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RESUJllEI
Se presenta una tecn1ca para _jorar la precision de las solu-

ciones nuaericas de una clase de proble_s fluidodinUd.cos. Esta
consiste en la consideracion erpl{cita de soluciones anal{ticas lo-
cales en sonas aeleccionadas del do.tnio de integracion. Eata tecn-
ica per.tte la obtencion de soluciones de gran precision congrillas
BlUy gruesas y ba sido aplicada en un contexto de diferencias fini-
tas. Los eje~los _strados son v&1idos para casos de adveccion-di-
fusion y para flujo potencial estacionario bidiaensionsl.

1 technique for the iaprove_nt of the accuracy of numerical
solutions in a class of fluid dTnaaic proble•• is preeented. It con-
sists in the explicit consideration of local analytical solutions in
selected son.. of the integration do_in. !hie technique alloys for
the obtention of "ert accurate solutions with "ert coaree grids and
has been applied in a finite-difference context. The examples shown
are "alid for one-diaenaional casee of ad"ection-d1ffus8ion and for
~Yo-di.en.ional! .~eadl! Pb~ential flow.



In IIllIlJ probleu of engineerin« eignificance, the accuracy of
the nwaerical solutione obtained ueing finite-difference techniques
can only be improVedthrough considerable «rid refinement in select-
ed sones of the integration doaain. This refinement lilly be obtained
in a number of ways, the .cst recent one bein« the so-called "adap-
tive grid refinement technique". The knowledge of the peculiarities
of the searched solution ie, sometimes, an inevitable pre-requieite
in order to specify the ditference scheme and the ID8jor task ot
adapti.,e sol.,era is the proper identification of the sones ehowing
the steep variatione of the dependent variables.

Con.,entional approaches usually illply the specitication ot a
graded grid, with a higher deneity of nodee in the aforementioned
sones. 'rhese zones are ususlly called "boundary layera" and, in thie
paper, this namei8 used in a eomewhatloose senee. The thickne8s of
a boundary layer is, tipically, inveraely proportionats to the power
ot a given parauter. In the case of acl.,ection-difueeion proble••
this parameter is Peclet' s nuaber (Reynolds' number for lIomentum).
Then, the amount of grid refineaent ie directly pr.oportional (it •
constant spacing is considered) to the parameter. When advection
dominates the behaviour of the solution, the obtention of a numeri-
cal solution free from the eo-called "Yiggles" 1lIl1 be cosUr. '!'he
Ileaning of the wiggles in a general context has been discussed in
/1/, where the relationship between this spurious behaviour and
discretization was clearlr shown. 'rhe elimination of thess wiggles
(or in IIOre general tenu, the iaprovement of the accuracr ot the
solution) without eignificant grid refinements is the goal ot the
technique shownherein.

!hi. technique consists in the incorporation ot the knoYledge
On the local behaViour ot the eolution in the neighbourhood ot iso-
lated points ot the doaain. SOlleti•• e this behaviour is knownor, at
leaet, the asyaptotic behaYiour _y be interred. Dependin« on the
class of proble_, thie knowledge -r be incorporated to the eolu-
tion technique, leading to signiticant illlprovelDE!ntein its global
accuracy. In the author's opinion, this criterion should always be
employed and this fact justities the inclusion ot the question urk:
in the title.

In what tollove the technique is presented •• applied to speci-
tic probleu , ehowin« the benefits obtained.

In reference /2/, it was shown that the accuracy ot nu•• rical
solutions in heat conduction probleu Msociated Yith almost punc-
tual heat sourcee could be im~roved, according with the results ob-
tained b1 bery f}/, b1 usin« local analytical solutions. Later on,
an extension ot this concept was applied to the steady one-dill8n-
sional advection-difrueion •• shownin reterence /4/.

In what tollows, the results in /4/ are used as an introductory
example ot the ideas in.,olved in the present paper.



L(u) • _ p ~ + dZu 0
d:c di"% • ,

subject to U(O)-o. U(1).,. 'This equation has been the baae for
{-lenty of 11terature until very recently because of its interesting
behaviour in relation with different diaeretizationa. The aost
recently published cOllparieonof standard approaches to equation (1)
is. perhaps. reference /5/. where equation (1), with the addition of
a source tera. ia solved.

Let WI consider the following fin! te-differeBCtl appl"':Mlcbfor
the solution of (1):

If a steady state e:cists. then, the exact solution of (2) leads
to Lt1(U) • Lt1(p). where U is the nuaerical value of u at ~ point
in the grid. lIhen P = O. the solution corresponds to the standard
approach. In. /6/. the exact solution to the problem Lt1(U) • 0 is
given in relation to a number of discrete appro:ciaationa and the
corresponding behaviour is discussed.

Let WI no. consider that P is the analytical solution of (1).
Then. U = P in all the grid pointa (as obviously expected). regard-
less the grid size. lIhen P = 0 and Lt1 is a centered approrl_tion.
then, for a sufficiently high value of P and a given discretization,
the solution becomesoscillatory (i.e •• whenP.b ) 2. where b 1.11 the
constant gid spacing).

11. 1-ePx
p... l-eP

(i.e. the limiting fora of the analytical solution of (1)}. the ef-
fect of incorporating (3) in (2) for the nuaerical solution of (1)
is the one shownin /4/. 'This effect vas the coapleu elimination of
the wiggles for any value of P with h • 0.1 (i.e .• 10 grid inter-
vals!). Further algebraic details can be found in said reference.

It must be noted that (3) ia a solution of (1). but it does not
satisfy both boundary conditions; it just aatiefiea the one in the
boundary layer aone. An inspection of figure 1. taken from /4/.
gives an idea of the results just aentioned.

Let ua no. consider the case of a steady. two-dimensional.
incolllpressible potential no •• In this case the soverning equations
are:



F1~re 1 - '!he effect of' oons1deM.ng;Il' •• exp(-PO-x)
1n the solution or equation (1).
Taken fron reference /4/
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which atate, respectivel" the conserYation of •••• aDd the varia-
tion of the two COIIponentaof lIO_ntu.. In equations 5-6, u aDdv
are the cOllpOnentaof the ftloci t:r vector aDd p is a reduced pre.-
aure; x IID4, are the space coordinates.

Steep variationa of u, v or p _, arise for several reasons;
usuall:r, the iapo.i tion of boundar:?'conditiona or the Dirichlet' a
t,PII or abrupt variationa in k give rise to theft situations. It
the.e steep variations are considered jointl:r with a coarse grid,
then, the coaputed solution M1 showa SpuriOUllbehaviOQr.

As a firat exalaple, let u. consider the now fro. an a1llost
punctual source (e.g., radial now fro. a well). 1'he case of a now
toward a sink i. siailar to the latter but the now direction is
reveraed. 'l'he co.puter code is the one quoted in reference /61 aDd
the grid for the calculatlone 18 .hown in f'iSUre 2a, where the ratio
between the outer and inner raclii ia 50. 'rile gricl .paciDe 18 UDifora
and periodici tJ ••• 1IIpOsedaloDe liDe A-B.

!he boundary conditione were of the Dirichlet'. tJpe, i.e. 18-
posing velocities as given 11)' the _l,tic .olution. 1'he coaputed
aolution 18 the one .hown in fiSUre 2b. 'l'be .olution (in tara of
velocitie.) bas a .trong "boundar:?'la,er" because the ratio or IIOdu-
li1 in the firat and second row of noele. 18 in the order ot 6. As
-:r be obserYed. the direction of the velocitJ vectors is definitely
spurious with re.pect to the expected one. 'l'he o.cillations in the
aoduli1 cannot be obaerYedin this tisure but the:r do edst, as vell
aa in the pre_Ure' and -:r be eliainated, under standard finite-
difference approach•• , 11)' sui table grid retinina.



Let us now conaider the follov1n& .,eraion of the algorl thm in
/6/:

i) '!he discrete analogue of the diYergence in a cell (Dij) 111
evaluated &II in /61:

~ij 111the diYergence of the Yelocit,. field
abtained from the velocitiea calculated with
the d1llcrete analoe. of 6 a-b and an analltic
distribution of pressure.

11) the pre•• ure 111adjuated &II in /6/;

11i) the "eloci tin are md1fied &II in /6/.

Aa "J be seen from the abo.,e sketchy definition, the only
modification consists in introducin« the known behaviour of the
solution into the computin«algorltha.

In order to obtain a useful tool, the analytic aolution maybe
a ~ ona and th1ll fact _y be ai-ulated by oonaiderln« the appli-
cation of the correction in i') in selected sonea of the integration
dO_in. Figure 2c ahow8the results obtained through the correction
applied in the firat row of cells around the source. In faot. all
oscillations disllllppeared and the solution agreed fairly well with
the analytic one allover the do_in.

A.nother interestin« ex_pIe -1 be taken from the results in
/7/. In this case, the algori tha in /6/ was allowed to include
discrete fractures. Thus. the flowfield mar be abruptl1 diaturbed b1
the presence of zones whicb ahart-circuit the fluid patha.

Figure 3 ia an intere8tin« example of such a1tuation, which
con8ists in predictin« the flow in a homogeneou8-porousmediumwith
an isolated fracture aligned with the flow at infinite. Figure 3a
showa the grid adopted and Figure 3b is a close up of the vector
plot in the neigbbourhood of the fracture. Spurious o8cillations -1
be seen and the errora, with reapect to the analytical solution,
vere large both in IIOdulH and an«lea. Simpl1 b1 includin« step 1')
in the algorithm of reference /7/, the flov became c1vUhed and
errors, with a coarae grid or 9 ][ 24 nodes, are shownin Figure 3c.
where the resulte of Baca at alo /a/ are shown 8S 8 reference.
Errora were in the order of 2%1n the fracture and reached ~ in the
porous med1a. It ~st be noted that the analytical solution vaa •• -
plOfea to calculate the correct1on in the four velocit1 nodes so-
rrounding the beginnin« (and the end) of the fracture.

It -1 be argued that the correction innuences the vhole
nowfield because the grid was coarae. In order to test the sen-
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sitivity of the .ethod to the cell size, smaller cells vere used and
the correction vas applied to the same numberof cells. Results vere
identical.

It vas shown that the correct behaviour of the numerical solu-
tion- of some problema of fluid now lilly be recovered through the use
of local analytical aolutione in isolated zones of the integration
domain. !bis fact, in turn, itapliee the obtention of Wiggle-free
eolutions vi th very coarse gride. Thie approach proved to be valid
in cases of one-di.ensional advection-diffueion and in eteady poten-
tial now in two dimenaions (this case being solved in te1"ll8of pri-
aitiTe Tariables).

'l'he application of this technique to the full lIavier-Stokes
equatione is still under research.

G.K. Grandi's skill vas very helpful in the correct iIIlI-lemen-
tation of this technique in the calculationa of the potential now.
His collaboration is gratefully acknowledged.
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