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RESUMEN

Este trabajo presenta la descripcion y los resultados numericos ob
tenidos con un nuevo metodo de elementos finitos mixtos del tipo ten—
sion-desplazamiento-presién., El metodo esta particularmente adaptadopa
ra ser usado en conjunto con la fornmlac:n.on de medios viscoelasticos in
compresibles en deformaciones planas con los coeficientes f{sicos depen
dientes del tiempo. Diferenciandose de la mayor parte de los métodos co
nocidos, la condicidon de compatibilidad entre los espacxos de ele-entos
f).nx’cos es satisfecha tomando el mismo tipo de aproximacion para la pre
sion y el tensor desviador de tensiones.

ABSTRACT

This work presents a description and numerical results obtained
with a nevw mixed finite element method of the stress-displacement-
pressure type., The method is particularly adapted to be used in
connection with an algorithmic formulation for the numerical treatment
of incompressible viscoelastic media in plane strains with physical
coefficients depending on time, Differently from most of the known
methods, the compatibility condition between the three finite element
spaces is satisfied, taking the same type of approximation for the pres-
sure and the stress deviator tensor.
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Let a viscoelastic medium occupy a bounded open set N of r? , with
boundary p having a fixed portion g - We assume that in fL , the
mechanical behavior of the medium at time t, t > O is described by:

D .
aa(ib + F‘E,G ) .aE(!)+P agiz) (1)

with the incompressibility condition
divyv =0 (2)
where:
is the velocity (rate of displacement)

~.D
G is the stress deviator tensor, 2 x 2 symetric with 6:* 6::-0
E(\_r) is the plane strain tensor given by:

1 Iv. oY
£..(v = — (2 &
i -) 2 axl 'ax‘)
The viscoelastic coefficients( , and (?)! are positive depending
x

on x and t, and F is a bijection of Rsym in Rgym , whose Fréchs:"deriv—
ative is bounded over every bounded set, with Fyy + Fy= 0. Vsymis the
space of symetric tensors Nx N, having each component belonging to the
same vector space V.

For example, if O{ = 2G, B=0 and F (6») = lG) IA-‘G’, vhere A is
real parameter greater or equal to 1, wehave a Maxwell-Norton material,
G being the shear relaxationmodulus. Considering F®Owith(=2G+2
and /3= 2/“ s, M being the cinematic viscosity, then we havea Kelvin -Voigt
material, with G independent of time. {See [1] and [2]).

Notice that the stress tensor in this case is the following:

6, 6, o©
6 - 6;2 G;z 0
Y 0 G,

where: G = 6’4- pI, p being the hydrostatic pressure, and I denoting the
3x 3 identity tensor.

Given body forces f and surface forces g, actingon i with ' = QUG,

~

the equilibrium equations are the following:
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fo%% - aivGT+ gradp = f in N1 (3
G.n=gonf] ()

where f° is the density of the medium, assumed to be constant and p is
the unit normal vector external to q . Moreover we assume that at time
t =0, we have y = 0 and G = O.

Given a time interval At, for each function G(x, t) we define:
(el (5) = G(;, ndt) n=1,2,...
As usual, we calculate G_:, P, and ¥, , approximations of § , p and

¥y by 2t time nBt by discretization in time of (1) -(2) -(3) with the
following implicit scheme:

G'nn" Grizl + F(G’:) - al\é(v") +ﬁn e(},’n)‘ é("n—l)

X on 3T (5)
div yp = O (6)

£ - v G+ nad gy £ (7)

Gpe n=¢" (8)

n=1,2 ..M vithyo = 1° 6,=G% M is such that MAt = T where T
is an a priori fixed time.

Considering that O , f3 and W are time dependent, we do not eliminate
G'N)frou the system (5) - (6) - (7) - (8), and we solve the problem by an
iterative algorithm like the one of the augmented Lagrangean type [3]
described as follows:

Let ?.',,,_,, U4 and q 4 be approximations of 6}?, ¥n and p, respectively
uithco=5",’,.1, Yo = ¥po) and g4 = ppy n3l. For w=1,2,3... we calculate
the new approximations &y, Um and Py for these threevariables at time
ndt by:

Z’MA—tZQ + Fiim) ‘qé(,‘_‘m-l) + ﬁ E(HM)A’tE(gg) (9)

3
((Bm’ﬁ))a = ((gm-h!))k- snn(z;‘?qm’}}m)&p!rstg) v.‘f, €[Y] (10)
where V = HLQ @) = {v jver'@),y « 0 in Q,} and H is defined by

H (g,Q9E,!:!y£y§) - (Z,E(,l:') )"(,Rdiv gq, div 3)"‘{%‘(%‘&:3} - (LK) - jﬁ'ﬁ ds
b1
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with
(r, divuy,) =0 Vrex.' ) (11)
(y,3) is the usual imner product of (L' (n-))'m‘, and ((y, ¥)), is given by

((wyx))y = jf(u) cE(x)ax + &AtL ig-! dx +’-£ div u div y dx
vhere R is a positif real parameter,A»1 and C is a constant depending
on the maximum value of the function that relates %yto & (umy) in (9),
for O¢ng{M. s, is a parameter to be determined at each time step in
order to ensure the convergence of the algorithm.

Next we determine u,, and q using an algorithm of the Uzawa type [3] .

Taking uyo= u,,qand Gppo™ Qg for known values um g4 and Amgt * ¥
calculate ug,, 4 and qm'for s=1,2, 400 by:

(e B = (St 23y =80 (G Gy g g Bt 20 o2:58) ¥me [V (12)
"9m,3* Ims-t ~ .P"di' Ums (13)

Letting b be a constant satisfying relation (15)below if one replaces
B, and Vy by L” (@) and V respectively, then ypms— up in [H (.Q.) ]
and p ,— p, in L} @), if 04f<2R/bs, [4 Moreover it is possible to

et 1

prove that u,— yo in [H' @), T, ——G, in [L (ﬂ-)Tand Q= Pn
in L (), if the value of C is convenxently flxed in terms of At and for
s, sufficiently small, For example if F(G' ) = , i.e. for a linear
Maxwell model, taking:

x"ufat w" "
C = max —————— the algorithm converges if 0<SH<___+_9_1:_G_
OgnsM W'+ At 6" c"w'at

for an arbitrary At.

In order to discretize the problems (9) - {(12) - (13) in space, we
first partition the domain{). into finite elements, and then,K we define a
space V), C V for each velocity conponent, a subspace Ziyof L° (£1) for
each stress of 6Dandasubspace Py, of L (1) for the pressure. These three
spaces are associated with a given partition 8.. of {1l into triangles or
quadrilaterals with maximum diameter h.

The so generated approximate version of (9) . (13) allows us to solve
the problem (12) in velocity with a fixed matrix associated to the imner
product ((.,.))1 for a great number of time steps, while we only solve
local element by element problems for the stress and pressure, i.e.

equations (9) and (13).
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Clearly, it is necessary to satisfy the compatibility condition
between the spaces V ’Eh , and Py , that is to say, the inf-sup condi-
tion for the mixed methods [5].

In this case the conditions are given by:

Sf:é(!h) dx

inf 2 x2 Pa>o0 (14)
ne M cPe[Zyom &2 i, lx, N,

2 L P ST 2n (15)
inf sup 2>b>0 15
Reh fe Ll TR

where || . ||

o and . Hlare the usual norms of 1> (n) and ! (@) respectively.

If we take E‘h= P), which is phisically natural and an optimal
choice from the numerical point of view, conditions (14) - (15) turn out
to be contradictory.

The following choice gives a very simple alternative to satisfy
(1) - (15), while working with stress and pressure discretized in the
same way and without introducing any particular restriction to the
numerical solution. We observe that this element is similar to the one
studied in [6] for another class of problems.

¥e consider that Zh is a partition of the domain L into convex
quadrilaterals, each one of these being subdivided intotwo triangles by
means of an arbitrarily chosen diagonal. V, is defined as the space of
continuous functions that vanish on C , whose restriction over each
triangle is quadratic, the trace of which over each edge of the
quadrilaterals being a linear function. The degrees of freedom of this
space are the functional values at the nodes indicated in Figure 1. The
space Py (orLl,) is a subspace of the space of functions which are
constant over each one of’ the four triangles obtained by joining the
mid-point of the chosen diagomal to the vertices of +the quadrilateral
not belonging to it. In Figure 2 we illustrate the condition defining
such a subspace, namely: for each pair of triangles that do not have a
common edge the sum of the constants are equal.

The numerical results given below obtained for a lincar Maxwell
model confirm the efficiency of the method.
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o degree of freedom of the velocity P/Ty +p/T = p/T, +p/Ty if p€PR,

Figure 1 - element of Shand the | Figure 2- element of Onand the
associate velocity associate pressure

We consider a viscoelastic medium with unity density (MKS system)
occupying a regionfl shown in Figure 3 with the forces g=0and f=(0,10)
measured in kN/m3,

Ve take F(8) =G, = 2G, f3= 0 and u)s/l-/G, that is, a linear Maxwell
model, where G and/Lare given in Figure 4.

§
Iem 10 Pa
OR
G
10 Pafs
. F
—— 1em P3 ILL
P2
P 2 4 6 8 10 Tymin )
Figure 3 Figure 4

For the discretization of the problem we take At = 1/ where L is
an integer parameter describing themesh (see Figure 5). Considering the
symmetry of the problem we take only one quarter of the domain in the
computations.

A2
A
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The results obtained for the displacement show a good convergence

of the finite element method. In Table I we illustrate this fact by
giving the modulus of the displacement in mm at points P_, P_, P_shown in

Figure 3, for times 5 and 10 minutes.

1" 2" '3

Table I - Computer results for a model problem

P andt t = 5.0 t = 10.0

V4 P, P, Py P, P, Py
1 0.1937 | 0.3202 | 0.4334 | 0.3771 | 0.6238 | 0.8441
2 0.1985 | 0.3513 | 0.4642 | 0.3802 | 0.6728 | 0.8890
& 0.2079 | 0.3655 | 0.4763 | 0.3940 | 0.6926 | 0.9026

The convergence of the algorithm is also very fast, as after the

first time steps only one or two iterations are needed to attain an accuracy of

1074

and 10° for the inner and outer loop respectively.
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