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Para el analisis de estructuras planas de secciones e inercias varia
bles, se propone un nuevo elemento finito basado sobre el concepto jerar~
quico. El orden variable de este elemento permite un analisis y modela-
cion rapido y eficaz de estructuras.

Se presenta el desarrollo teorico del metodo junto con dos ejemplos
de aplicacion.

A new finite element methodology based on the hierarchic concept is
proposed for the static and dynamic analysis of tapered skeletal struc-
tures. The variable order of the hierarchic element allows for fast and
efficient modeling and analysis.

Theoretical basis of the method together with two illustrative exam-
ples are presented.



To satisfy architectural and functional requirements as well as a
better distribution of weight and strength, nonprismatic beams are often
used in civil engineering structures. This paper deals with the static
and dynamic analysis of linear elastic structures composed of beams with
variable cross sectional area.

The importance of the analysis of tapered beams was first stressed
by Amirkian (11 who used detailed tables and by the Portland Cement
Association (21 with the introduction of a variation of the moment
distribution method. Newmark (3) presented an approximate numerical
method to determine static deflection and moments in nonuniform beams
More recently general purpose finite element programs, such as a SAP4 (4]
have allowed the analysis of tapered members by breaking them into a
number of uniform beam elements which are then superimposed to produce
the desired effect of tapering.

Gallagher and Lee (51
by computing its steffnen
placement functions. This
fue vibration analysis.

introduced a general nonuniform beam element
& consistent man matrices using cubri dis-
element proved to give accurate results in

Resende & Doyle ( 61
tapered beams using a 3

presented later an approximate analysis
Node line element.

Karabalis and Beskos (7) proposed the static and dynamic analisis
of tapered planar beams which experience only axial and flexural deforma-
tions their method yielded the exact stiffenes matrices for rectangular,
box and I - sections.

In this paper a new finite element methodology based on the hierar-
chic concept, is proposed for the static and dynamic analysis of tapered
skeletal structures. Axial, flexural and shear deformations are consi-
dered. The variable order of the hierarchic element allows for fast
and efficient re-analysis, this, in order to improve accuracy and assure
convergence.

Most Civil engineering skeletal structures can be modeled with the
present element which is proven to be more efficient than general purpose
programs of structural analysis since some afficiency is lost in the
generalization.

Theoretical basis for the analysis is presented in section 2,
exampler demostrating the capability, accuracy and efficiency of
method. are presented in section 3 and finally conclusions are drawn
section 4.
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It is anumed that the total rotation of a plane section,
normal to the neutral axis of the beam elements, i"s due to the
of the tangent to the neutral axis and to the shear deformation
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Fig. 1.- Applied distributed and Concentraded loads on the
beam element.

A bases of polynomial shape functions is formed such that the bases
form a hierarchy, i.e. The bases of degree k contains explicitly
polynomial bases of degree 1, 2, , k-1. This property is later
exploited to achieve efficiency in the re-analysis of structural problems
to improve accuracy.
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here N3(2) is a quadratic function of the form

N3(2) = Co + cl ~ + c2 ~2

with coefficients ci chosen so as to give N3 (2) = 0 at ~ = II
this in order to preserve the required CO-continuity of ~ between
elements. This yields

£1...
d ~2 ~=o

Thus the new unknown can be interpreted as the curvature at the mid-
point of the element. The above procedure is easily generalized to
obtain
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4 (i)v m = vI N1 + v2 N2 + 1: v3 Ni+1 (0)
i=2
4 i8 m = 81 N1 + 82 N2 + 1: 83 Ni+li=1

where a linear variation for the axial deformation is thought to be
sufficient.



To make full use of the computational efficiency of the
element the generalized desplacement vector is reordered in
following way

hierarchic
the

(2) 0 (2) (3) 0(3) (4) 0(4)
u3 P3 v3 P3 v3 P3

and for simplicity the condensed notation is introduced for the above
expression

'" {u(p) u(h) }T{u}~

and
u(~) N {u}

u

v(~) N {V}
v

8(0 N8 {8}

The -same partition is performed on the shape functions associated with
the two extreme nodal points and those associated with the hierarchic
shape functions.

Nu [N} NuhJ

Nv INv (p): NvhJ (14)

N8
[N (p): N8

hJ8 I

The potential energy is now minimezed as in the standard finite
element method, and therms are rearrangea to give a steffness and load
matrix of the following condensed form.

[:: :::] \ :: 1 {:: ~
SUbmatrix Kpp relating the two external nodes each with three

degrees of freedom will always be a 6 x 6 matrix. Submatrices Kph,
Khp , and Itnn will however have variable dimensions depending on the
degree of approximation. Each added degree will increase the K matrix
by two rows and two columns. Since only the nodal unknowns v and 8
are approximated by the hierarchic functions.

Therefore on a fixed mesh several analysis with polynomials of
successively higher degrees are made by means of the hierarchic nesting
of the basis functions. Computation of the previous analysis is fully



utilized in the successive more accurate analysis.

Since all of the {U(h)} unknowns are associated with a single
internal node they can be condensed out, at the element level.

An important advantage of the hierarchic element is that, moments
and shear variations at all points in the structure can be accuratly
computed using the unknown associated with the hierarchic shape function.
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and
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We notice again that the computation of the unknown associated with
the higher order hierarchic shape function allows a series type of
approximation for both M and Q. Inertia I and modulus of elasticity
E, are assumed to be known and var\able along the element.



The structure shown in f1gure 2 is analyzed using program EJV. For
which was developped according to the theory explained in section 2.

~.~
It 3...... JoI1

E 2.lx106 T/m2

y 0.2
p 20 T
q 2 Tim

Four elements where found to be sufficient to accurately represent
cros's section and inertia variation in the beam elements. Table I shows
the influence of the hierarchic unknowns in the reactions and moments at
different points in the structure, as one, two and three unknown one
selected successively.

N° of Hierarchic 0 I 2 3unknowns

RA (tons) -2.981 -3.9122 -5.371 -5.459

~ (tons) 24.981 27.9122 27.371 27.459

M (t-m) 21.057 18.263 13.886 13.623c

IIc (mm) -0.3928 -2.0843 -3.7417 -4.1942



As mode of comparaison it was necessary to use 52 elements with the
regular stiffness method to obtain an acceptable value for the deflection
at point Cof 4.181 rom.

The Frame of Figure 3 is next analyzed, notice that in every case
two nodes define each element independent of the degree of approximation
sought.

First, second and third floor have a distributed load of 50 kg/em,
the last floor is loaded with 35 kg/em. Shear and moment diagrams are
easily found using equations (20) and (21). The dynamic analysis is
carried out using modal superposition. Concentrated masses are used and
eigenvalues and eigenvector are found using the subspace iteration algo-
rithim.

Figure 4 shows moment & shear diagram, & Figure 5 the first, second
and third mode of vibration.

A new finite element specially well suited to the analysis of non-
prismatic skeletal structures is introduced. The hierarchic base of
shape functions, allows for rereted analysis with higher and higher
degrees of approximations withouth modifying the original node and element
numbering. Also each analysis utilizes fully all of the computations of
the previous steps. Very few elements are requi~ed to model accurately
cross sectional and inertia variations which are approximated by polyno-
mials up to degree five.

A carefull comparaison with the stiffness method and the standard
finite element method, showed this element to be more economjc computatio
naly. Finally shear and moment values are accurately determined in all
points of the structures using the primary variables, and are not found
as secondary variables as in the standard finite element or stiffness
method.
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