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RESUMEN

Se formulan algoritmos computacionales para la solucidn
numérica de las ecuaciones de Navier-Stokes en medios porosos
fracturados. Se considera la aproximacién de Darcy a las ecua-
ciones de movimiento y se resuelven las ecuaciones resultantes
utilizanedo una técnica de diferencias finitas ajustadas a con-
tornos. Se discuten dos algoritmos, a fin de tener en cuenta la
solucidn del problema algebraico asociado, a saber: directo e
iterativo. Se presentan varios ejemplos indicativos de las po-
sibilidades (y limitaciones) de los programas aplicados en re-
lacidn con los algoritmos presentados.

ABSTRACT

Computational algorithms for the numerical solution of the
Navier-Stokes equations irn fractured-porous media are formu-
lated. Darcy’'s approximation to the equations of motion is con-
sidered and the resulting equations are sslved using a boundary
-fitted finite-difference technique. Two algorithms are discus-
sed 30 as to consider the solution of the associated algedraic
prodlem, namely: direct and iterative. Several examples are
presented showing the capabilities (and the limitations) of the
implemented codes in correspondence with the presented algo-
rithes.

* Member of the Carrera del Investigador Cientifico, CONICET,
Argentina.




- 302 .

1. INTRODUCTION

The equations governing the flow of fluids in porous media
have been discussed by many authors. Among them, Sdnchez-Palen-
cia /1/ considered ihe validity of the usual approximations to
the Navier-Stokes equations in general terms. The consideration
of cases of fractured-porous media is a more realistic approach
for many rock formations and plenty of literature is now avail-
able on this gsubject (see /2/ as an example) because of its
practical interest.

This paper arose from the authers’ interest in the model-
ing of a high-level waste repository.

In /3/, NWarashiman discussed the different approaches to
the modeling of the flow in fractured-porous media and pre-
sented an integral finite-difference method. Later on, in /4/,
this method was extended to consider multiple interacting com-
tinua including the coupled effects of heat and multiphase
fluid flow.

In /5/, the present authors introduced some details of a
code dealing with the flow in porous media and suggested its
extension to consider the flow in fractured-porous media. This
method, employing boundary-fitted coordinates, was an adapta-
tion of an earlier code /6/ to this type of flow, but incor-
porated an additional feature: namely, the use of a direct
sparse solver in order to solve the resulting system of alge-
braic equations. Both versions of the code included the solu-
tion of the coupled energy equation.

The present paper is a full description of the algorithms
employed %to solve the problem of the flow in a fractured po-
rous-media. To the author's knowledge, they introduce different
features wiih respect to other existing algorithms.

In what follows the governing equations are considered in
the case of the flow in a porous rock with discrete fractures.
The validity of Darcy's and Boussinessq's approximations to the
Ravier-Stokes equations is accepted for the flow both in the

1k of the rock and in ithe fractures. The energy equation is
not solved in discreie terms, but analytical approxrimations are
assumed %to hold. The discretization of the resulting equations
is shown later, along with soee computational details. The re-
lative performances of the codes are discussed and some exam-
ples of typical results are included for {wo-dimmensional
flows.

GOVERNING EQUATIONS

The equations governing the flow are: the momentum equa-
tion in the porous medis,

-8 (wmeszm); (1)
Ve
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the momentum equation for the flow in the fractures,

;f--.‘;.ff. (% .T)T+8(g T)Im); (2)

and the equation for mass conservation,

[,9% a1+ [y (ug.n)as=0 (3

In equations 1-3, u is the volume-averaged fluid velocity,
ur is the velocity in the discrete fractures, P is a reduced
(i.e. divided by pO) pressure which is the sum of the static
pressure of the fluid plus the static head, B es the volumetiric
thermal expansion coefficient of the fluid, T is the tempera-
ture in the system, g is the gravity acceleration, V¢ is the
kinematic viscosity of the fluid, 1 is a unit vector defining
the direction of the fractures, T and 31 are a control volume
and its boundary, respectively. Tinally, K, and K¢ are the per-
meabilities of the porous rock and of the fractures, respecti-
vely.

The temperature is considered as a given function in equa
tions 1-3. This restriction is accepted as a useful simplifica-
tion in the case of repository modeling if the Raleigh's pumber
of the system is not high, as it frequently occurs. It is not a
very difficult task to integrate the emergy equation simulta-
neously with equations 1-3, and in reference /5/ the authors
showed some resulis of this procedure. In some of the implemen-
ted codes consideration was given to variations of Ky with the
position. The extension to consider variable vy is straight-
forward.

Por the porous matrix, the determination of %, is simple
because it is considered as data. The corresponding value for
the fractures is obtained by assuming that the flow satisfies
the Poiseuille flow law (cubic law for flow-rates); this, in
turn, implies that: .

ke = b2 /12,

where b is the aperture of the fracture. In the actusl codes,
the permeadility for the fractures was allowed to follow this
law or to being filled with a porous material of a given per-
meability (linear law for flow-rates).

NUMERICAL METHODS

The numerical solution of 1-3 was obtained by means of
boundary-fitted finite-difference techniques. The discrete ver~
sion of theses oquations can be found from previous works by
J.?. Thompson (see reference /7/, for instance) and by one of
the authors /6/. As the present approach is somewhat different
from the usual ones in boundary-fitted coordinates, some alge-
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braic details were provided in /5/, but only for the homoge-
neous porous rock. The algorithms are nov extended to allow for
the presence of discrete fractures and, correspondingly, some
modifications to the specifications in /5/, are given.

Pigure 1 shows a cell belonging to a hypothetical grid im
the physical plane and illustrates the location of the varia-
bles. As can be seen, velocities located at the cell corners
and cell-centered pressures are considered. Temperatures are
located at cell cormers. Dij is a discrete representation of
the flov divergence and is located at the cell center.

Also shown in figure ! are two paths crossing at the cen-
troid of the cell, representing one-dimensional links between
pressure nodes. These paths are the discrete image of the frac-
tures in the rock. Thus, the representation of the structure of
the rock consists of large dlocks of homogeneous porous conti-
num (or an equivalent fractured rock block) sorrounded by one-
dimensional fractures. The velocities along the fractures are
called ug and ve, respectively.

It is interesting to point out that this particular cen-
tering aof the variables forces the fractures to be coincident
with lines joining the centroids of the cells. Then, the boun-
dary-fitted techniques is employed to fit "internal” boundaries
as well as the external omes. As a consequence, uf and v{ can
be cousidered as the moduli of vectors iangeut to the lines of
constant values of the coordinates in the computational plane.

Considering the compuiational plane of reference, with in-
dependent variables U and V, equations 1-3 transform into:

we s QX R P (4)
ap ap

v o= oo bty (AUY 55 ¢ AVY o+ B g A1), (s)

{ sux —i;:“-;-»avx %UBUY %+Bw%}1\~

+ ure be COB Ay * Vey by cos Oy -
- upy by COS @ - Vey by cos ag = 0,  (6)

uf--Atf(EUU%g*Bgulﬂ'). (n

vf--Atf(F’W%%*ﬂgvM). (8)
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Pig. 1. A computational cell illusiraiing the centering ot
variables

Pig. 2. A cell in the reference plane showvirg the centering
for the coefficients of the traunsformation.
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vhere: My = Ko/ ve
9)
and: Aty = Ke/vp

In equations 9, X, or Xy must be a functiou of the loca-
tion, if the permeadility of the rock is variable or if the
aperture of the fracture varies, respectively.

The various coefficients in equations 4-3 measure ihe
influence of the coordinate transformatiom upon the original
equations. They are numerically calculated as follows:

2 2
AUX = Uy AUU = U7 + Ug
2 2
AVX = V, AVY = V5 + Vg
AUY = Uy = (AUX.AVY-AVX.AUY)/ ZAvV
AVY = ¥y = (AUX.AVY-AVX.AUY)/ /AUU

= ~g.AVX/ AWV

2-AUX/ /Aoy

33 3 ¢

and, finally:
cos a = [AUX.AVY-AVX.AUY)/( Jauu .y avv)

In equation 6, A is the area of the porous block. For the
actual calculations, A was considered as the area of the cell
without discounting the area of Lthe fracture. This fact intro-
duced an error of the ordem of b.u, where u is the value of a
typical velocity in the bulk of the rock. Taking into accourt
the small aperture of +the fracture with respect to a typical
cell face dimension and that u <<€ ur, this error was negli-
gidle.

Pigure 2 shows ithe location of the points for the calcula-
tion of the different coefficients of the coordinate transfor-
mation. Coefficienis BUX have the same meaning as AUX and they
only differ in their location at the grid. It is important to
point out that ithe calculation of these coefficients -of course
-greatly influences the global accuracy of the computed solu-
tions. It is recommended that the grid iransformation should
4180 include the mid-points. In "smooth” grid transformations,
the criterion adopted was io employ suitable averages of a
basic set of coefficients (the ones denoted as AUX). In cases
of greaily distorted grids, this criterion should be exercised
very carefully. R

The discrete version of equations 4-8 is obtained by means
of centered-difference expresions in the computational piaue,
implying an appropriate averaging of the variables in the cell.
They are as follows:
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+

uij - Agr { AUXij (Pi-1j-1 * Pi-1j - Pij-‘ - Pij)/z

+ AVXyy (Pi-1j-‘l + Pyyag - Py - Pij)/z 1 (10)

+

vij = +htr { AUY; 5 (Py_qg3-1 ¢ Pi_1g - Pyt - Pu)/z
* AVYy5 (Pi_13-1 * Pyjq - Pyqy - Pgy)/2 -
- Bg ATij } H (11)

Dy = {{uger gor * uiery - ug goy - uyy). BUXy3/2

+

+ (Bier gof * uijer - Biery - uyj) - BVK;4/2

+

+ (viﬂ 1Y Viet§ - Yijer - 'ij) . BUY/2

* (vieq g1 * viger - vierg - vig) L BVY/2 }Agy 4

+

{(b.vg.cosa)y - (b.vs.cosB)g +

+

(b.ug.cosa)e - (b.uf.cosa)y =0 (12)

upsy = e { WU 3 (Pyogy - Pij) - B gysjer/2 ATije1/2 1 013)
and:
vesg = Me (W5 (Pij-1 - Pij) - B evier/25 Mysr/25 1(14)

In expressions 13 and 14, the centering of T at the points
in the middle of the cell faces was denoted with half indexes.

Prom now on the differences beiween the algoriihms must be
pointed out. The iterative method will be considered first. The
algorithm closely resembles the one sketched in /5/ but, for
the sake of completeness, it will be specified here. The calcu-
lation staris with a guessed pressure field, giving approximate
values for ujij, vij, urij and vy (from equations 10, 11, 13
and 14). Then ithe following iterative procedure is applied:

i) The discrete analogue of the cell divergence, Dij, is
obtained from equatiom 12.

11) The pressure in the cell is adjusted %0 bring cell
divergence %o zero, as follows:

ply* 1) = pl¥) + opy,

vhere:

8335 = -84 D,
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__——Atr Aij{ BUUiJ + B‘Wij + 0T } .

+ '[:?{ (b cosa ?an + (b cosa PVV)4 + {b cosa BUU), +

+ (v cosa EUN), }

and OT means Cross Terms {(i.e., higher order terms imply-
ing crossed derivatives of the transformation coeffi-
cients).

@ is an over relaxation parameter whmse typical value is
1.7 for this type of problems.

iii) The velocity of components at the cell coruers are
accordingly modified as follows:

“g‘f:;h ¢ “g_lf)ljﬂ + e (AUXH 1j+1 * A“i+lj¢1)'
affi) ey o m, oL
uffy) “g‘;‘)’l $ O AR ey ARy

“&vl) . ugg) s o (AU, - AVE )W
'95;;21 * 'g)qu +¢ (Amiﬂjﬂ * "niﬂjﬂ)'
L R L S L T
v](_‘j‘::) . vg\gzl £ 0 (-AUY e AV Y.
vg.r*‘) . vgg) GG S A

k+1) k ot s
wfit]) ey v e B

up‘;l) + u¥§3 - Cg EUUyy ,

K+1 X

and

v{esl) o v‘k) - Cp FVWyy ,
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In the previous expressions C and C¢ are defined as:

C o= M, fE;g . Cp = Aty 8y

Boundary conditions were appropriately applied after each
iteration sweep and convergence was usually reached. This con-
vergence and subsequent pressure smoothing defined the compléte
solution (see /6/).

As presented, the iterative algorithm solves Poisson's
pressure equation through the use of an intermediate variable
(D) and provides a simulianeous adjustment of velocities. An
alternative approach comsists irn solving this Poisson's equa-
tion from the very beginning; this procedure was also imple-
mented and it is, sometimes, less sensitive to steep variations
in pressure, allowing, in turn, for a simpler treatmemt of
"singularities” in the sense defined in /8 , 14/.

The other algorithm implied the use of a direct solver in
order to obtain a fully coupled solution for equations 4-8. The
equations were ordered by blocks, each one representing a com-
putational cell. In each bdlock, the equations were ordered as
follows.

i) u momentum (from which u was obtained)
ii) continuity (from which v was obtained)
1ii) v momentusm (from which P was obtained)
iv) ur momentum (from which us was obtained)

v) vy momentum (from vhich vy vas obtained)

Boundary conditions were incorporated explicitly in the
system of equations.

The definition of the coefficients in these equations is
given in the Appendix for the general blocks.

The algebraic system of linear equaiions was solved with a
library sparse matrix solver named MA2SAD from the Harwell
package /9/, which proved to be efficient in most cases. How-
ever, aitention wmust be paid to the relative weight of the
coefficients if meaningful resulis are desired. The resulting
size of the systems of algebraic equations was a function of
the nodes employed and considerable fill-in arose.

The itreatment of boundary condition was, of course, deter-
minant for the obtention of resulis. Several types of them may
be prescribed, namely:

i) inflow-outflow boundaries, with both rock and fracture
fluid velocities specified;
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i1) free-slip boundaries, where the normal component of the
velocity vector is null. In this case the velocity at
the boundary is obtained from the velocity in an inner
point as in /6/, i.e.:

ug *= (ur - n) mn -y,

wvhere I and B represent the Boundary and the Inner
points respectively and n is a unit vector normal to
the boundary;

1ii) boundaries with imposed pressure, where the velocities
are imposed as continuative and the pressures are a
function of the space coordinates;

iv) boundaries with continuative velocity, where the velo-
city is specified as a function of the interior ome;

v) periodic boundaries, where ‘the inflow and outflow are
linked by periodicity.

When dealing with the iterative method, a greater flexibi-
lity is allowed for the imposition of boundary conditioms. It
is known (see /10/ for example) that iterative methods give a
solution even if %he pressure equation is over-specified with
respect to boundary conditions. In the case of the direct me-
thod this flexibility is, of course, not allowed.

The inherent checkerboarding pressure field is a conse-
quence of the type of variable centering adopted and this fact
is also related with the specification of boundary conditioms.
The presence of the fractures seemed to change the patterns of
the checkerboard modes and, iherefore, the simple snoothing
technique of /6/ must be employed carefully. A smoothing tech-
nigque of general validity is still under research. Actually,
the pressure field is not of substantial importance in the case
of steady flows when dealing with problems of +transport of
solutes. However., in the unsteady-flow case, the smoothing of
the cell's pressure at the end of a time step affects the esti-
mation of the velocity for the next step.

In the direct method, the imposition of boundary condi-
tions alsc implied the reordering of equations in the cells ad-
jascent %o the physical boundaries. This was not the case with
the iterative procedure.

RESULTS AND DISCUSSION

In this section the results of the simulation of three
typical cases are shown and the relative merits of both algo-
rithes are discussed.

The 7irst case was taken from reference /11/ and consisis
in predicting the flov in a rectangular network of intersecting
fractures in a porous media. The problem is linear and this
fact allowed the comparison of results from the data in /.
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The geometry of the network is shown in figure 3. When the per-
meability of the porous media is some orders of magnitude lower
than the corresponding permeability of the fractures, this net-
work resembles a net of conduits with linear flow resistance
(as pointed out in /11/). 'l'?ge conduits were uniform in length
(200 m) and in aperture (10~

The {lov was established by imposing a constant flow boun-
dary condition to the fractures on the left face of the block
and by extracting fluid at a constant flov rate from ons frac-
ture. Since the model considers a porous fractured rock, this
situation can be modelled when the corrsaponding permeability
1n the pgsousz matrix is far lower than that of the fractures.
K, = 10” (almost zero) was adopted. The resulis obtained
were compared with the ones in reference /11/ and both are
shown in figure 3 in & “non-dimensional” form. This presenta-
tion was adopted because an exact comparison was not feasible
with the data reported im reference /11/.

The results compare fairly well; differences are below 4%,
except in the first column of nodes, vhere they reached 8%.
This columm is an additional one, and was only necessary in
order to impose input flow conditions. The results were checked
for sensitivity }o va;.ues of K¢. Wo differences were found
in the range 10~ the| € 105, with b measured in a.

The second case consists in the modelling of the flow
around a circular cilinder and is representative of the situa-
tion found in a plane normal to the axis of a nuclear waste
container placed in a fully saturated rock. In this case the

low reseambles the potential flow around a circular cylinder.
The grid adopted is the one shown in figure 4a.

The boundary conditions were as follows:

. Prescribed flov on the external bdoundary, as given by
+the theoretical solution

- ¥ree slip rigid wall on the cylinder boundary.
. Periodic flow conditions along segment A-B.

The resulting flowfield is represented in the vector plot
shown in figure 4b. A close up for a finer grid calculation is
shown in figure 4c. The maximum error in the case of figure 4b
was 5T with respect to the analytical solution. The results are
very good in spite of these coarse grids. This is coherent with
the results of reference /12/, where accurate results were ob-
tained with 4/1 elements in a Wavier-Stokes PEM code. Quite
surprisingly, elemenis of a higher order produced spurious ve-
locity oscillations all over the flow-field.

The third example comsists in predicting the flow towards
4G inciined fracture. Tigure 5 illustrates the grid employed
and the fracture. The douin of integratxon is now a square

lock of homogeneous rock, n }g and 1000 m wide, the
permeability being fixed at 1 '7 x 10~ '° u? (a typical -value for
& cristalline rock). The inclined fracture ran all scross the
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Fig. 3. A network of fractures of equal smize /11/, b=10=3 m.
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Pig. 4. Plow around a circular cylinder. (a) grid,
(b) vector plot.
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*ig. 7. A grid for the comparison of results for a single
fracture. /15/

DIRECT METHOD

ITERATIVE XETHOD

No.

cells memory (xB] TCPU (sec) | memory (kB) T7CPU (sec)
7 21 0.75 8 0-52
11 43 1.52 15 3-40
15 T 3.05 2 13.3
21 135 7.35 42 0.1
3 296 84

a1 »1024 139 4%

Table | - Comparison of the resources involved for a given pro-

blem.
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DIRECT METHOD ITERATIVE METHOD
memory (kB) PCPU (mec) memory (xB) TCPU (smec)
172 18.3 48 129

Table 2 - Comparison of the resources involved for the problem
im figure 5. /11/

E %
direct solver 2.0

Primitive

variables
iterative solver 2.0
direct solver -1.1

Pressure

iterative solver -1.0

Table 3 - Comparison of the maximum crror in the fracture velo-
eity for the case in figure 5.
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rock and had a permeabdility of 1.7 x 10-? 2 with b = 0.01 »
(1inear law).

The boundary conditions were as follows:

. Impermeable walls (up = u¢ = 0) at the right, left and
bottoa boundaries.

. Imposed water table (given pressure) varying limearly
from left to right with a gradient of 3.87 m/s2.

. Continuative (open) fracture at the top boundary.

The resulting flowfield is shown in figure 5b as & vector
flot. As may be seen, the flow is almost interrupted wheam the
fluid reaches the fracture which, in turn, takes up most of the
lncgnng fluid; the resulting velocity in the fracture was 2.44
107 a/s.

The last example was also extracted from reference /11/
and consists in the predlction of the flow in a homogenetus po-
rous media with an isolated fracture parallel to the velocity
field at infinite distance. Pigures 6a and 6b show the computa-
tional domain and a vector plot of the resulting flow field.
The results were obtalned without imposing simmetry conditions
with & grid of 25 x 14 nodes. Boundary conditions were imposed
at "infinity" as given by the analytical solution in reference
/13/. It is interesting to point out that the grid was coarse
and that the solution was only obtained after applying a tech-
nique similar to that in reference /14/. Some details of this
technique will be given elsevhere. Permeabilities were K, =
10! n? and K¢ = 10-7 m? for the homogeneous rock and the
fracture, respectively. The maximum apparture of the fracture
was 10-2 m (linear law). The results obtained compared fairly
well with the asnalytical ones. Errors were in the order of 2%
in the immediate vicinity of the fracture when compared with
the analytical solution and tended %o zero towards the limits
2f the domain.

The above cases served to exemplify the capabdilities of
the codes implemented. Thus, this is the right time to perform
some comparisons among the relative merits of both algorithms.
Computational efficiency is a measure of a code's capability to
perform & given task and usually involves the soc-called “grind
time”, i.e. the cost in seconds of CPU divided by the number of
cells multiplied by the number of lteration sweeps through the
mesh required to reach a given errdr. This is a slaple measure
but does not make any reference t0 the resources needed for the
actual calculations. A better (more realistic) cost would be
that obtained by considering all the resources involved. How-
sver, the first definition is usually found in literature and
is the one applied herewith.

Some tests were performed againat a one-dimensional pro-
blem as gilven in reference /15/. The codes were considered as
fully two-dimensional and the physical situation is the one
schematically shown in figure 7. Table ! shows the different
costs for a BASP 68 computer, as a function of the number of
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cells for the one-dimensional path. As may be seen in this
table, the direct method is more cconomical in CPU time but far
more expensive in memory. The economy in CPU time is sometimes
problem dependent because, if additional time steps are nec-
cessary, the iterative code is cheaper because the initial
values are closer to the final omes after the first time step
(actually it was the case in the calculations of reference

/sN.

For 4he problem in figure 3, the results are shown in
table 2, confirming the irends in table 1. It is obvious from
the preceeding tables that the grind time is much shorter for
the direct method.

In spite of the previous conclusion, the iterative method
was, as stated in /5/, partially abandoned because the authors
felt that the direct method was more reliadble. However, in or-
der %o test new improvements t6 the codes, the iterative method
vas later (once again!) preferred, because changing the program
ming of the direct code was not an easy iask. The direct solver
implies another shortcoming in the sense that a parameter must
be selecied io govern the pivoting. Improper setting implied a
greater growth of the matrix and someitimes the doubt remained
regarding the validity of the solution so obtained. The itera-
tive solver is, as discussed previously, less sensitive to an
over-specification of the problem, +this characteristic being
{in the authors' opinion), desirable.

As a last example, the performance of the codes in terws
of pressure were compared with the primitive variable versionms,
for the case of figure 6 /11/. The comparison was performed in
terms of the maximum error in velocity at the fracture.

In this case a very coarse grid was employed (12x9 cells),
imposing analyiical boundary conditions at a distance of the
order of 70 n from the fracture. The errors in velociiy at the
fracture are shown in table 3 for the various versions and are,
of course, similar.

The extension of the present method to three space dimen-
sions and unsteady flow {(now under research) imposes limita-
tions due to the limited computer resources available and, as a
{definitive?) rule, the iterative method will be preferred.

CONCLUSIONS

Two different algorithms for the prediction of hydrodyna-
mics in fractured-porous media have been presented. Their rela-
tive meriis have been discussed in terms of the results obtain-
ed from their associated codes for a set of verification pro-
blems. It may be concluded that all versions are of siwilar ac-
curacy. However, from the point of view of their exploitationm,
the version considering the direct solver is the most adequate
for steady-state problems. In nev situations and, particularly,
in three-dimensional flow, the iterative version is simpler to
implement and far wore economical in computer memory. The same

axclusion applies to unsteady flow situations.
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The codes allowed ‘or the inclusion of discrete fractures
domain subdivided in cells. This approach is rare in com-

putational methods and is particularly suitable for the imelu-

sion

of semi-analytical solutions toward improving the global

accuracy of the resulis.
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DIAG.
BQUATION TVRM. DEPINITIONS
A= M (AUXg4 + AVEy4)/2
Az = Aty (-AUXj 4 + AVX{4)/2
" Ay = Bty (AUXy4 - A"ijglz
* Ay = 1.0
As = Aty (-Mﬂij - A“ij),g
By = Az4 (BUX34 + mij)
* B2 = Ay 4 (BUYJ':‘ + ““ij)
B3 = 2 by cos Oy
By = 2 bg cos oy
Bs = Aj4 (mvxij - Bvxij)
12 By = - 2 be COS G
Rg = Aij (‘R“Xij + ml-‘)
Bg = Aij ('B'”ij + BV‘!ﬂ)
B10 = - 2 by cos a
Bi) = Aij (-anij - mij)
B12 = A5 (-B"Yij - BVYiJ)
0y = Mty (AUYgy + AVY;4)/2
C2 = A, (-m‘!“ + AVY; Y/2
173 €3 = Aty (AUY55 = AVY44}/2
Cy = 1.0
- g = Aty (-AUYL«‘ - A“ij)/z
Dy = - Aty (BM4y)
14 D2 = - D)
o P3 = 1.0
By o= - Mg (FVV54)
15 F2=-"
hd 3= 1.0




