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Se i'oraulan algori tmos computacionales para la solucion
nu.erioe de 1&11 ecuaciones de Wavier-Stokes en 8edios porosos
fracturados. Se considera la aproximacion de Darcy alas ecua-
ciones de movilliento y se resuelven las ecuaciones resultantell
utilizanedo una tecnica de diferencias finitas ajulltadas a con-
tomos. Se discuten dos algoritmos, a fin de tener en cuenta la
solucion del problell& algebraico asociado, a saber: directo e
iterativo. Se presentan varios ejemFlos indicativos de las po-
sibilidades (y limitaciones) de los programas aplicados en re-
laciOn con los algoritmos preseutados.

Computational algorithll& for the numerical solution of the
Wavier-Stokes equatioll8 in fractured-porous IBedia are i'orau-
lated. Darcy's approxill&tion to the equations of IBOtion is con-
sidered and the resulting equations are solved using a boundary
-1'1 tted finite-difference technique. Two algorithms are disCUS-
sed so as to consider the solution of the associated algebraic
j:oroblem, namely: direct and iterative. Several examples are
j:oresented showing the oepabilities (and the limitations) of the
implemented codes in correspondence with the j:oresented algo-
rithms.
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'rhe equations governing the flow of fluids in porous _dia
have been discussed by manyauthors. Amongthea, Sanches-Palen-
cia /1/ considered the validity of the usual approximations to
the ~avier-Stokes equations in general terms. The consideration
of cases of fractured-porous media is a more realistic approach
for manyrock formations and plenty of literature is nowavail-
able on this subject (see /2/ as an example) because of its
practical interest.

This paper arose from the authors' interest in the ~el-
in~ of a high-level waste repository.

In /3/, ~arashiaan discussed the different approaches to
the IIOdelinl'; of the flow in fractured-porous .edia and pre-
sented an integral rini te-difference _thod. Later on. in /4/,
this _thod was extended to consider multiple interactinl'; con-
tinua includinl'; the coupled effects of h_t and 1IU1tipbase
fluid flow.

In /5/, the present authors introduced some details of a
code dealillR with the flow in porous media and suggested its
extension to consider the flow in fractured-porous media. This
method, employinl'; boundary-fitted coordinates, was an adapta-
tion of an earlier code /6/ to this type of flow, but incor-
porated an additional feature: namely, the use of a direct
sparse solver in order to solve the resulting systell of alge-
braic equations. Both versions of the code included the solu-
tiOn of the coupled energy ~uation.

The present paper is a full description of the algorithms
eaployed to solve the problem of the flow in a fractured po-
rous-media. To the author's knowledge, they introduce different
features vith respect to other existing algorithm•.

In vhat follows the governing equations are considered in
the case of the flow in a porous rock vith discrete fractures.
The validity of Darcy's and ~ussinesl!l~'s approximations to the
~avier-Stokes equations is accepted for the flow both in the
bulle of the rocle and in the fractures. The energy equation is
not solved in discrete terms, but analytical approximations are
assulled to hold. The discretization of the resulting equations
is shown later, along with sOliecomputational details. The re-
lative performances of the codes are discussed and s01lleexam-
ples of typical results are included for two-di-mensional
flows.

The equations governing the flow are: the IIIOmentuIIequa-
tion in the porous _dia,

u • - Ir (VI' + B g IIr )
111'



uf • - If (Vp. I ) I + 8 ( i. 1 ) 11ft) ; (2)
"f

Ia eq•• tiona 1-3, U 111tbe volulIIe-averagednuid velocUy,
Uf 111tbe -veloc1ty in tlte diecrete fracturee, P ie a reduceQ
(i.e. divided by po) prel!ll!lurevbicb is the sua of the eutic
pressure of tbe fluid plue tbe static bead, 8 ee the vol_tric
the~l eXlNlJlI!Iioncoefficient of the fluid, T ie the teapera-
ture in the BYst_, g ls the gNvi!1 acceleration, ~ ie the
ltir,e_tic .•.i 15collity of the fluid, 1 is a unit .•.ector defining
the direction of the fracturell, T and aT are a control .•.01_
and i tll boundary, reepecti'Yely. !inally, lCrand Itf are the per-
\IIeabilitiee of the poroull roclt and of tbe fractures, respecti-
Yely.

'rhe teall8rature ill considered all a gi'Yenflmction in equa
tions 1-3. Tllis reetriction i. accepted as a useful lIiaplific.=
tion in the case of repository modeling if the ftaleigh'a nuaber
of tbe sy.t_ is not high, all it frequently occure. It ill not •
very diff'icul t tasle to integrate the energy equation siaul ta-
neoullly vi th equations 1-3, and in reference /5/ tbe .tbore
shoved soae results of tbill procedure. In soa. of tbe iapl-.n-
ted codell consideration vas ~iven to .•.ariationll of lCrwith the
posi tion. 'rhe extension to consider variable \If ill IItraight-
forward.

for the porous _trix, tbe detel'i.nation of ler is siaple
because it is considered as data. The corresponding value for
the fractures ie obtained by 8l!Isu\llingtbat tbe flow satiefiee
the 'Poiseuille flow law (cubic law for now-retea); this, in
turn, iaplies tbat:

where b is tbe aperture of tbe fracture. In the actual cod•• ,
the 118raeability for the fractures V8l!Iallowed to follow thie
law or to being filled vith a porous •• terial of a gi"'811per-
\IIdability (linear law for flow-ratee).

Tbe nUJll8rical eolution of 1-3 was obtained by _anll of
boundary-fitted f1nite-difference tecbniques. The dillcrete ver-
aio~ of these llCluationa can be round rro. 'Previous wr\tll by
J.r. 'rhompson(llee reference /7/, for instance) and by one of
the autbore /6/. As the present approach,is somewhatdifferent
fro. tbe usual oneil in boundary-fitted coordinatell, 1I0meal&e-



braic details vere provided in /';1, but only for the bollOge-
neous porous rock. The algorith •• are nowextended to allow for
the presence of discrete fractures and, correspondingly. sOllie
aodifications to the specifications in 15/, are ~ven.

1i4Ure 1 shows a cell belonging to a hypothetical grid in
the physical plane and illustrates the location of the varia-
bles. As can be seen. velocities located at the cell corners
and cell-centered pressures are considered. Temperatures are
located at cell corners. 1)ij is Il discrete representation of
the flow divergence and is located at the cell center.

Also shown in Usure 1 are two paths crossing at the cen-
troid of the cell, representing one-dilllensional linles betveen
pressure nodes. 'rhese paths are the discrete illlS~eof the frac-
tures in the rock. Thus. the representation of the structure of
the rock consists of large bloclts of hOllOgeneousporous conti-
nUJII(or an equivalent fractured rock block) llOrroundedby one-
diJllensional fractures. The velocities along the fractures are
called uf and vf. respectively.

It is interesting to point out that this particular cen-
tering of the variables forces the fractures to be coincident
With lines joining the centroids of the cells. 'l'hen. the boun-
dary-fitted techniques is employed to fit "internal" boundaries
as vell aa the external ones. As a consequence, uf and vf can
be considered as the moduli of vectors tangent to the linea of
constant values of the coordinates in the colllputational plane.

Considering the cOlllputational plane of reference, with in-
dependent variables U and V, equations 1-3 transfora into:

ilP ilP
u • - Atr (AUXau • AVXw) ,

ilP ill'
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Pig. 1. A co.putational cell illustrating the centering ot
'fariables
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fig. 2. A cell in the reference plane sborir.g the centeTir.g
for the coefficients of the t~naformation.



Atr • t.r!vf

Atf • 1..rfvf

In equations 9, 1..r or 1..1'sust be a function of the loca-
tion, if the perllleability of the rock is variable or if the
aperture of the fracture varies, respectively.

The various coefficients in equations 4-9 measure the
influence of the coordinate transfol'llatio!l upon the original
equations. They are nuaerically calculated as follows:

AUT• Uy

AVY• Vy

EUU• (AUX.AVY-AVX.AUY)!/AVY

YVV• (AUX.AVY-AVX.AUY)!IAUU

• -g.Avxi IiVV

• ~.AUX!IAUU

In equation 6, A is the area Gf the porous block. 'or the
actual calculations, A was considered as the area of the cell
without discounting the area of the fracture. This fact intro-
duced an error of the orden of b.u, where u is the value of a
typical velocity in the bulk of the rock. Taking into accour.t
the small aperture of the fracture with respect to a typical
cell face dimension and that u «< uf, this error was negli-
gible.

~igure 2 shows the location of the ~ints for the calcula-
tion of the different ooefficients of the ooordinate transfor-
mation. Coefficients BOXhave the s~e meaning as AUXand they
only differ in their location at the grid. It is important to
point out that the calculation of these coeffioients -of course
-greatly influences the global accuracy of the computed sol.u-
tions. It is recoMmendedthat the grid transformation should
also include the mid-points. In "smooth" grid transformations,
the criterion adopted was tG employ sui table averages of a
basic set of coefficients (the ones denoted as AUX). In cases
of greatly distorted grids, this criterion should be exercised
very carefully.

The discrete version of equations 4-8 is obtained by llIeans
of centereci-di fference eXl'resions in the cOlllputational plaue,
i.plying an appropriate averaging of the variables in the cell.
They are as follows:



Uij· Atr { AUXij (Pi-lj-1 + Pi-lj - 'ij-1 - Pij)/2 +

+ AVXij {Pi-lj-l + Pij-l - Pi-1j - Pij)/2 } ; (10)

Yij • +Atr { AUYij {Pi-1j-1 + Pi-1j - Pij-l - Pij)/2 +

+ AVYij (Pi-lj-l + '1j-1 - Pi-1j - Pij)/2 -
- II g A'rij } ; (11)

tlij • { (Ui.+l j+1 + ui+1j - Ui. j+l - Uij)' BUXij/2 +

+ (Ui+1 j+l + Uij+1 - 1li +1 j - Uij) BVXij/2 +

+ (Yi+l j+l + vi+lj - Yij+1 - Yij) BUY/2 +

+ (vi+1 j+1 + Yij+l - Yi+lj - Yij) BVY/2 } 1ij +

+ {b.Vf·cosa)n - (b,Vf·cosB)s +

+ (b.ur·cosa)e - {b.Uf·cosa)v .0 (12)

Yfij· Atf { JVVij (Pij-1 - Pij) - II 8Vi+l/2j ari+l/2j }.(14)
In expressions 13 and 14. the centering of T at the points

in the middle of the cell faces vas denoted vith half indexes.

Vro. now on the differences betveen the algorithms must be
pointed out. The iterative method viII be considered first. The
algori th. closely resembles the one sketched in /5/ but. for
the sake of completeness. it viII be specified here. The calcu-
lation starts with a ~essed pressure field. giving approxiaate
values for Uij. Vij' Ufij and Vfij (from equations 10. 11. 13
and 14). Then the folloving iterative procedure is applied:

i) '!'hediscrete anlliogue of the cell divergence, tlij. is
obtained fro. equation 12.

11) The pressure in the cell is adjusted to bring cell
divergence to zero. as follovs:



•• III {-n' ....,., }-lPij • At
r

Aij UUU1j + u"ij + CT +

+ -!...{ (b COSO ~)n + (b COSO nY). + (b COSO l'lUU)e +Atr

and CT _alUl £ross !er1118(i.e .• ~ig_r order teMls illlply-
in~ crossed derivativea of the t~nsrormation coeffi-
cients) •

III is an oyer relaxation parameter 1I1'Ie_ typic'll value is
1.7 for this type of problems.

iii) The veloci ty of cOJllponer,ts at the cell corners are
accordingly Modil"ied as follows:

+ ••(It)
-ij

.(\c+l) + .(k) + C (AUY'+lj+l + AVY )i+1j+1 i+lj+l ~ i+lj+l •

vC~+I) + v(k) , + Cf rVV1j+' •t1j+l f1j+1

yCk.l) + yhe)
tij t1j
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'BoundaryconditiolU!lwere appropriately applied after each
iteration sweep and convergence vas usually reached. This COD-
ver~ence and subsequent preS8ure s-oothing defined the COBplete
solution (see /6/).

As presented, the iterative algorith. solves Poisson's
pre_ure equstion thro~h tbe use of an intenaediate variable
(D) and provides a 8iaultaneoua adju8tment of velocitie8. An
al ternative approach colU!lists in solVing 'ollis Poisson' s equa-
tion fro. the very beginning; this procedure ••• also i.ple-
aented and it is. eoaetiae8. le_ selU!litive to steep variatioDa
in pressure. allowill8. in turn. for a siapler treatael1t of
-singularities- in the sense defined in /8 • 14/.

The other algoritha i.plied the use of-a direct solver in
order to obtain a fUlly coupled solution for equatiolU!l4-6. The
equations vere ordered by blocks, each one representing a coa-
putational cell. In each block. the equatiolU!lwere ordered u
follows.

i) 11 maentu. (fro. which u vu obtained)

ii) continuity (fro. which 'f _s obtained)

iii) v ao_ntua (fro. which II was obtained)

iv) Uf lIloaentua (froa which uf was obtained)

v) vf lIOaentulll(froll which vf wu obtained)

'Boundary conditions were incorporated erplicitly in the
8Y8te. of equstiolU!l.

The definition of the coefficients in these equatiolU!lis
given in the Appendixfor the general blocks.

The algebraic eystea of linear equations was solved vith a
library sparae •• trix solver n_ed 1U29ADfroa the lIarvell
package /9/. whicll proved to be efficient in IIOst ceses. Hov-
ever. attention aust be paid to the relative weight of the
coefficients if meaningful results are desired. The resulting
size of the syeteas of al~ebraic equations was a function of
the DOdesellployed and colU!liderablefill-in arose.

The treatment of bogndary condition vas. of course. deter-
ainant for the obtention of results. Several types of thea •• y
be prescribed. nsaely:

i) inflow-outflow boundaries, vi th both rock and fracture
fluid velocities specified;



11) free-sUlI boundaries, where tlle norasl comllODentof the
veloci ty vector is null. In this case the velocity at
the boundary is obtained from the velocity in an inner
1IOintas in /6/, i.e.:

wbere I and ~ rellresent the Bouudaryand the Inner
1IOints respectively and Ii is -a unit vector nor.al to
tbe boundary;

iii) boundaries with iS1lOsedpressure, where the velocities
are im1lOsedas continuative and tbe pressures are a
function of tbe space coordinates;

iv) boundaries with coutinuative velocity. where the velo-
city is s1l8cified as a function of' tbe interior one;

v) periodic boundaries. wbere tbe inflow and outflow are
linked by periodicity.

Whendealing witb the iterative method. a greater flexibi-
lity is allowed for the i"1IOsition of boundary conditions. It
is \mown(see /10/ for example) that iterative metbods give a
solution even if' tbe pressure equation is over-specified witb
respect to boundary conditions. In the case of the direct se-
thod this fleXibility is. of course, not allowed.

The inherent checkerboarding pressure field is a conse-
quence of the type of variable centering adopted and this fact
is also related with the specification of boundary conditions.
The presence of the fractures seemed to change the patterns of
the checkerboard modes and. therefore, the simple smoothing
technique of /6/ must be employedcarefully. A smoothing tech-
nique of general validity is still under research. Actually,
the pressure field is not of substantial im1lOrtancein the case
of steady flows when dealing with problems of trans1lOrt of
solutes. However. in the unsteady-flow case. the stBOothingof
the cell's pressure at the end of a time step affects the esti-
mation of the velocity for the next step.

In the direct •••thod. tbe i.1IOsition of boundary condi-
tions also implied the reordering of equations in the cells ad-
jascent to the physical boundaries. This was not the case with
the iterative procedure.

In this section the results of the simulation of three
tYllical cases are shownand the relative merits of botb. algo-
ritllas are discussed.

The !iret case vas taken from reference /11/ and consists
in predicting tbe flov in a rectangular netvork of intersecting
fractures in a porous media. The problell is linear and this
fact allowed the comparison of results from the data in /11/.



!be ~tlT of' the networlcis shownin nlUre ,. Whenthe per-
aeability of' the porous IIedia is SO_ orGers of' ~itude lower
than the corresponding peraeabili ty of the f'ractures, this net-
work r__ bles a net of conduite vith linear now resistance
(as pointed out in /11/). ~e conduite .vere unifol'll in length
(200 .) and in aperture (10- .).

'Mleflow _s established by iJIposing a constant now boun-
dary CODdition to the fractures on the left face of the bloc~
and by extractilUl: fluid at a constant now rate fl'01lo~ frac-
ture. Since t'1e model considers a porous frac1;ll.-edrock, this
si tuatiou can be ~el1ed vhen the corr~iponding permeability
in the !"iliOU\ _trix is far lower tban that of the fractures.
I(r • 10- • (all1Ost zero) vas adopted. The results obtained
vere COtIparedwith the on.. in reference /11/ and both ara
shown in f'igure , in a -non-di_Dsionsl- fora. 'Mlis presenta-
tion vas adopted because '1n exact comparison _s not feasible
with the data reported in reference /11/.

!be results comparefairly vell; differeDces are belov 4%,
except in the first colUlln of nodes, where th.,. reached 8'C.
'1'his colullll is an additional one, and was only neCe8MlT in
order to iBpOseinpmt flov conditions. The results vere checked
for sensitiVity ro tJle,values of' If· !to diff'erences were found
ir. the range 10- , 'b "0- 5, with b ••• sured in ••

'Mle second case consists in the aodelling of' the nov
around a circular cilinder and is representative of the situa-
tioll f'ound in a plane noraal to the axis ~f a nuclear vaste
container placed in a fully saturated rock. In this case the
flow rea_bles the potential flov around a circular cylinder.
'1'hegrid adopted is the one shownin figure 4a.

Prescribed now on the external boundalT, as given by
the theoretical solution

Periodic flow CODditionsalong sepent !:!.

'rhe resulting novfield is represented in the 'lector plot
shownin figure 4b. A close up f'or a finer grid calculation is
shownin figure 4c. '1'he_xillu. error in the case of f'isure 4b
W8S5< with respect to the analytical solution. 'rhe results are
'1ery lItOOcl in spite of these coarse grid •• 'l'his is coherent with
the results of reference /12/, where 8ccurate resul te vere ob-
tained with 4/1 eleaents in a lavier-Stokes ll'EI'(code. Quite
surprisingly, elements of a hi~her orGer produced .purioae ve-
locity oscillation. allover the flow-field.

'l'he thirG eX8mpleconsists in predicting th. now towards
IU incH_ f'ractiure, !ipr. 'j l11uatrat•• tbe «rid eIlllloyed
and the fractura. '1'he do_in of integration i. now a square
block of ~pneous rock, 1000 • htfh and 1000 • wide, the
pe~bility being fixed .t 1.7 x to- .2 (. mical -value for
• crietalliDe rock). !be :iJ:lcliud fracture ran &11acroaa the



127 ~,l'J 351 .52 526 576

(IZI) (251-) (368) (.67) (545) (594)

136 203 379 403 563 611
(131 ) (261) (383) (490) (571 ) (621)

148 280 410 5Z9 621 61>3
(147) (27(,) f411 ) (535) (632) (674)
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( 147) (297) (451) (610) (749) (750)
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833
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4S5
(488)
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'1g. '5. A network of fractures of equal she /11/. b-l0- 3 ••
Comparison of results for (P1j -po)/(Pr - po)·
Values between parenthesis talcen from /11/
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Pi8' 4. Plow around a circular cylinder. (a) grid,
(b) nctor plot.
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'i«. 6. !lov past an isolated fracture in a noaogencous
rock. (a) Doaain or integration, (b) vector plot.





.i~. 7. 1 ~d Cor the co.pari.on or result. for. aiQS1e
fracture.. /15/

DIRECT IIIftKOD InRi 'rIVE tnmIOJ
10.

cella (ltB 'rCPU (&ec) (kB) 'rCPU (&ec).-ory .-ory

7 21 0.75 8 0.52
11 4J 1.52 15 J.40
15 7J J.05 24 13.J
21 135 7.J5 42 50.1
'51 296 84

41 )1024 139 490

'rable 1 - Coapari.on or the reeource. involved for a given pro-
ble ••



DIllEC'l'1IE'\'1I0D rrERATIT~ ~OD

__ Or'.((kB) 'l'CPU (see) _1101"1 (IcB) 'l'CPU (see)

172 18.'5 48 129

Table 2 - Coaparisou of tbe resources involved for the problea
ia fi~re 5. /11/

E '(

direct solver 2.0
Primitive
yariables

iterative solver 2.0

direct solver -1.1
Pressure

iterative solver -1.0

Table '5 - Comparison of the _xiraua error in the fracture velo-
ci ty for the case in ri~re 5.
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rock an4 ha4 a peraeability of 1.7 l[ 10-9 .2 nth b • 0.01 •
(linear law).

I~e~able walls (Un • uf • 0) at the right. left &D4
bottoa boundaries.

I~G8ed vater table (giyen pressure) Y&l')"1D«1'-rly
fro. left to right nth a gradient of '.87 a/.2..

Continuati .•.• (open) fncture at the top boundary.

'!'he resulting nowfield 1&shovn in figure 5b •• & .-tor
not. As _y be _n, the now 1&alaost interruptecl ••••• the
fluid reach•• the fncture wh1.ch,in turn, talc•• up •• t of the
inco.1ng nuid.; tbe rHultbg .•.•locnf;J' in the fracture _ 2.44
10-3 ./s.

The last e~le ••.• also erlncted froa reference /11/
and consists 1ft the prediction of the now in a hODIOgeDeOaep0-
rous •• dia nth an isolated fncture panllel to the .•.•locity
field at infinite distance. Figures 6a and 6b sholl'the caaputa-
tional dolll&1n&nda vector plot of tlHl resulting now field.
The results were obtained vithout imposing si_etry conditions
with a grid of 25 l[ 14 nodes. Boundaryconditions vere 1apOsed
at "infinif;J'" a8 given by the analytical solution in reference
/13/. It is 1ftteresting to point out that the grid ••.• CO&r'lM
and that the solution vas only obtained after applying a tech-
nique siallar to that in reference /14/. Somedetails of th1e
technique vill be given elsewhere. Permeabilities were ((r •
10- ! 5 11I2 and ((f • 10-7 .2 for the hOllOgeneousrock &nd the
fracture, respectively. The maximumapparture of the fncture
was 1O-.l III (linear law). The results obtained compared fairly
well with the analytical ones. Errors were in the order of 2%
in the 1IImediate vicinif;J' of the fncture when co.P&red nth
the analytical solution and tended to zero towards the lla1ts
of the do_in.

The above cases serTed to exemplify the capabilities of
the codes lIIplemented. Thus, this is the right ti •• to perfoI'll
SOlliecomparisons amongthe relative I118riteof both algorithaa.
Computational efficiency is a measure of a code's capabilif;J' to
perform a given task and UII1lally1ftyolves the so-called "grind
time", i.e. the cost in seconds of CPU divided by the _ber of
cells IllUltiplied by the numberof itention sweeps through the
mesh required to reach a given error. '!'his is a siaple ••asure
but does not _ke any reference to the resources needed for the
actual calculations. A better (.ore realistic) COst would be
that obtained by considering all the resources 1ftvolved. How-
eyer, the first definition is UII1l&llyfound in literature and
is the one applied herewith.

Sometes ts were perfoI'lled &gainst a one-dimensional pro-
ble. as given in reference /15/. The codell were considered &S
tully tvo-dillensional and t:he physical sUua t:1lSllis the lSne
sche•• tically shown in figure 7. Table 1 shall's the different
cast. for a BASP68 coaputer, as a function or the _ber of



cells for the one-dimensional patll. As llI8ybe seen in this
table. the direct ~thod is aore economical in CPO time but far
!lOre expen8ive in ~1IOry. 'l'he econollYin CPO tille is sometillell
problea dependent because. if additional time steps are nec-
cessary. the iterative code is che"per because the initial
values are closer to the final ones arter the first time step
(actually it "811 the cue in the calculations of reference
Is/).

,or the probln in fipre .,. the resultll are shown in
table 2. confiraing the trends in table 1. It ill obvioull froll
the lI!'i'ceeding tablell thet the grind. ti.e ill IIUchllhorter for
the direct ~thod.

In spite of the previoull conclullion. the iterative •• thod
"all. u stated in /S/. partially abandonedbecause the authors
felt that tlle direct aethod "as more reliable. However. in or-
der to test new i.provesents to the codes. the iterative method
"as later (once againl) preferred. because changing the progra.
ming of the direct COdeW811not an easy task. 'l'he direct solver
i.plies another shortcolling in the sense thet a parameter must
be selected to govern the pivoting. Improper setting i.plied a
greater growth of the _trix and s01leti•• s the doubt remained
regarding the validity of the solution so obtained. 'l'he itera-
tive solver is. as discussed previously. less sensitive to an
over-speci fication of the proble., this characteristic being
(in the authors' opinion), dellirable.

As a lallt example. the perforaance of the codes in teras
of lI!'i'ssure were compared"ith the primitive variable vereions,
for the case of figure 6 /11/. 'l'he comparison _s perfol'llledin
teras of the uximua error in velocity at the fracture.

In this case a very coarse grid "a8 _ployed (12%9 cellll),
imposing anslytical boundary conditions at a distance of the
order of 70 • from the fracture. The errors in velocity at the
fracture are shownin table" for the varioull versions and are,
of COQree,si.ilar.

'rbe exteneion of the present .thod to three space di.en-
sione and UIll!Iteadynow (now under research) iaposell Hal ta-
tions due to the li.ited computer resourcell available and. all a
(definitive?) rule. the iterative •• thod will be preferred.

't'vo different algori thas for the prediction of bydrodyna-
aics in fractured-poroull •• dia have been presented. !heir rela-
tiT. aeri 'os bave been dillcussed in terall of the resultll obtain-
ed from their al!ll!lociatedcodes for a set of verification pro-
'ole_. It _y be concluded that aU verllions are of silllilar ac-
curacy. ~owever. fro. the point of Vie" of their exploitation,
the vereion considerins the direct 1I01verill the IIOlltadequate
fOr steady-state proble••• In newlIituationll and, particularly,
in tllree-di_nsional now, tbe iterative version is lIiapler to
i.pl_nt and far IIOreeconoaical in computer IIeIIOry.'l'he lIase

'DC'''-;cm appli_ to UIll!Iteadynow situations.



~e codes sllowed 'or the inclusion of discrete frect.rea
in s domain subdivided in cells. This spproach is rare ~n ~
putational methods ar,d is particularly sui table for the irlcl ••.
sion of semi-8nalytical s01utions toward i_proving the' lIilo'-l
accuracy of the results.
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A • atr (AUXi~ + A~i~)!2
A2 • Atr (-Auxij + A~ij)!2
A3 • Atr (AUXij - A~ij}!2
A••• 1.0
AS· Atr (-At~i.; - A~ij) /2

1\1 • Aij (BUXij + ~ij)
~2 • Aij (~UYij + ~VYij)
'83 • 2 b" COB Ow
B••• 2 bs COB CIs

l\S • Aij (lUTJ:i.i - B'lXij)
B6 • Aij (~UYij - WYi.i)
'97 • - 2 be COB <Ie

~8 • Ai.; (-l\TJX1.i + llVXij)
119· Ai'; (-lllTYi.; + RVYi.;)
~ 10 • - 2 bn COli CIn

l\ll • Ai.; (-llTJJ:ij - ~ij)
~12 • Ai.; (-lllTYij - BVYij)

~ 1 •
~2 •
~3 •
r. •••
~S •

Atr (AUYij + AVYij)/2
Atr (-AUYij + AVYij)!2
Atr (ATJlij - AVYi.;)/2
1.0
Atr (-AUTij - AVYij)/2

D1 • - atf' (~JUij)
D2 • - D1
D3 • 1.0

~1 • - Atf (VVVij)
ll:2 • - ":1
1Ol3 • 1.0


