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El trabajo reTi... loa tundamerltosy aplicaciones del Metodode
Bandas Fini tas en placas plegadas prismaticas. En la primera parte se
cOllenta sobre la motivacion de estudiar esos problemas en el contexto
de estructuras de ingenier{a civil. En la segunda parte se discuten
los conceptos energeticos de estabilidad de los que surgen las ecuacio-
nes de equilibrio, y 108 camposde desplazaaientos usados en la aproxi-

"macionde bandas finitas. La 61tima parte esta orientada a aplicaciones
de los tundamentosde estabilidad 'I bandas tinitas a la solucion de pro
blemas de bifurcaci6n. equilibrio poscr{tico e interacci6n modal. Las -
aplicaciones lllUestranque la tecnica permite resolver INchos problemas
de estabilidad de placas plegadas prismaticas. con las restricciones de
las condiciones de ContorDOque pueden satisfacerse en problemas de ~
deo global.

The fundamentals and applications of the Finite Strip Methodto
instability of prismatic plate assemblies are reviewed. In the first
part of the paper the motivation to study such stability problems in
the context of civil engineering structures is stated. In the second
part both the energy concepts of stability from which the equilibriUIII
equations are obtained. and the displacement fields used for the finite
strip approximations are discussed. The last part is oriented to ap-
plications of the stability and finite strip fundamentals to the solu-
tion of bifurcation buckling. post buckling equilibrium and lII)deinter-
action. The applications showthat the technique is capable of hand-
ling alJIlost every problem of stabilit7 of prismatic plate assemblies.
with the restrictions of the boundar7 conditions that can be satisfied
in global buckling problems.



Structures composed by assemblies of flat, thin plates (either
folded plates or thin walled beams) are often susceptible to buckling.
In steel structures, in which each plate is very thin, local buckling
may occur in a similar way to buckling of simple supported plate ••
However, the plate assembly usually has considerable post buckling
strengthand it may carry loads well over the local buckling load and
before actual collapse of the structure occurs. For such class of
structures the evaluation of the post buckling response and the
prediction of advanced states of deformation are of great interest.
Even an elastic analysis (coupled with a plasticity criterion) will
render good estimates of maximum loads which the structure may carry
in very thin plate situations. For soaewhat thicker structures,
plasticity effects are important and elasto-plastic constitutive equa-
tions should be considered if real collapse needs to be approximated.
For such kind of study, the influence of geometric imperfections may
considerably affect the response.

In reinforced concrete structures local buckling is unlikely to
occur because of the thickness of the plates, and global modes will
lead to the lowest buckling loads. Two types of modes may occur in
this case: either flexural or torsional modes, depending on the load-
ing system and stiffness of the cross section. A study of the post
buckling behaviour of reinforced concrete folded plates and thin
walled beams is a very difficult task, but relatively small post buck-
ling strength is to be expected. For such concrete structures, small
increlllElntsin post buckling load produce large deflections and conse-
quent deterioration of the material in the form of cracks, and this
induces the collapse of the whole structure at a load slightly higher
than the bifurcation load. Thus, bifurcation bucklinq (even elastic)
seems to be a good estimate of real collapse loads in reinforced
concrete plate assemblies.

Mode interaction in the instability process is only likely to oc-
cur in steel structures. For certain cross section and length character
istics, coupling between local and overall buckling modes may lead to-
reduced bucklinq loads displaying imperfection sensitivity and
unstable post buckling behaviour.

Thus, the type of instabili ty study to be carried out depends on
the characteristics of the structure (both, geometry and material) and
loading conditions. According to that, the following instability
studies may be necessary:

1) Bifurcation load, frOllla linear, elastic fundamental path in a
perfect structure. This leads to an eigenvalue problem.

2) Initial post-buckling path, that is, evaluation of the curva-
ture of the post buckling path at the bifurcation point fol-
lowing Keiter's energy analysis.

3) Post buckling path, in which case the non-linear equations
have to be solved to obtain equilibrium states beyond the bi-
furcation point. This is usually done for structures which
show a stable post-buckling path in the elastic range.



The twomost general techniques for the analysis of structures
composedof plate assemblies are the finite difference and the finite
element methodsin which a two dillllE!nsionaldiscretization is _de for
_ch constituent plate. As such, theyhave no lillitations reqardinq
boundaryconditions whichcan be satisfied; can also take into account
local discontinuities such as openinqs and transverse stiffeners in
thin-walled be&lllS;and need not distinquish betweenshort and 10119

end-supported structures. However,the linear static analysis of thin
shells and folded plates usinq such tw9-dillensionaldiscretizations re
quires a large numberof deqrees of freedomand the assembledsystea -
of equations to be solyed is often extremely large. Andif eiqenvalue
or non-linear problems, such as those discussed in the previous sec-
tion, are to be solved, the computationaleffort maybecomeprohibi-
tive.

For the class of probl_ of end-supportedstructures which are
continuous betweensupports, a semi-analytical technique l'I&ybe used
with advantaqes over a full two-diaensional discretization. The
Finite Strip Method(FSM),which falls into the cateqory of semianaly-
tical (finite element) methods, has becomevery popular since 1970,
its developmentbeinq associated with the nue of Cheunq since the
lllid 1960s. It has been applied with success to ce-pute stresses and
natural frequencies of plate a and plate assellblies; but althouqh the
bookof Cheunq(2) aakes alaost no reference to instability problClllS,
the FSMhas in it one of the most important fields of application be
cause of the econoadesthat _1 be obtained with respect to the trad1:"
tional two di_nsional discretiaations.

The aia of this paper is to qive a picture of the state of the
art of applications of the FSMto instability problemsin structures
composedby plate assemblies. Thepaper will centre on investiqa-
tions related to critical loads, which is the startinq point of
most stability studies, but will also briefly review the workdone to
deterllline post-bucklinq behaviour. First, the stability problea is
discussed usinq the total potential energy functional; second, the use
of compatible and incompatible finite strip displacement fields is re-
viewed. Third, applications of the FSMto computebifurcation loads
in both axially loaded and transversely loaded plate assemblies are
presented. The last section qives a survey of someimportant applica-
tions of the FSMto deterlllinepost bucklinq behaviour and collapse
of the structures under consideration.

The study of equilibriua states of slender structures aay show
instability in basically two different ways: either at a bifurcation
point or It I limit point. In rell structures, bifurc.tion ia not
observed because the presence of even small imperfections in qeometry
and load have the effect of transforminq the bifurcation of two dif-
ferent equilibriUII paths into a sinqle non-linear path. But still the



concept of bifurcation is a very use full one because it provides an
initial measure of the instability process, and in IllalVcasesit is
closely associated to collapse.

The energy approach to study critical and initial post-critical
states in elastic structures vas developed by Koiter in 1945 [10]
and used by himself and a number of authors in the context of plate
and shell structures (see, for example, the re~_ by Tverqaard (18J>.

For a thin valled-structure such as the one shown in Fi9. 1, in
which the global coordinate axis are Xr (r - 1,J) and the local co-
ordinate axis for each plate are xr' the change in total potential
energy w between a state without stresses and deforaations. and an
arbitrary deformed state may be written as

Ie:
11 1: { t

(Dij Eij + -ij Xij) dx, dx2k-' 2
x, x2

- t (Pi -i + P3 u3) dx, dx2
x, x2

x -1
- t [ P, U J ' dx2 } (i.j - '.2) (1)

, x -0x2
,

in which nij. ~j represent the stress and moment resultants in the
thickness t of the plates; £ij. Xij are the deformations and
changes in curvature; ui. U3 the displacement components; Pi. P3
the distributed load components; and P, the axial loads applied at
the ends x,· 0 and x, -1 in which the structure is supported.
Line loads applied at joints between plates may also be included with-
out difficulties. The strain-displacement and stress-strain relation-
ships that may be used are 9iven in Appendix I.

If bifurcation occurs away from the fundamental equilibrium path
into a secondary path. the displacements in the latter can be written
in the form

s fu. co ui + ui1-

(2)
s fu - u3 + u33

in which () s represents displacements in the secondary path; () f
refers to the fundamental state. and variables without supraindex are
incremental displacements measured from the fundamental state.



Figure 1 - (a) Coordinate axis for plate assembly;
(b) Finite 'Strip Configuration



-ij - ~ -ij T -ij -ij

s A f
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s A f
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s · A f + •.•.81ij 81ij 1)

Variables indicated by (). depend linearly on the incremental
displacetllents, while (). indicate quadratic dependence on incremen-
tal displacements, as '1iYen in Appendix I. Just one load parameter
is considered for the whole structure, in the sense that all the loads
that are increased until and beyond bifurcation lII&ybe characterised
by a sing le parameter. For increasin'1 transverse loading. the ex12mal
load may be written as "

s A f
+ piPi • Pi

s A f
+ piPJ PJ

while for increasing axial load.

ps • A pf
1 ,

The load COIIIPOnentsp!. p' are those which occur in some cases when
the structure deforms In d1e incremental mode. Jleplacement of (2 - 6)
into (1) leads to

in which '110 is the total potential enerqy in the fundamental state;
~l contains those terms which are linearly dependent on incremental

displacements, and is the first variation of the potential enerqy; ~2
contains those terms which are quadratic in incremental displacements
(associated to the second variation of the functional 'Il ); and similar-
ly for 'Il3 and •••• Explici t forms for each of these enerqy con-
tributions are '1iYen in Appendix II.

Since the fundamental state i~ in equilibrium. the first variation
of 'Il must be zero



SiJailarly, if an inc~tal state of equilibri,- exists, then
the secondary path _y be evaluated frea the non-linear syst_

To obtain the bifurcation point, one may restrict the incremental
displacements to be infinitesi_l, in which case higher order terms
in incremental displacements can be neglected and the load parUJeter
A at bifurcation is obtained frea

The field of incremental displacements which is associated to the low
est value of A deteI'lllined frail the eigen-system (1) is the bifurca-
tion mode. '!'his, however, provides no information on the nature of
the secondary pilth.

Following Koiter's theory, the initial curvature of the post-
buckling pilth results from the non-linear equation

The PSM will be applied to represent displacement fields and
thus obtain approximate solutions to equations (9 - 11) •

In the . FSM, the displacement field is specified by overall shape
functions in one direction (usually trigonometric functions) as in the
Ritz method, and by local polynomial functions in the other direction,
as in the finite element method. '!'he _t cOlllPlicated part in the
choice of displacement functions is the analytical function, which IllUSt
satisfy:

i) compatibility along the junctions between plates;

ii) End boundary condi tions •

For the analysis of folded plate structures, Cheung [2) has
proposed an element called L02 (lower order, 2 nodal lines) in which
linear functions are used for membranedisplacements, while the u3
displacement is interpolated by cubic polynCllllials. Most of instabi-
lity studies using the FSM_are based on this element, and silllPle suf.
ported boundary condi tions simulating diaphragms are satisfied at both
ends. Higher order elements could also be used, but the L02 element
has proved to be efficient for stability problems. '!'he trigonometric
functions used depend on the equations that have to be approximated. 1tlus,
for the linear fundamental path and for critical loads, the L02 ele-
ment as described by Cheung r 2) is convenient, but in the post-
buckling path, different functions are needed. If the perturbation
technique is applied, then each set of equations requires different dis-
placement ficl<11 4ccor<1i.nqto the orc1et of the perturbation set.

In the following, the specific functions used in the literature
vii be discussed.



In its oriqinal version, the L02 ele_nt defined the followinq
interpolation functions:

If ~,u, · r ~ ~-, 1

If
ID 11x,

u2 • r ~ sin -1--,
If

•• 11 x,
ul • l: ,;; sJon-1--,

in which the polynomial functions ~ are qiven by

~. .' 'ID + .2 2mu, u,

~. .' ,. .2 211u2 + u2

,;;. .l ,. .4 2m
+ 115 8 ,. 116 S2au3 + U3 +

2 2

with .' . 1 - II .2 • "
III • , - 3.,2+2113 114 • 3 2 -2 3r, I)

.5 1 ( .,- 2 .,2 + ., ]) N
6 1 ( .,3_ ., 2)·- .-a a

II • ia

At x • 0 and x • 1, the boundary conditions
.2
" u3 . 0u] u2 . ~ ,

are satisfied: and at the junction between plates compatibility of
displacements is preserved since u2 and u3 are defined by the same
triCJOnometric functions.

!he element degrees of freedom (d.o.f.), in a local coordinate
system, are

III 'Ill 'ID 'Ill
U • {u" u2, u], S

'III 211 211I
2' u" u2,

B 2m
2



Use of appropriate transformation matrices R leads to a set of
d.o.! in the global system:

8 '11I

2 '
211IU, , 8

2m
}2

The displacement field defined by eqn. ('2 - '9) has been used to
evaluate bifurcation loads in References [3 - 5].

In the evaluation of the secondary path, Sridharan [13, '5, 17]
has applied a perturbation technique to the differential equations
which govern the problem, and obtained the following interpolation
for the second order displacement field:

II 11 x,
·1 - l: ~ sin 2m--

m='
1

M 11 x,
l: ~

0 (20)u
2 - cos 211I--

1
- • u2.-1

M 11 x
l: ~

211I__ ' 0
u - CQs • u33

m='
1

Notice that although eqn.(20) may satisfy compatibility along the
junctions between plates, it is uncapable of satisfying the simply
supported boundary conditions at the ends. For local buckling this is
not a severe lilllitation ['3, '5] , and it has been used for inter-
active buckling with success [17].

A different set of trigonometric functions has been used in [6,
13] for the post buckling analysis of plate assemblies under axial
loading, and in which buckling occurs in local modes:

M 11 x, (..!..
u, - l: ~ sin llI-

l
- • A - x,)

1lI='
2

M 11 x,
u2 . l: ¢'; cos 11I-- (21)

1lI-' 1

II 11 Xl

u3 - l: ~ sin n--
1lI-' 1

If the perturbation technique is used to evaluate the post buck-
ling path, the displacement functions (21) are suitable to satisfy the
second order in-plane equilibriUIII equations, in which the effect of



the u3 displacements cannot be neglected [6] However, compatibil-
ity at the junctions between plates cannot be mantained because u2
and u3 are represented by different trigonometric series. For local
buckling, the end boundary conditions may represent the actual ends of
the structure, or the extent of the local buckle. But if no signifi-
cant global displacements occur, the u3 displacement at the junctions
may be neglected, with the consequence that in-plane and out-of-plane
displacements are now uncoupled between plates and the cOllditiona

are satisfied at junction lines. This, in turn, introduces some res-
trictions to the type of structures that lllAybe analyzed. No global
coordinate system is defined for this element, and all variables are
treated in local syste.a.

Another incompatible field has been introduced by Hancock [8],
again for local buckling under axial loads, in the fora

", 11 x, 11 x,
U • sin-l- COS-l-1

11 x 2
u2 • "2 (sinT1 (231

11 II:

"3
. 1u • s1n-l-3

in which 1 is the extent of the local buckle.

Figure 2 shows that compatibility of displacements (23) at the junc-
tion between two orthogonal plates can only be obtained at certain
point.l. Por anqles other than fl/2, incompatibility at the junction
becomes more severe. According to Hancock (8) for right angle
junctions the lack of compatibility does not influence the post buck-
ling path for loads lower than twice the bifurcation load.



The introduction of incompatible displacement fields is associa-
ted to the reduction in the number of d.o.!. that _y be obtained.

Bifurcation buckling loads for plate assemblies may be obtained
from the second variation of potential energy, eqn.('O), which is
often written in the general form

where It is the linear stiffness matrix of the plate assetnbly, Kc is
the load-.;reometrymatrix; and III is the eigenvector associated to the
eigenvalue A. Matrices It and Kc are calculated for each element as

It • B
T

D B dx, dx2 (25)x, x2

It • GT a G dx, dx2 (26)
G x, x2

in which B is the linear strain-displacement matrix; D is the
elasticity matrix; G the geometry matrix, containing the non linear
terms in incremental displacements; and a the matrix of stresses in
the fundamental state. For simple supported plate assemblies, the in-
tegrations required in (13-'4) maybe carried out in an explicit form.

For buckling under purely axial load, the eigenvalue problem is
expressed as is eqn.(24). For buckling under increasing axial load,
but with non-zero lateral loads, eqn.(24) should be written as

Under purely lateral load, flexural buckling may be modelled by
eqn.(24). For buckling under increasing lateral load but with non-zero
axial loads, the folloving eigenvalue problelllresults:

Lateral-torsional buckling under lateral loads produce the eigen-
value problem:

in which It is a •• trix associated to the second order loads that
exist in th~ ineremental state of displaeement of the structure [3}.
For lateral-torsional buckling under transverse water loading, a new
effect has to be considered due to the movement of the liquid as the



cross section rotates. This produces a new matrix ~w' and eqn.(10)
_y now be stated as [3)

If self weight is considered together with increasing water loading,
eqn. (30) is written as

Calculation of _trices ~LL' ~AL' ~, ICw can be found in the li-
terature [3 - 5) , and simple explicit forms may be obtained in DIOSt
cases to improve the efficienty of the computations.

The computational effort to obtain the solution by the FSM is
basically associated to the number of coupled harmonics that have to
be included in the analysis. As such, we may distinguish between
problems in which the deflected shape of the buckled structure may be
represented by one harmonic component, and by a number of coupled
harmonics.

In most problems in which global (bifurcation) buckling modes
occur, the eiqel'llllOdesmay be approximated by the first harmonic compo-
nent of the displacement field. This is the case of instability in a
flexural or a lateral-torsional mode under transverse unifor- loading,
and of global buckling modes under axial loads. Such a solution may
also represent a good approximation for global buckling under partial
lateral load; and for local buckling problems in which the length of
the plate asselllbly is larCJl!r than the extent of local buckle.
As an example of the use of the FSM in evaluation of critical loads,
Fig. 3a shows an angle section beam, which is supported on diaphraqms
at the ends. The beam is made of reinforced concrete, with
t • 0.06., 1. 25 m, each plate being 1.38 m wide. The complete
cross section is discretized using 8 strips and one harmonic componen~
•• 1. The load is applied as a self weight and is constant in the
longitudinal direction; thus, eqn. (29) is solved. Buckling occurs in
a torsional mode with insignificant changes in the shape of the cross
section. Fig. 3b shows results of section cd tical ~nts at mid-
span, Me, as a function of angle (l of the plates, and it is there
seen that the critical moment increases with (l until (l • 60·, and
for (l > 60· the critical momentdecreases I thus, the largest torsio--
nal stiffness in this example is obtained for 11. 60·.' As a ref-
erence solution, the analytical results for constant moment loading
from Meek [11] are also indicated in Fig. 3b; they are seen to agree
reasonably well with the FSM in view of the differences in the
fundamental state of stresses assumed in each solution.

As an example of the use of eqn.(31), the angle section beam
under increasing water loading studied in (3) is reproduced in Fig. 4.
Solution of the eigenvalue problem considering a fundamental state of
stresses produced by unit dead weight yie Ids a value of ). = 7.27,
and a critical dead weight pc. 7.27 kN/m is obtained. The buckling
mode corresponds to a rotation of the cross section with very small
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Fiqure 3 - Torsional bucltlinq of anqle section beamunder dead
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out of plane deformations, and the angle of rotation follows a half
sine wave bet_en supports.

Let h be the water level at a certain loadinq condition, the
total load per unit length applied to the beam is qiven by

where Pd is the self weiqht of the bellllll and Y the specific
weight of the liquid. For buckling under water loXding both, eqn. (31)
and (32) have to be satisfied, that is, the eigenvalue ). is associa-
ted to a certain water height h. Both equations could be solved
simultaneously as an eigenvalue problem subject to restrictions; but
it is simpler to evaluate separate solutions and thus obtain the load
state that isca-m to both. '!'his is illustrated in Fiq. 4b, and it
is seen that both curves intersect at a value h. 0.42 111, for which
buckling is predicted' at pc. 5.6 kN/m. '!'he influence of water load-
ing in this particular case is to reduce the buckling load due to dead
weight by 23'.

'!'he reduction in buckling load when movements of water are taken
into account depends on a number of factors, such as the geometry of
the cross section, the length between supports and the self veiqht of
the beam. For the anqle section beam studied, if dead weiqht of the
beam is neqlected, the curve of applied loed is reduced and buckling
cannot occur.

Other examples of finit~ strip applications to lateral-torsional
buckling of thin walled open section beams may be seen in [3 - 4] .
Of particular interest to the desiqner is the parametric study of dif-
ferent section profiles, ranqinq fram an angle V section to a U
section beam. It has been shown [4] that bucklinq loads for U beams
(both, dead weiqht and water loaded) are hiqher than for V beams,
but lllaXilllU1l\reduction in buckling loads due to water influence is
produced in 0 section beams.

For certain loading conditions, thin-walled plate assemblies must
be studied with the aid of more than one harmonic canponent. In the
linear fundamental path, the use of III harmonic CClIIIponentsresults in
• uncoupled systems of equations. However, for evaluation of criti-
cal loads, if the fundulllntal state of stresses is defined as a linear
combination of m harmonics, then there is a single eiqenvalue
problem in which the • harmonics are coupled.

Fiq. 5 shows a box qirder under partial web loadinq, studied by
Graves Slftith and sridhafan [5] using the FSM. '!'he fundamental state
of stress resultants n" has 'been obtained in this case for m • 1
and 111 • 6 harmonics (Fiq. Sb), and it may be seen that the differe~
are siqnificant (of the order of 50') only at certain points: in
particular, the .-6 solution models better the stress field at the up-
per cornert of the box qirder, where the loading is applied. The re-
sults for critical load in Piq. Sc show that qood approximations may
be obtained with only 8 strips tomodel half of the structure; and that
use of 3 harmonics produces critical loads with errors of the order of
4', which is lover than the _illlUIII local enon in the ~ntal state.
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Fiqure 5 - Box qirder under partial web loadinq.
(al Data for the problemj

(b) Stress Resultant n;, at mid-sPQn and at lower co~rs;
(c) Critical loads for different number of coupled har-

monics. From Ref. [5].



For this particular problem, even a single harmonic analysis
would provide a good estimate of the bifurcation load, and this is
true for most problems in which the load is symmetric with respect to
mid-span. But if the load is non-symmetric, then larger differences
should be expected between single and coupled harmonic analysis, and
it is in those problems that coupling should not be neglected.

The FSM had its first applications in buckling analysis in
column-type plate assemblies loaded by edge axial compression. The
work by Wittrick and coworkers [12, 18, 20] was based on a single
harmonic analysis, and covered both isotropic and orthotropic struc-
tures. Yoshida [21] applied the FSM to compute bifurcation loads
in stiffened plates, and also developed special beam strips to model
eccentric stiffeners. The formulation by Graves Smith and Sridharan
[5] can also take into account buckling under axial loading.

Once the bifurcation load parameter ~c has been obtained, the
secondary path can be evaluated, the problem being one of finding
equilibrium states along a path. Unlike the fundamental path, which
is usually considered as linear, the secondary path is always non
linear and its determination is more complicated than the primary
equilibrium state. The FSM has also been used to compute such non
linear problem defined by eqn. (9)•

'ftlefirst application of the FSM for post buckling analysis is
due to Graves Smith and Sridharan [6]. The perturbation technique
was applied to the non linear equations, and the variables expressed
as

~ ~(0) + ~(1)E; + ~ (2) E;2 + ...
(0) (1) (2) C2 (3)

u. u. + u. E;+ u. + ...
1 1 1 1

and E; is the perturbation parameter used to describe the secondary
path. The parameter E; is chosen as the amplitude of the buckling
mode. Replacement of (33) into (9) leads to a set of linear equa-
tions which may be solved in a sequential order. The displacement
fields ulr) were approximated 'by incompatible finite strips defined
by eqn.(21). Examples of plate assemblies which exhibit stable post
buckling behaviour were presented for axially loaded structures, using
one and two harmonic solutions.

A compatible element for post buckling analysis was developed on
the slIIIIelines in Ref. [13]. For this second element, compatibility of
displacements along the junctions is satisfied, so that it is possible



to study the influence of junctions displacements on the secondary
path. ·Crinkly· collapse of the cOnlers in box columns could thus
be detected with the FSM.

Ron unifoI'1ll compressive loads were studied by Sridharan [14]
usinq the incompatible displacement field. Twomodes of loadinq were
considered: prescribed load eccentricity and prescribed enddisplace-
ments, and the results showed that the behaviour of plate structures
is siqnificantly affected by the mode of loadinq.

In the previous studies, only local bucklinq modes were investi-
qated, in the sense that the junctions between plates do not have siq-
nificant displacements and remain almost straiqht. Application of the
compatible strip to secondary paths involving displacement of the
junctions was presented by Sridharan L,5], with special reference to
local-torsional bucklinq of open cross section columns.

In the previous section, the computation of a post buckling path
for single buckling modes using the FSM was reviewed. In salle
cases, however, single mode analyses do not lead to reasonable results
because of coupling between modes. Interactions between modes are of
special interest in thin-walled metal structures whenever some feature
of the behaviour is modified and would not be predictable in terms of
separate analysis of each 1IIOde. Of particular interest in metal
structures are ['6]

(il Interaction between local modesl

(iil Interaction between a local and a local-torsional lIIXlel and

(iiil Interaction between a local and global mode (either
flexural or flexural-torsional global model.

'1'he theory of mode in te raction s te_ f rCIIIthe work of Koiter [, OJ '
and the displacements are written as

(1) r
U ",

(22) •.2
u "2

in which t" t2 are taken as the UlPlitudes of the two modes
~onsideredl u() are the displacement fields associated to the fUnd~
mental path u (011 to the first order eiqelllllOdesolution u(1) I to
the second order solution u(") I and so on. Separate solutions have
to be obtained for each displacement field u( I before the values of
t, t2 can be solved in eqn.(J51.

Sridharan has used the FSM to obtain discrete solutions to
eqn.(JSI in problems of doubly symmetric interactions under unifoI'1ll
end compression. Modeinteraction of local and qlobal buckling in
stiffened panels ['~]I ol local and lateral-torsional buckling in
T-section beams under end ~nts [2]1 and of I-section columns [17]
using the FSMhave been reported in the literature. '1'heextension



to IIIOdeinteraction under suddenly applied load is also considered in
(17).

The basic features of finite strip formulations applied to stab-
ility problelllS have been presented. A literature revi_ shows that
the technique has been successfully applied to evaluate bifurcation
loads under transverse and under axial loadinql to determine a second-
ary pathl to study mode interaction in the post critical ranqe; to
compute a non-linear fundamental path with initial imperfections [S),
and to consider plasticity effects [9].

5aIIe assessment of the economies that may be achieved with the
FSM in instability analysis are given by Yoshida in terms of computing
time [21] and by Graves Smith and Sridharan in terms of d.o.f. and
computing effort [5], with the result that in some cases the FSM
requires 100 times less computer tn.e than the finite elelllellt method.

The linear kine_tic relation., in a local coordinate system, may
be written as

1 au. au.
Eij -

( __ 1_ + --1-) (36)-2- aXj ax.
1

a 8i a2 u

Xij -
3 (37)-a;;- a Kia Xj

Equations (36), (J7) are used to evaluate a linear fundamental state,
and for linear components of deformation in incremental displacements.
The non-linear components of deformation, Eij are expressed as

However, not all terms in eqn. (38) are of the same IIlIIqnitude. If the
plate assembly is lonq, non-linear terms involving the u1 component
are negligible, and in manyapplications also terms containing the u2
component lIIaybe neglected. In local buckling modes, only terms which
are non-linear in u3 are relevant. In global modes both u3 and u2
should be considered because the joints between plates have significant
displacements. Thus, the followinq simplified non-linear canponents
of deformation may be adopted, in the FSM for general purposes:

1 a U3 2
-2- [(--) +a X1
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E- - 1 "u3 2 "u2 2
(39)-2- (--) + (--)22 " x2 " X2

1 " u3 " u3 " U2 " U2E- - -2- I Ti""" " x2
+

~ a x212 1

Sridharan i 14, 15 has shown that the IIlOstsigni ficant term in-
- 1 -(~)2volvinq u2 is -2- "Xl whenever in-plane displacements of the

plates occur.

For an isotropic and homogeneous material, the constitutive equa-
tions of linear elasticity result in

Et (Eij
v 6 .. Ell) (40)n .. 1+'\1 +

1) '-'\1 1)

Et3
(Xii

v 6ii Xll) (41)m ..
'2 (' +'\1) + '-'\11)

(i, j, I - ',2)
in waich E is the elastic aodulus and '\I Poisson's ratio.

APPENDIX II

Incremental terms in total potential energy

The terms on the right hand side in eqn. (7) are written as:

It

IT f f E~ . f
11, - 1: t A (nij E! . + DI •• X! . + n~ . + mii Xij)

k-l x, x2
1) 1) 1) 1) 1)

f f- (Pi ui + PJ u3) ] dX, dX2

I f x,-l (42)IP1 U, ) x,-o dx2x2
It

IT A f
112 - t t { ! (nh E! . + mij Xij) + T (nii Elj

t-l x, x2
1)

+ n~. f
(Pi Ui + Pi uJ)] dx, dX:z } (43)£ij) -1)

It {.l..
1l~ • t t lnij Elj + nij Eij) dx, dX;l } (44)

k·t 2 x, x2
It

1
T.4 • t t { T (nij Eii) dX, dx2 } (45)t-, x, x2
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