girder under partial web loading, studied by
Graves Smith and Sridharan [S] using the FSM. The fundamental state
of stress resultants nj; bhas been obtained in this case for m = 1
and m = 6 harmonics (Fig. Sb), and it may be seen that the differences
are significant (of the order of 50%) only at certain points: in
particular, the m=6 solution models better the stress field at the up-
per corners of the box girder, where the loading is applied. The re-
sults for critical load in Fig. 5¢ show that good approximations may
be obtained with only 8 strips tomodel half of the structure; and that
use of 3 harmonics produces critical loads with errors of the order of
4%, which is lower than the maximum local errors in the fundamental state.
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Figure 5 - Box girder under partial web loading.
(a) Data for the problem;
{b) Stress Resultant nf1 at mid-span and at lower comrmers;

(c) Critical loads for different number of coupled har-
monics. From Ref. [S].
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For this particular problem, even a single harmonic analysis
would provide a good estimate of the bifurcation load, and this is
true for most problems in which the load is symmetric with respect to
mid-span. But if the load is non-symmetric, then larger differences
should be expected between single and coupled harmonic analysis, and
it is in those problems that coupling should not be neglected.

Bifurcation under axial loads [5, 12, 18, 20, 21}

The FSM had its first applications in buckling analysis in
column~-type plate assemblies loaded by edge axial compression. The
work by Wittrick and coworkers [12, 18, 20] was based on a single
harmonic analysis, and covered both isotropic and orthotropic struc-
tures. Yoshida [21] applied the FSM to compute bifurcation loads
in stiffened plates, and also developed special beam strips to model
eccentric stiffeners. The formulation by Graves Smith and Sridharan
[5] can also take into account buckling under axial loading.

POST BUCKLING ANALYSIS
Single Mode Post Buckling Path [6, 13 -15]

Once the bifurcation load parameter i, has been obtained, the
secondary path can be evaluated, the problem being one of finding
equilibrium states along a path. Unlike the fundamental path, which
is usually considered as linear, the secondary path is always non
linear and its determination is more complicated than the primary
equilibrium state. The FSM has also been used to compute such non
linear problem defined by egn.(9).

The first application of the FSM for post buckling analysis is
due to Graves Smith and Sridharan [6]. The perturbation technique
was applied to the non linear equations, and the variables expressed

as
R N I L L
(33)
u, = or . ,Mm E+ L
i i i i
in which
r
< )(t) . Aty r=1, ... p (34)
d g' r!

and £ is the perturbation parameter used to describe the secondary
path. The parameter { is chosen as the amplitude of the buckling
mode. Replacement of (33) into (9) leads to a set of linear equa-
tions which may be solved in a seguential order. The displacement
fields ulr were approximated by incompatible finite strips defined
by egn.(21). Examples of plate assemblies which exhibit stable post
buckling behaviour were presented for axially loaded structures, using
one and two harmonic solutions.

A compatible element for post buckling analysis was developed on
the same lines in Ref.{13]. For this second element, compatibility of
displacements along the junctions is satisfied, so that it is possible
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to study the influence of junctions displacements on the secondary
path. "Crinkly® collapse of the corners in box columns could thus
be detected with the FSM. ’

Non uniform compressive loads were studied by Sridharan [14]
using the incompatible displacement field. Two modes of loading were
considered: prescribed load eccentricity and prescribed end displace-
ments, and the results showed that the behaviour of plate structures
is significantly affected by the mode of loading.

In the previous studies, only local buckling modes were investi-
gated, in the sense that the junctions between plates do not have sig-
nificant displacements and remain almost straight. Application of the
compatible strip to secondary paths involving displacement of the
junctions was presented by Sridharan [15], with special reference to
local-torsional buckling of open cross section columns.

Mode Interaction [2, 16, 17}

In the previous section, the computation of a post buckling path
for single buckling modes using the FSM was reviewed. In some
cases, however, single mode analyses do not lead to reasonable results
because of coupling between modes. Interactiomsbetween modes are of
special interest in thin-walled metal structures whenever some feature
of the behaviour is modified and would not be predictable in terms of
separate analysis of each mode. Of particular interest in metal
structures are [16]

(i) Interaction between local modes;
(ii) Interaction between a local and a local-torsional mode; and

(iii) Interaction between a local and global mode (either
flexural or flexural-torsional global mode).

The theory of mode interaction stems from the work of Koiter ‘[‘IO:?;,
and the displacements are written as

AR P “(22) 2 412

+ g ¢ £ ¢ €, &, *+.ee  (39)

in which &,, £2 are taken as the amplitudes of the two modes
considered; ul ) are the displacement fields associated to the funda
mental path u(O); to the first order eigenmode solution u(”; - to
the second order solution ull! ; and so on. Separate solutions have
to be obtained for each displacement field ul ! before the values of
£, £3 can be solved in eqgn.(35).

Sridharan has used the FSM to obtain discrete solutions toc
eqn. (35) in problems of doubly symmetric interactions under uniform
end compression., Mode interaction of local and global buckling in
stiffened panels [16); of local and lateral-torsional buckling in
T-section beams under end moments [2]; and of I-section columns [17]
using the FSM have been reported in the literature. The extension
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to mode interaction under suddenly applied load is also considered in

f17].
CONCLUSIONS

The basic features of finite strip formulations applied to stab-
ility problems have been presented. A literature review shows that
the technique has been successfully applied to evaluate bifurcation
loads under transverse and under axial loading; to determine a second-
ary path; to study mode interaction in the post critical range; to
compute a non-linear fundamental path with initial imperfections [8],
and to consider plasticity effects [9].

Some assessment of the economies that may be achieved with the
FSM in instability analysis are given by Yoshida in terms of computing
time [21] and by Graves Smith and Sridharan in terms of d.o.f. and
computing effort [5], with the result that in some cases the FSM
requires 100 times less computer time than the finite element method.

APPENDIX 1
Kinematic and Constitutive Equations

The linear kinematic relations, in a local coordinate system, may
be written as

u, du,
E,, = —— (=—2 + —i) (36)
ij 2 Ix X,
3 i
28 32 uy
xij =T xj = T3 xia xj (37

Equations (36}, (37) are used to evaluate a linear fundamental state,
and for linear components of deformation in incremental displacements.
The non-linear components of deformation, E;j are expressed as

. o r r .
Ei)’ 2 7% = (r =1, 3) (38)

However, not all terms in egn.(38) are of the same magnitude. If the
plate assembly is long, non-linear temrms involving the uyq component
are negligible, and in many applications also terms containing the uy
component may be neglected. 1In local buckling modes, only terms which
are non-linear in uj are relevant. In global modes both uj and u2
should be considered because the joints between plates have significant
displacements. Thus, the following simplified non-linear components
of deformation may be adopted in the FSM for general purposes:

3u du
B, = —— [(—21% + (—2)

7
11 2 3x1 3X4
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du du
1 3.2 2.2
L] — re———
E}, = 3 “ax,’ + (3"2) ] (39)
e . 1 [ 3u3 3u3 . auz 8u2 ]
12 2 3x1 3x2 ax1 5x2

Sridharan i14, 15: has shown that the most significant term in-
volving u, is -—;— (%3%)2 whenever in-plane displacements of the
plates occur.

For an isotropic and homogeneous material, the constitutive equa-
tions of linear elasticity result in

Et v
By T e By Yoo 45 By (40)
3
Et v
"5 T TEoew %y v T S *u! an

i, 3, 1 = 1,2)

in which E is the elastic modulus and v Poisson's ratio.

APPENDIX II

Incremental terms in total potential energy

The terms on the right hand side in eqn.(7) are written as:

K 1t £ £ £
7. = I tarf/! I[—-(n..l-'.‘!.«vm X!. +n!  E..+m!_ X
2 ij

*
1 k=1 x, x, ij ij "ij ij i3 ij i)

£ £
- (pi u, + P, u3) ] dx1 dax

2
- et xq=1 )
[P, ul] x7%0 ax, ! 42)
x
2
K [ 1 A £
= w——— . ' . —— -
L kz1 t{ [ (njy Bjj +miy Xj) + 3 (ng, B,
- X, x
1 72
- f 1
+ niy Eij) = (P{ w, +Pju,)] dx, dx, ) 43)
X S S
" 1 1] L]
ne T ot { 3 ("i.)‘ ai.j + niy Eij) ax, dxz} (44)
k=1 X, X
172
p, LI ;
— "
T, L ef 3 (n'i'_j tij) d).t‘ dx2} (45)

k=1 Xy X2
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