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RESUMEN

Se presenta una técnica para mejorar la precisién de las solu-
ciones numéricas de una clase de problemas fluidodindmicos. Esta
consiste en la consideracidn explicita de soluciones analfticas lo-
cales en zonas seleccionadas del dominio de integracidn. Esta técn-
ica permite la obtencidn de soluciones de gran precisidn con grillas
muy gruesas y ha sido aplicada en un contexto de diferencias fini-
tas. Los ejemplos mostrados son vdlidos para casos de adveccidn-di-
fusidn y para flujo potencial estacionario bidimensional.

ABSTRACT

A technique for the improvement of the accuracy of numerical
solutions in a class of fluid dynamic problems is presented. It con-
sista in the explicit consideration of local analytical solutions in
selected zones of the integration domain. This technique allows for
the obtention of very accurate solutions with very coarse grids and
has been applied in a finite-differemnce context. The examples shown
are valid for one-dimensional cases of advection-diffussion and for
two-dimensional, steady, potential flow.
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INTRODUCTION

In many problems of engineering significance, the accuracy of
the numerical solutions obtained using finite-difference techniques
can only be improved through considerable grid refinement in select-
ed sones of the integration domain. This refinement may be obtained
in a number of ways, the most recent one being the so-called "adap-
tive grid refinement technique”. The knowledge of the peculiarities
of the searched solution is, sometimes, an inevitable pre-requisite
in order to specify the difference scheme and the major task of
adaptive solvers is the proper identification of the sones showing
the steep variations of the dependent variables.

Conventional approaches usually imply the specification of a
graded grid, with a higher density of nodes in the aforementioned
sones. These zones are usually called "boundary layers” and, in this
paper, this name is used in a somevhat loose sense. The thickmess of
a boundary layer is, tipically, inversely proportionate to the power
of a given parameter. In the case of advection-difussion problems
this parameter is Peclet's number (Reynolds' number for momentum).
Then, the amount of grid refinement is directly proportional (if a
constant spacing is considered) to the parameter. When advection
dominates the behaviour of the solution, the obtention of a numeri-
cal solution free from the so-called “"wiggles” may be costly. The
weaning of the wiggles in a general context has been discussed in
/1/, where the relationship between this spurious behaviour and
discretization was clearly shown. The elimination of these wiggles
(or in more general terms, the improvemernt of the accuracy of the
solution) without significant grid refinements is the goal of the
technique shown herein.

This technique consists in the incorporation of the knowledge
on the local behaviour of the solution in the neighbourhood of iso-
lated points of the domain. Sometimes this behaviour is known or, at
least, the asymptotic behaviour may be inferred. Depending on the
class of problems, this knowledge may be incorporated to the solu-
tion technique, leading to significant improvements in its glodal
accuracy. In the author's opinion, this criterion should always be
employed and this fact justifies the inclusion of the question mark
in the title.

In vhat follows the technique is presented as applied to speci-
fic problems, showing the benefits obtained.

THE TECHNIQUE AND ITS RESULTS

In reference /2/, it was shown that the accuracy of numerical
solutions in heat conduction problems associated with almost punc-
tual heat sources could be improved, according with the results ob-
tained by Emery /3/, by using local analytical solutions. Later on,
an extension of this concept was applied to the steady one-dimen-
sional advection-diffusion as shown in reference /4/.

In what follows, the results in /4/ are used as an introductory
example of the ideas involved in the present paper.




- 131 -

The equation to be solved is:

..pou,d |
L) = - P i a2 0, (1)

subject to u(0)=0, u(t)=1. This equation has been the base for
plenty of literature until very recently because of its interesting
behaviour in relation with different discretizations. The most
recently published comparison of standard approaches to equation (1)
is, perhaps, reference /5/, where equation (1), with the addition of
a source term, is solved.

Let us consider the following finite-difference approach for
the solution of (1):

(I - kly) UB* = oy L (0), (2)
vwhere Ly is the discrete approximation of L.

1f a steady state exists, themn, the exact solution of {2) leads
to Ly(U) = Ly(P), where U is the numerical value of u at any point
in the grid. Whem F = 0, the solution corresponds to the standard
approach. In /6/, the eract solution to the problem ly(U) = O is
given in relation to a number of discrete approximations and the
corresponding behaviour is discussed. ’

Let us now comsider that P is the analytical solution of (1).
Then, U = P in all the grid poinmts (as obviously expected), regard-
less the grid size. When F = O and Ly, is a centered approximation,
then, for a sufficiently high value of P and a givem discretization,
the solution becomes oscillatory (i.e., whem P.h ) 2, where h is the
constant grid spacing).

When:
P = e~P(1-x) (3)
{which corresponds to:
lim 1-ePX (4)
Pre P

{i.e. the limiting form of the analytical solutien of (1)}, the ef-
fect of incorporating (3) in (2) for the pumerical solution of (1)
is the one shown in /4/. This effect was the complete elimination of
the wiggles for any value of P with h = 0.1 (i.e., 10 grid inter-
vals!). Purther algebraic details can be found in said reference.

It must be noted that (3) is a solution of (1), but it does not
satisfy both boundary conditions; it just satisfies the ome in the
boundary layer sone. An inspection of figure 1, taken from /4/,
gives an idea of the results just mentioned.

Let us now consider the case of a steady, two-dimensional,
incompressible potential flow. In this case the governing equations
are:
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Plgire 1 - The effect of considering P = exp(-P(1-x) )
in the solution of equation (1).
Taken from reference /4/




a“ + z' -
=y o, (5)
=k -2 and (6a)

v -k;; (6v)

vhich state, respectively, the conservation of mass and the varia-
tion of the two components of momentus. In equations 5-6, u and v
are the components of the velocity vector and P is a reduced pres-
sure; x and y are the space coordinates.

Steep variatioms of u, v or p nay arise for several reasons;
usually, the imposition of boundary conditions of the Dirichlet's
type or abrupt variations in k give rise to these situations. If
these steep variations are considered Jointly with a coarse grid,
then, the computed solution mey showr a spurious behaviour.

As a first example, let us consider the flov from an almost
punctual source (e.g., radial flov from a well). The case of a flow
toward & sink is similar to the latter but the flow direction is
reversed. The computer code is the one quoted in referemce /6/ and
the grid for the calculations is shown in figure 2a, vhere the ratio
between the outer and inner radii is 50. The grid spacing is unifora
and periodicity was imposed along line A-B.

The boundary conditiops were of the Dirichlet's type, i.e. im-
posing velocities as given by the analytic solution. The computed
solution is the one shown in figure 2b. The solution (in terms of
velocities) has a strong “boundary layer” because the ratio of modu-
1ii in the first and second row of nodes is in the order of 6. As
may be observed, the direction of the velocity vectors is defimitely
spurious with respect to the expected one. The oscillations in the
modulii cannot be observed in this figure but they do erxist, as well
8s in the pressure, and may be eliminated, under standard finite-
difference approaches, by suitadble grid refining.
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/6/ Let us now consider the following version of the algoritha in
6/:

i) The discrete analogue of the divergence in a cell (piJ) is
evaluated as in /6/;

1') Redefine Dij as

Dij «+ Dij - Dypyy

where

Dh%'j is the divergence of the velocity field
obtained from the velocities calculated with
the discrete analogue of 6 a-b and an analytic
distribution of pressure.

i1) the pressure is adjusted as in /6/;
i31) the velocities are modified as in /6/.

As may be seen from the above sketchy definitioem, the only
modification comsists in introducing the kmown behaviour of the
solution into the computing slgorithm.

In order to obtain a useful tool, the analytic solution may be
a local one and this fact may be simulated by considering the appli-
cation of the correction im i') in selected somes of the integration
domain. Pigure 2c shows the results obtained through the correction
applied in the first rov of cells around the source. In fact, all
oscillations dissappeared and the solution agreed fairly well with
the analytic one all over the domain.

Another interesting example may be taken from the results in
/7/. In this case, the algorithm in /6/ was allowed to include
discrete fractures. Thus, the flowfield may be abruptly disturded by
the presence of zones which short-circuit the fluid paths.

Pigure 3 is an interesting example of such situation, which
consists in predicting the flow in a homogeneous-porous medium with
an isolated fracture aligned with the flow at infinite. Pigure 3a
shows the grid adopted and Pigure b is a close up of the vector
plot in the neighbourhood of the fracture. Spurious oscillations may
be seen and the errors, with respect to the analytical solution,
were large both in modulii and angles. Simply by including step i")
in the algorithm of reference /7/, the flow became civilized and
errors, with a coarse grid of 9 x 24 nodes, are shown in Pigure 3c,
where the results of Baca at al. /8/ are shown as a reference.
Errors were in the order of 2% in the fracture and reached 9% in the
porous media. It must be noted that the analytical solution was em-
plcyed to calculate the correction in the four velocity nodes so-

rrounding the beginning (and the end) of the fracture.

It may be argued that the correction influences the whole
flowfield because the grid vas coarse. In order to test the sen-




Wigire 2 - Potential “low from a source.
a) Grmad
b) Vector plot with standard soproach
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Figure 2 - contirued
¢) Vector plot with the proposed technicque
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e FYNETE -ELEMENT SOLUTION

STREAMLINES e ANALYTICAL SOLUTION

Pgire 3 - Flow past an 1solated fracture in a hamogeneous
poraus rock
2) The flowfield,adapted from reference /8/
b) Mlose-up of the wveloclity fleld
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Plaure 3 - contirued
¢) Errors in the computed solution
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sitivity of the method to the cell size, smaller cells were used and
the correction was applied to the same number of cells. Results were
identical.

CONCLUSIONS

It was shown that the correct behaviour of the numerical solu-
tion of some problems of fluid flov may be recovered through the uae
of local analytical solutions in isolated zones of the integration
domsin. This fact, in turn, implies the obtention of wiggle-free
solutions with very coarse grids. This approach proved to be valid
in cases of one-dimensional advection-diffusion and in steady poten-
tial flow in two dimensions (this case being solved in terms of pri-
mitive variabdles).

The application of this technique to the full Navier-Stokes
equations ia still under research.
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