Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXVIII, págs. 393-407 (artículo completo) Cristian García Bauza, Pablo Lotito, Lisandro Parente, Marcelo Vénere (Eds.) Tandil, Argentina, 3-6 Noviembre 2009

DINÁMICA DE ARCOS CIRCULARES GRUESOS ELÁSTICAMENTE VINCULADOS, POR EL MÉTODO DE CUADRATURA DIFERENCIAL

Diana V. Bambill^{a,b}, Daniel H. Felix^a, Raúl E. Rossi^a, Samanata J. Escanes^a

 ^aDepartamento de Ingeniería, Instituto de Mecánica Aplicada IMA, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahía Blanca, Argentina http://www.uns.edu.ar
 ^bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina e-mail: dbambill@criba.edu.ar,dhfelix@uns.edu.ar, rerossi@uns.edu.ar, sescanes@uns.edu.ar

Keywords: vibraciones libres, cuadratura diferencial, arcos circulares, inercia rotatoria, deformación por corte.

Resumen. En este trabajo se determinan los primeros valores del coeficiente de frecuencia de vibración transversal en el plano, de arcos circulares gruesos con vinculación elástica en sus extremos.

Como es sabido, el elemento de arco es un componente estructural fundamental para diversas aplicaciones tecnológicas, con renovado interés para investigadores y profesionales de la ingeniería.

Para el cálculo de valores del coeficiente de frecuencia se utiliza un algoritmo desarrollado por los autores, basado en el método de cuadratura diferencial y en la aplicación de la teoría de vigas Timoshenko, la cual toma en cuenta la inercia rotatoria y la deformación por corte.

La gran cantidad de parámetros que definen el modelo en cuestión, motivó a desarrollar un único algoritmo general que contemple a todos ellos, con el consiguiente ahorro de esfuerzo computacional.

Todos los casos presentados en este estudio son también resueltos mediante la aplicación del método de elementos finitos. Un análisis de convergencia del algoritmo en los valores de frecuencia en función de la rigidez elástica de los vínculos del arco complementa el trabajo presentado.

1 INTRODUCCIÓN

El presente trabajo trata sobre estructuras en arco y la determinación de sus frecuencias naturales en el plano, considerando arcos gruesos de directriz circular, elásticamente vinculados en sus extremos. El caso fue considerado de interés en virtud de la escasa bibliografía encontrada sobre el tema

Para el cálculo de las frecuencias de vibración naturales se utiliza un desarrollo basado en el método de cuadratura diferencial (MCD), y se comparan con resultados obtenidos mediante un programa de elementos finitos desarrollado por los autores.

El modelo de arco considerado se basa en la teoría de vigas Timoshenko (Tüfekçi y Arpaci, 1998; Wu y Chiang, 2004), que contempla deformación por corte e inercia rotatoria, además de la deformación axial del eje del arco, (Tüfekçi y Arpaci, 1998, Chidamparam y Leissa, 1993).

Entre las numerosas aplicaciones en las que es de interés considerar el comportamiento dinámico de arcos, tiene importancia conocer el efecto que un cambio de la rigidez de los vínculos elásticos puede producir en los valores las frecuencias naturales. Esto es especialmente útil en las técnicas de control pasivo de vibraciones (Tseng et al, 1997). Como es sabido, el control pasivo de vibraciones permite modificar la respuesta de frecuencia de los elementos estructurales mediante la modificación de alguna de las características de la estructura analizada, como podría ser, en el caso que nos ocupa, la modificación de la rigidez de la vinculación elástica.

En la primera parte del trabajo se presenta el modelo general en base al cual se desarrolló el algoritmo de cálculo, y a continuación se hace referencia a la implementación del MCD. Un desarrollo más completo del MCD puede hallarse en las referencias citadas (Gutiérrez y Laura, 1995; Bert y Malik, 1996).

Los resultados numéricos se presentan en tablas, en las que puede apreciarse la influencia de la rigidez elástica de los vínculos del arco. Se generan una serie de modelos de arco para diferentes valores de parámetros como la apertura del arco, su esbeltez y diferentes características de rigidez de los vínculos.

2 ESQUEMA DEL MODELO ANALIZADO

Figura 1: Arco circular de sección escalonada, elásticamente vinculado en sus extremos

La Figura 1 muestra esquemáticamente el modelo más general de arco grueso de directriz circular, con sección variable escalonada, y elásticamente vinculado en ambos extremos.

Las características geométricas de cada tramo *k*-ésimo del mismo se definen con los siguientes parámetros: *R*: radio del eje del arco, S_k : longitud del tramo medida sobre el eje del arco; s_k : coordenada espacial que define la posición de una sección genérica del tramo *k*; Θ_k : amplitud angular del tramo; θ_k : coordenada angular correspondiente a la coordenada espacial s_k ; A_k ; I_k : área y momento de inercia de la sección transversal, respectivamente.

Las rigideces de los vínculos elásticos se definen mediante las siguientes constantes: k_{r_1} ; k_{r_n} : de rigidez a rotación; k_{v_1} ; k_{v_n} : de rigidez axial y k_{w_1} ; k_{w_n} : de rigidez en la dirección normal al eje del arco.

En el modelo adoptado de viga Timoshenko con deformación axial, el desplazamiento de cada sección del arco al efectuar vibraciones libres en el plano, queda definido por tres variables independientes: el desplazamiento axial v, el desplazamiento transversal w y el giro de la sección transversal ψ . La Figura 2a muestra la dirección y sentido positivo adoptado para cada una de ellas.

Los esfuerzos internos en el plano, generados por la vibración del arco, son el esfuerzo axial \overline{N} , el de corte \overline{Q} y el momento flector \overline{M} . La convención de signos adoptada para los esfuerzos puede observarse en la Figura 2b.

Figura 2: a) Dirección y sentido positivos de los 3 desplazamientos independientes en cada sección del arco.

b) Dirección y sentido positivos adoptados para los 3 esfuerzos presentes en cada sección del arco.

La forma adimensional de las ecuaciones diferenciales que gobiernan el sistema propuesto vienen dadas por las siguientes expresiones (Felix et al, 2007):

$$\xi_{1}^{2} \left(\frac{\kappa}{2(1+\nu)} V_{k} - \frac{1}{\Theta_{k}^{2}} \frac{d^{2}V_{k}}{dx^{2}} \right) - \xi_{1}^{2} \left(1 + \frac{\kappa}{2(1+\nu)} \right) \frac{1}{\Theta_{k}} \frac{dW_{k}}{dx} + \xi_{1}^{2} \frac{\kappa}{2(1+\nu)} \Psi_{k} = \Omega^{2} V_{k}$$
(1a)

$$\xi_{1}^{2}\left(1+\frac{\kappa}{2(1+\nu)}\right)\frac{1}{\Theta_{k}}\frac{dV_{k}}{dx} + \xi_{1}^{2}\left(W_{k}-\frac{\kappa}{2(1+\nu)}\frac{1}{\Theta_{k}^{2}}\frac{d^{2}W_{k}}{dx^{2}}\right) + \xi_{1}^{2}\frac{\kappa}{2(1+\nu)}\frac{1}{\Theta_{k}}\frac{d\Psi_{k}}{dx} = \Omega^{2}W_{k} \quad (1b)$$

$$\xi_{1}^{2} \frac{\kappa \xi_{k}^{2}}{2(1+\nu)} V_{k} - \xi_{1}^{2} \frac{\kappa \xi_{k}^{2}}{2(1+\nu)} \frac{1}{\Theta_{k}} \frac{dW_{k}}{dx} + \xi_{1}^{2} \frac{\kappa \xi_{k}^{2}}{2(1+\nu)} \Psi_{k} - \xi_{1}^{2} \frac{1}{\Theta_{k}^{2}} \frac{d^{2}\Psi_{k}}{dx^{2}} = \Omega^{2} \Psi_{k}$$
(1c)

Donde Ω es el coeficiente de frecuencia natural de vibración en el plano del arco, dado por:

$$\Omega = \sqrt{\frac{\rho A_{\rm l}}{E I_{\rm l}}} R^2 \omega \tag{2}$$

El resto de las variables adimensionales que aparecen en las ecuaciones (1a, b, c) son: $\xi_1 = R/r_1$: relación entre el radio del arco y el radio de giro de la sección transversal del primer tramo del arco.

 $\xi_k = R/r_k$: Ídem anterior para el tramo *k*-ésimo. $r_k = \sqrt{I_k/A_k}$: radio de giro de la sección transversal de cada tramo del arco. ρ y *E*: densidad y módulo de elasticidad del material, respectivamente. *V*, *W* y Ψ : amplitudes adimensionales de los tres desplazamientos independientes. $x = s_k/\Theta_k$: coordenada espacial adimensional de cada sección transversal del arco.

 κ : factor de corte, que depende de la forma de la sección transversal.

v: módulo de Poisson.

Las ecuaciones adimensionales de compatibilidad de desplazamientos en la sección de unión de dos tramos adyacentes, resultan:

$$V\Big|_{x=1}^{\operatorname{Tramo} k} = V\Big|_{x=0}^{\operatorname{Tramo} k+1}$$
(3a)

$$W\Big|_{x=1}^{\operatorname{Tramo} k} = W\Big|_{x=0}^{\operatorname{Tramo} k+1}$$
(3b)

$$\Psi\Big|_{x=1}^{\operatorname{Tramo} k} = \Psi\Big|_{x=0}^{\operatorname{Tramo} k+1}$$
(3c)

Las respectivas ecuaciones adimensionales de compatibilidad de esfuerzos internos se expresan en función de las amplitudes de los desplazamientos, en la forma:

$$\alpha_{k} \left[\frac{1}{\Theta_{k}} \frac{dV_{k}(x)}{dx} + W_{k}(x) \right]_{x=1}^{\text{Tramo } k} = \alpha_{k+1} \left[\frac{1}{\Theta_{k+1}} \frac{dV_{k+1}(x)}{dx} + W_{k+1}(x) \right]_{x=0}^{\text{Tramo } k+1}$$
(4a)

$$\alpha_{k} \left[\frac{1}{\Theta_{k}} \frac{dW_{k}(x)}{dx} - V_{k}(x) - \Psi_{k}(x) \right]_{x=1}^{\operatorname{Tramo} k} = \alpha_{k+1} \left[\frac{1}{\Theta_{k+1}} \frac{dW_{k+1}(x)}{dx} - V_{k+1}(x) - \Psi_{k+1}(x) \right]_{x=0}^{\operatorname{Tramo} k+1}$$
(4b)

$$\alpha_{k} \frac{\xi_{1}^{2}}{\xi_{k}^{2}} \left[\frac{1}{\Theta_{k}} \frac{d\Psi_{k}(x)}{dx} \right]_{x=1}^{\text{Tramo } k} = \alpha_{k+1} \frac{\xi_{1}^{2}}{\xi_{k+1}^{2}} \left[\frac{1}{\Theta_{k+1}} \frac{d\Psi_{k+1}(x)}{dx} \right]_{x=0}^{\text{Tramo } k+1}$$
(4c)

Donde $\alpha_k = A_k/A_1$ es la expresión adimensional del área de la sección transversal de cada tramo del arco.

El sistema de ecuaciones se completa con las condiciones de borde que, según el tipo de restricción, resultan de la siguiente forma:

Condiciones de borde para extremos empotrados:

$$V\Big|_{x=0}^{\text{Tramo 1}} = W\Big|_{x=0}^{\text{Tramo 1}} = \Psi\Big|_{x=0}^{\text{Tramo 1}} = 0$$
(5a)

$$V\Big|_{x=1}^{\text{Tramo N}} = W\Big|_{x=1}^{\text{Tramo N}} = \Psi\Big|_{x=1}^{\text{Tramo N}} = 0$$
(5b)

Condiciones de borde para extremos articulados:

$$V\Big|_{x=0}^{\text{Tramo 1}} = W\Big|_{x=0}^{\text{Tramo 1}} = \frac{d\Psi}{dx}\Big|_{x=0}^{\text{Tramo 1}} = 0$$
(6a)

$$V\Big|_{x=1}^{\text{Tramo N}} = W\Big|_{x=1}^{\text{Tramo N}} = \frac{d\Psi}{dx}\Big|_{x=1}^{\text{Tramo N}} = 0$$
(6b)

Condiciones de borde para extremos empotrado-libre:

Borde empotrado: $V\Big|_{x=0}^{\text{Tramo 1}} = W\Big|_{x=0}^{\text{Tramo 1}} = \Psi\Big|_{x=0}^{\text{Tramo 1}} = 0$ (7a)

Borde libre:

$$\left[\frac{1}{\Theta_{N}}\frac{dV_{N}(x)}{dx} + W_{N}(x)\right]_{x=1}^{\text{Tramo N}} = \left[\frac{1}{\Theta_{N}}\frac{dW_{N}(x)}{dx} - V_{N}(x) - \Psi_{N}(x)\right]_{x=1}^{\text{Tramo N}} = 0$$

$$\frac{d\Psi_{N}(x)}{dx}\Big|_{x=1}^{\text{Tramo N}} = 0$$
(7b)

Condiciones de borde en el extremo del tramo 1 con vinculación elástica:

$$\left[\frac{1}{\Theta_{1}}\frac{dV_{1}(x)}{dx} + W_{1}(x) + K_{v}V_{1}(x)\right]_{x=0}^{\text{Tramo 1}} = 0$$

$$\left[\frac{1}{\Theta_{1}}\frac{dW_{1}(x)}{dx} - V_{1}(x) - \Psi_{1}(x) + K_{w}W_{1}(x)\right]_{x=0}^{\text{Tramo 1}} = 0$$
(8a)

$$\frac{1}{\Theta_{1}} \frac{d\Psi_{1}(x)}{dx} + K_{r} \Psi_{1}(x) \bigg|_{x=0}^{1 \text{ ramo } 1} = 0$$

En el último tramo N se tiene

$$\left[\frac{1}{\Theta_{N}}\frac{dV_{N}(x)}{dx} + W_{N}(x) - K_{v} dV_{N}(x)\right]_{x=1}^{\operatorname{Tramo} N} = 0$$

$$\left[\frac{1}{\Theta_{N}}\frac{dW_{N}(x)}{dx} - V_{N}(x) - \Psi_{N}(x) - K_{w} W_{N}(x)\right]_{x=1}^{\operatorname{Tramo} N} = 0$$

$$\left.\frac{1}{\Theta_{N}}\frac{d\Psi_{N}(x)}{dx} - K_{r} \Psi_{N}(x)\right|_{x=1}^{\operatorname{Tramo} N} = 0$$
(8b)

donde K_v ; K_w y K_r son los coeficientes adimensionales de las constantes de rigidez de los vínculos elásticos, definidas con:

$$K_{\nu} = \frac{R_{1}}{EA_{1}}k_{\nu} \quad ; \quad K_{w} = \frac{R_{1}}{EA_{1}}k_{w} \quad ; \quad K_{\Psi} = \frac{R_{1}}{EI_{1}}k_{\Psi} \tag{9}$$

3 EL MÉTODO DE CUADRATURA DIFERENCIAL

Mediante la aplicación de las reglas del MCD (Bellman y Casti, 1971; Bert y Malik, 1996) el sistema de ecuaciones diferenciales, ecuaciones de compatibilidad y condiciones de contorno, se transforma en un sistema de ecuaciones algebraicas equivalente, denominado sistema de ecuaciones análogas de cuadratura, las que se detallan a continuación (Kang et al, 1995).

En primer lugar, las ecuaciones diferenciales (1a, b y c) se reemplazan con las ecuaciones análogas de cuadratura:

$$\xi_1^2 \left(\frac{\kappa}{2(1+\nu)} V_i - \frac{1}{\Theta_k^2} \sum_{j=1}^n A_{ij}^{(2)} V_j \right) - \frac{\xi_1^2}{\Theta_k} \left(1 + \frac{\kappa}{2(1+\nu)} \right) \sum_{j=1}^n A_{ij}^{(1)} W_j + \xi_1^2 \frac{\kappa}{2(1+\nu)} \Psi_i = \Omega^2 V_i \quad (10a)$$

$$\frac{\xi_{1}^{2}}{\Theta_{k}} \left(1 + \frac{\kappa}{2(1+\nu)} \right) \sum_{j=1}^{n} A_{ij}^{(1)} V_{j} + \xi_{1}^{2} \left(W_{i} - \frac{1}{\Theta_{k}^{2}} \frac{\kappa}{2(1+\nu)} \sum_{j=1}^{n} A_{ij}^{(2)} W_{j} \right)$$
(10b)

$$+\frac{\xi_{1}^{2}}{\Theta_{k}}\frac{\kappa}{2(1+\nu)}\sum_{j=1}^{n}A_{ij}^{(1)}\Psi_{j}=\Omega^{2}W_{i}$$

$$\xi_{1}^{2} \frac{\kappa \xi_{k}^{2}}{2(1+\nu)} V_{i} - \xi_{1}^{2} \frac{\xi_{k}^{2}}{\Theta_{k}} \frac{\kappa}{2(1+\nu)} \sum_{j=1}^{n} A_{ij}^{(1)} W_{j} + \xi_{1}^{2} \frac{\kappa \xi_{k}^{2}}{2(1+\nu)} \Psi_{i} - \xi_{1}^{2} \frac{1}{\Theta_{k}^{2}} \sum_{j=1}^{n} A_{ij}^{(2)} \Psi_{j} = \Omega^{2} \Psi_{i}$$
(10c)

A continuación se establecen las ecuaciones análogas de cuadratura correspondientes a la compatibilidad de desplazamientos (ecuaciones. 3a, b y c):

$$V_n \Big|^{\operatorname{Tramo} k} = V_1 \Big|^{\operatorname{Tramo} k+1}$$
(11a)

$$W_n \Big|^{\text{Tramo } k} = W_1 \Big|^{\text{Tramo } k+1}$$
(11b)

$$\Psi_n \Big|^{\operatorname{Tramo} k} = \Psi_1 \Big|^{\operatorname{Tramo} k+1}$$
(11c)

Ecuaciones análogas de cuadratura de las ecuaciones de compatibilidad de esfuerzos internos (ecuaciones 4a, b y c):

$$\alpha_{k} \left[\frac{1}{\Theta_{k}} \sum_{j=1}^{n} A_{1j}^{(1)} V_{j} + W_{i} \right]^{\text{Tramo } k} = \alpha_{k+1} \left[\frac{1}{\Theta_{k+1}} \sum_{j=1}^{n} A_{1j}^{(1)} V_{j} + W_{i} \right]^{\text{Tramo } k+1}$$
(12a)

$$\alpha_{k} \left[\frac{1}{\Theta_{k}} \sum_{j=1}^{n} A_{1j}^{(1)} W_{j} - V_{i} - \psi_{i} \right]^{\text{Tramo } k} = \alpha_{k+1} \left[\frac{1}{\Theta_{k+1}} \sum_{j=1}^{n} A_{1j}^{(1)} W_{j} - V_{i} - \psi_{i} \right]^{\text{Tramo } k+1}$$
(12b)

$$\alpha_{k} \frac{\xi_{1}^{2}}{\xi_{k}^{2}} \left[\frac{1}{\Theta_{k}} \frac{d\Psi_{k}(x)}{dx} \right]_{x=1}^{\operatorname{Tramo} k} = \alpha_{k+1} \frac{\xi_{1}^{2}}{\xi_{k+1}^{2}} \left[\frac{1}{\Theta_{k+1}} \frac{d\Psi_{k+1}(x)}{dx} \right]_{x=0}^{\operatorname{Tramo} k+1}$$
(12c)
$$\alpha_{k} \frac{\xi_{1}^{2}}{\xi_{k}^{2}} \left[\frac{1}{\Theta_{k}} \sum_{j=1}^{n} A_{1j}^{(1)} \Psi_{j} \right]^{\operatorname{Tramo} k} = \alpha_{k+1} \frac{\xi_{1}^{2}}{\xi_{k+1}^{2}} \left[\frac{1}{\Theta_{k+1}} \sum_{j=1}^{n} A_{1j}^{(1)} \Psi_{j} \right]^{\operatorname{Tramo} k+1}$$

Finalmente se obtienen las ecuaciones análogas de cuadratura de las condiciones de borde del arco, las que obviamente dependen de las restricciones impuestas en los extremos del mismo. Se tienen así, para los diferentes casos de vinculación:

En arcos con ambos extremos empotrados:

$$V_1 \Big|^{\text{Tramo 1}} = W_1 \Big|^{\text{Tramo 1}} = \Psi_1 \Big|^{\text{Tramo 1}} = 0$$
(13a)

$$V_n \Big|_{n}^{\text{Tramo N}} = W_n \Big|_{n}^{\text{Tramo N}} = \Psi_n \Big|_{n}^{\text{Tramo N}} = 0$$
(13b)

En arcos con ambos extremos articulados:

$$V_1 \Big|^{\text{Tramo 1}} = W_1 \Big|^{\text{Tramo 1}} = \sum_{j=1}^n A_{1j}^{(1)} \Psi_j \Big|^{\text{Tramo 1}} = 0$$
(14a)

$$V_n \Big|^{\text{Tramo N}} = W_n \Big|^{\text{Tramo N}} = \sum_{j=1}^n A_{nj}^{(1)} \Psi_j \Big|^{\text{Tramo N}} = 0$$
 (14b)

En arcos con el tramo 1 empotrado y el tramo N libre

$$V_1 \Big|^{\text{Tramo 1}} = W_1 \Big|^{\text{Tramo 1}} = \Psi_j \Big|^{\text{Tramo 1}} = 0$$
(15a)

$$\left[\frac{1}{\Theta_{N}}\sum_{j=1}^{n}A_{nj}^{(1)}V_{j}+W_{i}\right]_{x=1}^{\text{Tramo N}} = \left[\frac{1}{\Theta_{N}}\sum_{j=1}^{n}A_{nj}^{(1)}W_{j}-V_{i}-\psi_{i}\right]_{x=1}^{\text{Tramo N}} = \sum_{j=1}^{n}A_{nj}^{(1)}\Psi_{j}\Big|_{x=1}^{\text{Tramo N}} = 0 \quad (15b)$$

Finalmente, las ecuaciones análogas de las condiciones de borde en un arco con ambos extremos elásticamente restringidos:

$$\begin{bmatrix} \frac{1}{\Theta_{1}} \sum_{j=1}^{n} A_{1j}^{(1)} V_{j} + W_{i} + K_{v} V_{i} \end{bmatrix}_{x=0}^{\text{Tramo 1}} = \begin{bmatrix} \frac{1}{\Theta_{1}} \sum_{j=1}^{n} A_{1j}^{(1)} W_{j} - V_{i} - \psi_{i} + K_{w} W_{i} \end{bmatrix}_{x=0}^{\text{Tramo 1}}$$

$$= \sum_{j=1}^{n} A_{1j}^{(1)} \Psi_{j} + K_{r} \Psi_{i} \Big|_{x=0}^{\text{Tramo 1}} = 0$$

$$\begin{bmatrix} \frac{1}{\Theta_{N}} \sum_{j=1}^{n} A_{nj}^{(1)} V_{j} + W_{i} - K_{v} V_{i} \end{bmatrix}_{x=1}^{\text{Tramo N}} = \begin{bmatrix} \frac{1}{\Theta_{N}} \sum_{j=1}^{n} A_{nj}^{(1)} W_{j} - V_{i} - \psi_{i} - K_{w} W_{i} \end{bmatrix}_{x=1}^{\text{Tramo N}}$$

$$= \sum_{j=1}^{n} A_{nj}^{(1)} \Psi_{j} + -K_{r} \Psi_{i} \Big|_{x=1}^{\text{Tramo N}} = 0$$
(16b)

4 EL MÉTODO DE ELEMENTOS FINITOS

Para obtener valores de comparación que permitiesen verificar la precisión de los resultados obtenidos con el MCD, se utilizó el MEF, (Rossi, 2007).

En la aplicación, se utilizó un elemento de eje circular y sección constante, cuya formulación se basa en las ecuaciones diferenciales para barras curvas, tomando en cuenta los efectos de la curvatura inicial, del esfuerzo axial, del esfuerzo de corte y de la inercia rotatoria (Rossi, 1988; Rossi, 1989).

Con este elemento también se han resuelto, entre otros, problemas de vibraciones en su plano de arcos de sección linealmente variable (Maurizi et al, 1991).

5 RESULTADOS NUMÉRICOS

Previamente se realizó un análisis de convergencia del MCD en función del número de nodos *n* de la malla del modelo discreto. Para ello se utilizó un arco circular de sección rectangular constante (N = 1) con ángulo total $\theta = 60^{\circ}$, empotrado en ambos extremos. Para este estudio se adoptó una esbeltez $\lambda = S/r = 20$, y se despreció el efecto del corrimiento del

eje neutro de flexión debido a la curvatura inicial de la barra. Se calcularon los primeros seis valores del coeficiente de frecuencia $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$, adoptando el valor v=0,3 para el módulo de Poisson, con el cual resulta un factor de corte $\kappa = 13/15,3$.

n	$\overline{\Omega}_1$	$\overline{\Omega}_{2}$	$\overline{\Omega}_{3}$	$\overline{\Omega}_4$	$\overline{\Omega}_{5}$	$\overline{\Omega}_{_6}$
5	23.8008	50.5286	68.7978	90.4853	126.997	161.368
7	23.0509	38.2491	60.6301	69.4587	115.783	145.587
9	23.0538	37.7538	60.2325	67.9799	102.488	115.353
11	23.0536	37.7513	60.2222	67.9927	99.1100	115.342
13	23.0536	37.7513	60.2220	67.9912	98.9564	115.340
15	23.0536	37.7513	60.2220	67.9913	98.9563	115.341
17	23.0536	37.7513	60.2220	67.9913	98.9561	115.341
19	23.0536	37.7513	60.2220	67.9912	98.9561	115.341

Los resultados se muestran en la Tabla 1.

Tabla 1: Análisis de convergencia con el MCD, de los primeros coeficientes de frecuencia $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$ de vibración natural en el plano, en un arco Empotrado-Empotrado (E-E). $\upsilon = 0.3$; $\Theta = \pi/3$; $\lambda = S/r = 20$.

De acuerdo con los resultados con este análisis de convergencia, se consideró que adoptando 15 nodos para el mallado se obtienen valores suficientemente precisos.

Similarmente, un análisis numérico de la convergencia utilizando el MEF en el mismo modelo de arco, se muestra en la Tabla 2, observándose una aceptable convergencia del algoritmo implementado.

Nº de elementos	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5	Ω_6
10	23,116	38,024	60,332	69,277	102,61	116,97
20	23,081	37,888	60,056	68,407	99,957	115,40
30	23,074	37,863	60,006	68,247	99,468	115,11
40	23,072	37,854	59,988	68,191	99,297	115,01
60	23,070	37,848	59,975	68,151	99,175	114,93
80	23,070	37,846	59,971	68,137	99,133	114,91

Tabla 2: Análisis de convergencia con el MEF, de los primeros coeficientes de frecuencia $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$ de vibración natural en el plano, en un arco Empotrado-Empotrado (E-E). $\upsilon = 0.3$; $\Theta = \pi/3$; $\lambda = S/r = 20$.

A continuación, en este trabajo se procedió a determinar las frecuencias de arcos circulares con distintas aperturas angulares, con ambos extremos rígidamente restringidos en las componentes axial y transversal del desplazamiento, y elásticamente vinculados a rotación. Se determinaron los primeros seis valores del coeficiente de frecuencia para diferentes valores de la constante de rigidez rotacional K_r . Además, en cada modelo se adoptaron dos valores de la esbeltez $\lambda = S/r$.

El primer caso analizado es el mostrado en la Figura 3, y los resultados obtenidos con ambos métodos se presentan en las Tablas 3 y 4, la primera cuando se adopta un coeficiente de esbeltez $\lambda = S/r = 20$, y la segunda para $\lambda = S/r = 50$.

Figura 3: Arco circular de amplitud $\theta = \pi/3$, elásticamente vinculado a rotación. a) Esquema del modelo, b) Mallado con MCD.

K _r	método	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5	$\Omega_{_6}$
A-A	MCD	18,821	28,196	58,895	59,994	92,119	115,07
	MEF	18,832	28,253	59,011	59,754	92,287	114,60
0.01	MCD	18,828	28,209	58,904	59,994	92,126	115,07
0,01	MEF	18,838	28,266	59,021	59,754	92,294	114,60
0.1	MCD	18,885	28,321	58,991	59,996	92,188	115,07
0,1	MEF	18,895	28,378	59,108	59,756	92,356	114,60
1	MCD	19,381	29,313	59,780	60,015	92,753	115,10
1	MEF	19,392	29,374	59,778	59,894	92,922	114,64
10	MCD	21,382	33,639	60,107	63,648	95,600	115,22
10	MEF	21,395	33,716	59,861	63,780	95,773	114,78
100	MCD	22,795	37,082	60,201	67,239	98,363	115,32
100	MEF	22,811	37,173	59,951	67,383	98,539	114,89
1000	MCD	23,040	37,716	60,221	67,951	98,924	115,34
1000	MEF	23,042	37,774	59,969	68,056	99,069	114,91
10000	MCD	23,051	37,744	60,222	67,983	98,950	115,34
	MEF	23,067	37,839	59,970	68,129	99,126	114,91
ББ	MCD	23,054	37,751	60,222	67,991	98,956	115,34
E-E	MEF	23,070	37,846	59,971	68,137	99,133	114,91

Tabla 3: Coeficientes de frecuencia de vibración natural en el plano del arco $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$, en el modelo definido por: $\upsilon = 0.3$; $\Theta = \pi/3$; $\lambda = S/r = 20$, para diferentes valores de rigidez rotacional K_r .

K_r	método	Ω_1	$\Omega_{_2}$	$\Omega_{_3}$	Ω_4	Ω_5	$\Omega_{_6}$
A-A	MCD	32,528	42,418	76,306	124,89	152,05	190,05
	MEF	32,540	42,424	76,335	124,95	151,96	190,15
0.01	MCD	32,546	42,419	76,323	124,90	152,05	190,06
0,01	MEF	32,558	42,425	76,352	124,96	151,96	190,17
0.1	MCD	32,702	42,427	76,475	125,01	152,07	190,18
0,1	MEF	32,714	42,433	76,504	125,07	151,98	190,28
1	MCD	34,122	42,502	77,894	126,02	152,28	191,29
1	MEF	34,134	42,508	77,923	126,08	152,19	191,39
10	MCD	41,220	42,831	86,059	132,06	154,02	198,79
10	MEF	41,236	42,838	86,092	132,11	153,94	198,91
100	MCD	43,096	48,298	48,298	139,04	158,75	211,64
100	MEF	43,104	48,317	96,182	139,07	158,72	211,80
1000	MCD	43,143	49,696	98,383	140,30	160,45	215,20
1000	MEF	43,150	49,716	98,424	140,31	160,44	215,38
10000	MCD	43,148	49,850	98,634	140,43	160,66	215,62
	MEF	43,155	49,870	98,675	140,44	160,64	215,80
EE	MCD	43,148	49,867	98,662	140,44	160,69	215,67
E-E	MEF	43,156	49,887	98,703	140,45	160,67	215,85

Tabla 4: Coeficientes de frecuencia de vibración natural en el plano del arco $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$, en el modelo definido por: $\upsilon = 0.3$; $\Theta = \pi / 2$; $\lambda = S / r = 50$, para diferentes valores de rigidez rotacional K_r .

Los valores de rigidez a rotación en los apoyos varían desde $K_r = 0$, borde simplemente apoyado, hasta $K_r \rightarrow \infty$, borde empotrado. Se observa que cuando K_r varía entre 1 y 100 se producen las principales diferencias en los valores de frecuencia. Además, como era de prever, los arcos más esbeltos muestran coeficientes de frecuencia significativamente más elevados.

El siguiente caso analizado es el mostrado en la Figura 4, con resultados volcados en las Tablas 5 y 6.

Figura 4: Arco circular elásticamente vinculado a rotación, con desplazamientos restringidos en sus extremos, de amplitud $\Theta = \pi/2$. a) Esquema del modelo, b) Mallado con MCD.

K _r	método	Ω_1	$\Omega_{_2}$	$\Omega_{_3}$	$\Omega_{_4}$	Ω_5	$\Omega_{_6}$
A A	MCD	11,418	11,634	25,656	27,840	40,611	51,213
A-A	MEF	11,453	11,650	25,747	27,636	40,732	50,834
0.1	MCD	11,501	11,655	25,724	27,841	40,659	51,220
0,1	MEF	11,536	11,671	25,816	27,638	40,780	50,840
1	MCD	11,813	12,121	26,255	27,852	41,034	51,267
1	MEF	11,830	12,158	26,349	27,648	41,156	50,889
10	MCD	12,305	14,217	27,893	28,304	42,538	51,441
10	MEF	12,324	14,265	27,691	28,411	42,662	51,059
1000	MCD	12,592	15,591	27,926	29,858	43,739	51,554
	MEF	12,613	15,647	27,724	29,973	43,864	51,172
ББ	MCD	12,596	15,612	27,926	29,882	43,758	51,555
E-E	MEF	12,617	15,668	27,725	29,998	43,884	51,174

Tabla 5: Coeficientes de frecuencia de vibración natural en el plano del arco $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$, en el modelo definido por: $\upsilon = 0.3$; $\Theta = \pi/2$; $\lambda = S/r = 20$, para diferentes valores de rigidez rotacional K_r .

K _r	método	Ω_1	Ω_{2}	$\Omega_{_3}$	$\Omega_{_4}$	Ω_{5}	$\Omega_{_6}$
A A	MCD	13,289	25,449	36,036	54,076	71,398	83,656
A-A	MEF	13,297	25,463	36,053	54,120	71,315	83,736
0.1	MCD	13,404	25,456	36,134	54,151	71,416	83,742
0,1	MEF	13,412	25,470	36,151	54,195	71,333	83,822
1	MCD	14,299	25,512	36,929	54,768	71,567	84,466
1	MEF	14,308	25,526	36,947	54,811	71,485	84,548
10	MCD	17,877	25,695	40,749	57,899	72,564	88,675
10	MEF	17,889	25,707	40,773	57,936	72,495	88,767
1000	MCD	20,860	25,809	44,770	61,280	74,466	94,922
1000	MEF	20,875	25,822	44,800	61,299	74,426	95,040
ББ	MCD	20,910	25,811	44,845	61,340	74,514	95,060
E-E	MEF	20,925	25,823	44,875	61,358	74,474	95,179

Tabla 6: Coeficientes de frecuencia de vibración natural en el plano del arco $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$, en el modelo definido por: $\upsilon = 0.3$; $\Theta = \pi/2$; $\lambda = S/r = 50$, para diferentes valores de rigidez rotacional K_r .

De modo similar, se resuelve un arco de extensión angular $\Theta = \pi$, como muestra la Figura 5. Los resultados se presentan en las Tablas 7 y 8.

Figura 5.a: Esquema del modelo de un arco circular elásticamente vinculado a rotación, de amplitud $\Theta = \pi$.

Figura 5.b: Mallado con MCD de un arco circular elásticamente vinculado a rotación, de amplitud $\Theta = \pi$

K _r	método	Ω_1	$\Omega_{_2}$	Ω_{3}	$\Omega_{_4}$	Ω_5	$\Omega_{_6}$
A A	MCD	1,8594	4,4330	6,7452	7,5939	10,190	12,433
A-A	MEF	1,8579	4,4722	6,7699	7,5402	10,174	12,346
0.1	MCD	1,9066	4,4382	6,7749	7,5954	10,214	12,447
0,1	MEF	1,9051	4,4773	6,8002	7,5413	10,199	12,358
1	MCD	2,1982	4,4697	6,9757	7,6055	10,376	12,541
1	MEF	2,1969	4,5090	7,0051	7,5480	10,367	12,445
10	MCD	2,7642	4,5264	7,4469	7,6275	10,771	12,772
10	MEF	2,7636	4,5657	7,4868	7,5626	10,779	12,654
1000	MCD	2,9732	4,5454	7,6362	7,6448	10,945	12,872
1000	MEF	2,9731	4,5845	7,5685	7,6892	10,959	12,745
ББ	MCD	2,9758	4,5456	7,6363	7,6473	10,947	12,873
E-E	M E F	2,9757	4,5848	7,5686	7,6918	10,962	12,746

Tabla 7: Coeficientes de frecuencia de vibración natural en el plano del arco $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$, en el modelo definido por: $\upsilon = 0.3$; $\Theta = \pi$; $\lambda = S / r = 20$, para diferentes valores de rigidez rotacional K_r .

K _r	método	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5	$\Omega_{_6}$
A A	MCD	2,1838	6,3292	12,221	14,841	20,251	21,501
A-A	MEF	2,1847	6,3442	12,251	14,856	20,300	21,452
0.1	MCD	2,2438	6,3666	12,257	14,843	20,298	21,503
0,1	MEF	2,2447	6,3817	12,287	14,859	20,347	21,455
1	MCD	2,6407	6,6396	12,535	14,862	20,662	21,525
1	MEF	2,6419	6,6555	12,564	14,878	20,712	21,478
10	MCD	3,5880	7,4752	13,536	14,920	21,601	22,081
10	MEF	3,5902	7,4932	13,563	14,938	21,562	22,137
1000	MCD	4,0229	7,9534	14,220	14,954	21,655	23,151
	MEF	4,0258	7,9726	14,245	14,973	21,622	23,213
ББ	MCD	4,0288	7,9603	14,230	14,955	21,656	23,168
E-E	MEF	4,0317	7,9794	14,256	14,974	21,623	23,230

Tabla 8: Coeficientes de frecuencia de vibración natural en el plano del arco $\Omega_i = \sqrt{\rho A / EI} R^2 \omega_i$, en el modelo definido por: $\upsilon = 0.3$; $\Theta = \pi$; $\lambda = S / r = 50$, para diferentes valores de K_r .

6 CONCLUSIONES

El algoritmo general del MCD presentado en este trabajo, aplicado al caso particular de arcos gruesos de un solo tramo con vinculación elástica, ha sido apropiadamente implementado, quedando pendiente para un próximo trabajo el caso de modelos de arcos de varios tramos.

Se observa que las diferencias en los valores de los coeficientes de frecuencia natural, entre el modelo simplemente apoyado y el empotrado permiten realizar un control pasivo del comportamiento dinámico del arco mediante la variación de la rigidez de los vínculos elásticos en los apoyos.

El MCD no presentó inconvenientes o inestabilidad numérica en ninguno de los casos analizados. Se observó que el esfuerzo computacional requerido fue muy bajo, en concordancia con lo expresado por otros autores, (Karami y Malekzadeh, 2004; Tüfekçi y Arpaci, 2004).

AGRADECIMIENTOS

El presente trabajo ha sido auspiciado por la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur, en el Departamento de Ingeniería y por el programa de Investigación y Desarrollo del CONICET.

REFERENCIAS

- Bellman R. y Casti J., Differential quadrature and long-term integration. J. Math. Anal. App, 34: 235-238, 1971.
- Bert C.W. y Malik M., Differential quadrature method in computational mechanics: A review. *Applied Mechanics Review*, 49: 1-28, 1996.
- Chidamparam P. y Leissa A.W., Vibrations of planar curved beams, rings and arches. *Applied Mechanics Reviews*, 46(9): 467-483, 1993.
- Felix D. H. Bambill D.V. y Escanes S.J., Vibraciones libres de arcos circulares de sección transversal variable utilizando el método de cuadratura diferencial. XVI Congreso sobre Métodos Numéricos y sus Aplicaciones, (ENIEF 2007), Mecánica Computacional, Vol. 26: 199-212.
- Gutiérrez R.H. y Laura P.A.A., Vibration of non-uniform rings studied by means of quadrature method. *Journal of Sound and Vibration*, 185: 239-257, 1995.
- Kang K.J., Bert C.W. y Striz A.G., Vibration analysis of shear deformable circular arches by the differential quadrature method. *Journal of Sound and Vibration*, 181(2): 353-360, 1995.
- Karami G. y Malekzadeh P., In-plane vibration analysis of circular arches with varying crosssections using differential quadrature method. *Journal of Sound and Vibration*, 274: 239-257, 2004.
- Maurizi M.J., Rossi R.E., Bellés P.M.. Lowest natural frequency of clamped circular arcs of linearly tapered width, *Journal of Sound and Vibration*,144(2), 357-361. 1991.
- Rossi R.E., Introducción al análisis de Vibraciones con el Método de Elementos Finitos. Editorial EdiUNS, Universidad Nacional del Sur, Bahía Blanca, Argentina. IBSN 978-987-1171-71-2. (2007).
- Rossi R.E., Elemento circular para el análisis dinámico de arcos, empleando el método de elementos finitos, *VIII Jornadas Argentinas de Ingeniería Estructural*, Buenos Aires. 245-261, 1988.
- Rossi R.E., In-plane vibrations of circular rings of non-uniform cross-section with account

taken of shear and rotatory inertia effects, *Journal of Sound and Vibration*, 135, 443-452.. 1989.

- Tüfekçi E. y Arpaci A., Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects. *Journal of Sound and Vibration*, 209(5): 845-856, 1998.
- Tseng Y.P., Huang C.S. y Lin C.J., Dynamic stiffness analysis for in plane vibrations of arches with variable curvature. *Journal of Sound and Vibration*, 207(1): 15-31, 1997.
- Wu J.S. y Chiang L.K., A new approach for free vibration analysis of arches with effects of shear deformation and rotatory inertia considered. *Journal of Sound and Vibration*, 277: 49-71, 2004.