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Apresenta-se 0 procedimento usual para tratar as condi~oes de con-
torno, ao usar 0 metodo das diferen~as finitas. Tal procedimento resul
ta em erros que podem ser muito grandes, e nao assegura a convergencia
para os valores exatos quando 0 intervalo tende a zero.

Desenvolve-se em seguida urnprocedimento sem tais inconvenientes,
baseado na serie de Taylor. Mostra-se como aplica-lo a condi~oes de con
torno lineares e nao-lineares.

The usual procedure to treat boundary conditions, when the finite-
difference method is used, is shown here. Such procedure results in
errors that may be very large and does not assure convergence to the
exact value when the interval tends to zero.

A procedure without such inconveniences is then developed, based
on Taylor series. It is shown how to apply it to linear and non-linear
boundary conditions.



The finite-difference method is widely used to get numerical
solutions of differential equations. In th~ method the derivatives are
substituted by central differences. The differential equation is
substituted by a system of algebraic equations giving the values of the
unknown function at pivotal points.

When the central difference is applied at a point of the boundary
or near the boundary, a difficulty arises; it is necessary to use points
outside the domain; it is admitted therefore that the differential
equation remains valid outside the domain. Boundary conditions are used
to get relations among points outside and inside the domain.

The external points can be eliminated from the equations using
those relations.

In this paper it is made a critical analysis of this procedure,
and another one is proposed to treat boundary conditions.

The dissimilarities between the procedures are shown in problems
with one dimension, with linear and non-linear boundary conditions.

Consider that point 1 is an extremity of a beam, Fig. 1. Points ~
and b are outside the domain and points 2, 3, 4 are inside the beam.
The usual approximations for derivatives at point 1 give the following
results, where u is the vertical displacement:

u u2 - 2h ui (1)a

u = 2 ul - u2 + h2 un (2)a 1

~ - 2 - 2u2 + 3 u" , (3)u u3 - 2ha 1

If point 1 is a fixed end, the following result will represent the
fourth derivative at point 2 in finite differences, incorporating
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In this equation S is the load acting on the beam and EJ is the
bending rigidity.

h4u''''2

Consider now that point 1 is a free end. Then the fourth derivative
at points 1 and 2 are:

h
4u''''1

h4 U"" ~2 = - 2u1 + 5 u2 - 4 u3 + u4 = EJ (7)

With these equations it is easy to find the displacements of a beam
of constant EJ subjected to a uniformly distributed load. As the solution
is given by a fourth degree polynomial, five points are needed to get
the answer without errors.

In Table I are the results obtained with finite-differences and
using the fourth degree polynomial. As it can be seen the results are
not exact, as they should be. The use of a small nUDi>er of points cannot
be claimed as responsible for the ~naccuracies. As the fourth derivative



of the polynomial is obtained without error, then the only explanation
for this fact is the poor treatment given to boundary conditions.

~EJ

Finite- Exact Error %difference

L u2 5/256 27/8 x 256 48
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u3 16/256 17/8 x 48 41
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u4 30/256 171/8x256 40
I1 2 3 4 5

u5 45/256 32/256 41 I

u2 20/5632 15/6144 45
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1 2 3 4 5 u4 30/5632 27/6144

~5/2048 3/2048u2 67
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~
u3 1/256 1/384 50

/1 2 3 4 5 u4 5/2048 3/2048 67

u2 5/512 19/2048 5,2

LS. I I I 7?A u3 7/512 5/384 5

1 2 3 4 5 u4 5/512 19/2048 5,2

The first objection to the usual procedure is that external points
cannot give any help in order to obtain discrete values inside the
domain. Indeed, if a problem has a correct formulation, the differential
equation and boundary conditions permit the determination of the unknown
function. It is not necessary to extend the domain artificially.



This restriction can be considered at a first view only a formal
one. However it is really important. The use of external points gives a
wrong idea of how the boundary conditions should be treated. Furthermore
it introduces errors if an analysis taking into account the first term
neglected is not made. As a matter of fact the approximations involved
have different errors and the resulting expression can come with a
precision smaller than what it should be.

As it can be seem from Table 1, the value of the error is highly
dependent on the boundary conditions. The fixed-fixed beam presents an
error greater than 50%. The simply-supported beam has an error of 5%.
The beam with one end fixed and the other simply supported has an inte-
resting behavior: near the fixed end the error is twice the error near
the other end.

These facts show clearly that the approximations used are not
reliable.

To understand haw the error was introduced, consider eq. (1) with
the first term in the error series:

u - uZ a
Zh

As the first derivative is zero, the point outside the domain is
found by

1 h3 '"Uz - '3 ul + •••

If this value is substituted in the usual approximation for the
fourth derivative

u",,·..!.-t7u -4u +u)-..!..u"'+ .(..1) (11)
2 h~' 2, 3 4 3h 1 ••• EJ 2



This is eq. (4) with an additional term. When h tends to zero, the
expression in parenthesis tends to the fourth derivative. The second term,
however with ~ in the denominator grows without limit. Due to this, the
answer will not converge to the exact one. The error terms that were
omitted have h in the numerator, therefore they go to zero with h.

Instead of using points outside the domain as shown, an unsafe
procedure, the formulation of the problem must be changed. In a beam
with a fixed support for example it is, Fig. 1: determine the best
approximation for the fourth derivative at point 2 in terms of ul' u2'
u3' u4 and the first derivative at point 1.

Expanding in Taylor series ul' u2' u3' u4' ui about x2, it is
possible to write:

ul 1 - h h2/2 _ h3/6 h4/24

1"'u2 1 0 0 0 0 u'2

u3 = 1 h h2/2 h3/6 h4/24

r"
(12)2

u4 1 2h 4h2/2 8h3/6 l6h4/24 u'"

U~lI_U' 0 1 - h h2/2 - h3/61

Multiply the first equation by A, the second by B, the third and
fourth by C and D and the last by hE; now add all these equations.

h2
+ h ui (-A + C + 2D + E) + :f Uz (A + C + 4D - 2E) +

h3 h4
+ ""6 uz' (-A + C + 8D + 3E) + 24 uZ" (A + C + l6D - 4E) +

If the left hand side of this equation must be the bestappIOximation
of uZ", then the coefficients of u2' ui, ui" mus t be zero and the



1 1 1 1 0 A 0

-1 0 1 2 1 B 0

1 0 1 4 -2 C 24 0= h4

-1 0 1 8 3

: J
0

1 0 1 16 -4 1

Solving the system:

A
-22 B 12 C 6

D
4

E
4

= 3h4 = h4 =- h4 = 3h4 = - h4

The best approximation for the fourth derivative then is:

11" 1 [-4h ui 22 + 12 u2 - 6 u3 + ~ u4]u2 = h4 -""3 u1

In the particular case of a fixed end u1
derivative incorporating these conditions is



Comparing these equations with those found previously, eqs. (4) to
(7) it is easy to verify that only for a simply-supported end they are
nearly equal; for a fixed end or a free end they differ too much. Those
conclusions agree with the values shown in Table 1.

If eqs. (17) to (21) are used, it is easy to verify that the
displacements got are exact. With a proper treatment of boundary
conditions and not by the use of a more refined formulas, the error
disappears.

It is quite cOllllllOnto see researchers complaining of the poor resul ts
they get with a small number of points, Ref. [1]. But those bad results
are due to a poor boundary treatment. They improve with an increase in
nodal points; really in the fixed beam shown, with three nodal points,
two equations depend on the condition ui = o. Using 100 nodal points two
equations again will depend on that condition. The results improve but
they will never approach the exact ones.

The procedure proposed is general and reliable; it can be used in
ordinary and partial differential equations, with any type of conditions.

It is possible, however, to avoid this work. In eq. (9) the expo-
nent of h is the order of the derivative added to the order of the error;
this exponent is ~. The order of the differential equation is n. If
p > n + 1, the first term of the error series is of the form hm ( ),
where.!!!is a positive number, in eq. (11). If p < n + 1, .!!!. wil1 be non
positive and convergence fails.



a condition on the first derivative, it is needed a formula with an error
of h4• In Ref. [2J it is found the following approximation

Non-linear conditions can be operated by the general procedure.
Consider the problem of free convection from a heated vertical plate. In
Ref. [3J it is shown a system of two equations with two unknowns, f(x)
and g(x) with adequate conditions. Eliminating the function g(x), the
governing equation of the problem is
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The terminal point is n. Taylor series expansions are:
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+ f" (B + 4e + 9D) _!l-. f'" (B + 8e + 27D) +""2 n 6 n

hS
(B + 16e + 81D) - 120 f~'" (B + 32e + 243D) + •••

Next include boundary conditions in eq. (28). The third derivative

is substituted by - 3fn f~.

+ h
2

f" rB + 4e + 9D + h f (B + 8e + 27D)J + h
4

filII (B + 16e + 81D)
2 n L n 24 n

5
-L f"'" (B + 32e + 243D)

120 n

1 1 1 1 j: 0

0 l+a 4(1+2a) 9 (1+3Ct)
120 0=7 (30)

0 1 16 81 l: 0

0 -1 -32 -243 1



f"lIl 1 [(600:850a) f - 60 (5 6)f
n h5(11+6a) L n + a n-l +

+ 30 (4+3a) fn-2 - 23° (3 + 2a) f jn-3

The usual procedure to consider external points for the finite
difference method reconnnended by several authors, Refs. 1"41, [5], [6],
must be avoided. In some cases the error is small, but it is possible to
have large errors. It is important to realize that when the interval goes
to zero there is no guarantee that the error will ~o to zero.

The only way 'to be sure to get the best approximation with the
desired number of terms is the use of Taylor series or equivalent
algorithm, as exposed above.
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