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Abstract. During the last two decades materials, that exhibit graded properties, left their essence of 
conceptual laboratory specimens to become a technological reality with a well established 
background. However structural applications of these materials are not a fulfilled research. Neither in 
what can be considered new uses of given structures, nor in the development of new theories to 
explain certain effects. 
Models for straight and curved beams are normally reported in the scientific literature as the easiest 
way to understand certain existing aspects in mechanics of structures. Most of these models are 
formulated appealing to numerical approaches such as the finite element or differential quadrature 
methods among others without taking into account theoretical aspects that can be quite useful to 
reduce algebraic complexity.  
In the present work the classical strength-of-materials theory for dynamic analysis of thick curved 
beams is deduced in the context functionally graded materials. The derivation process consists in the 
reduction of the algebraic handling by employing the concept of material neutral–axis shifting. This 
leads to the possibility to find analytical solutions of the governing differential system, even if the 
differential system has variable coefficients.  
Parametric studies on natural frequencies are offered to show the versatility of the adopted formulation 
by means of solutions handled with the Power Series Method.  
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1 INTRODUCTION 

In the last decade functionally graded materials (FGM) are increasingly recognized as a 
factual solution and potential answer to many challenging problems in a broad range of 
engineering applications. This kind of materials was reported in the middle eighties (Koizumi, 
1993) as a potential way to cope with the problem of failure and presence cracks in the 
interfaces of sandwich structures or laminated structures due to, for example, high thermo-
mechanical stress gradients. Laminated composite structures and sandwich structures differ 
from FGM in what these last ones have mass, elastic and thermo-mechanical properties 
changing smoothly and continuously in prescribed directions. Structural models for 
functionally graded material were introduced for different geometric configurations and 
scales covering a broad area from 3D solids through shells and plates to finish in beams or 
bars.   

The development of models for curved beams has been the topic of interest of many 
researchers during the last thirty years. Those investigations were oriented to a wide range of 
engineering problems, such as instability, vibration analysis, etc (Chidamparam and Leissa, 
1993). Many curved beam models were introduced to account for linear and non-linear 
behavior in structures made of both isotropic (Cortínez et al., 1999; Piovan et al., 2000) 
and/or composite materials and arranged for thin-walled (Piovan and Cortínez, 2007) or solid 
cross-sections (Matsunaga, 2004; Tufekci and Yasar Dogruer, 2006). A number of different 
methodologies and principles such as principle of virtual work, Hellinger-Reissner principle, 
Hu-Washizu principle among others were employed to develop a variety of models. The 
classical theory of strength of materials, although considered as old fashioned, proved to be a 
conceptually easy way to derive generalized or more complex beam and bar models for 
curved or straight axis (Filipich, 1991; Filipich et al., 2003).     

It has to be noted that, despite its technological interest, very few studies on the dynamics 
of curved beams made of FGM have been performed in the past years according to the 
knowledge of the authors. In fact, Piovan et al. (2008a) developed a basic model for free 
vibration analysis of arcs under the presence of initial stresses. This model was derived 
employing the principle of Hellinger-Reissner and numerically implemented with the finite 
element method. Piovan and Sampaio (2009) introduced a model for rotating curved beams 
made of functionally graded materials. Malekzadeh (2009) and Lim et al. (2009) carried out 
numerical approaches for in-plane vibrations of arches in the context of bi-dimensional 
formulations.    

The present article intends to be a contribution to current state-of-the-art in dynamics of 
arches. The bi-dimensional approaches are normally time consuming and allow analytical 
solutions in a couple of the simpler cases. Three-dimensional model of these structures should 
be analyzed with numerical formulations like finite element method among others. On the 
other hand the one-dimensional theories can reach an acceptable degree of approximation that 
could be nearly the same of 2D and 3D formulation but with a reasonable computational cost. 
Also one dimensional models offer an easy conceptual understanding of the dynamic 
phenomena in slender structures. Thus, in the present article the classical strength-of-
materials theory for dynamic analysis of thick curved beams is deduced in the context 
functionally graded materials. The deduction process appeals to the concept of material 
neutral–axis shifting with the aim to reduce the algebraic handling. Thus, the equations of 
motion obtained under this conception are formally identical to the ones for isotropic 
materials, leading to the possibility to provide analytical solutions of the governing 
differential system.   

The solution of the free vibration problem of thick curved beams made of functionally 
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graded materials is performed by means of the power series method. A recurrence scheme is 
employed in power series handling in order to reduce the number of unknown to only few 
unknown coefficients that can be selected according to the boundary equations. Some 
comparisons are performed with other beam approaches and 3D finite element 
approximations. An especial analysis of particular features in certain boundary conditions is 
offered as well.   

2 MODEL DEVELOPMENT 

2.1 Hypotheses and definitions 

In Figure 1 a sketch of the structural element analyzed in this work is shown. As one can 
see, there are two relevant points in the cross-section: Point G corresponds to the centroid of 
the section, whereas point D is a point belonging to the neutral axis. In this model the 
following material properties are assumed as:   
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In Eq. (2)  and kGR/hn = 1, k2 and k3 correspond to ϕ(r), µ(r) and f(r), respectively; 
whereas Ei, Gi and ρi intend for the material properties at r = ri and E0, G0 and ρ0 are the 
properties at r = re. 

 
Figure 1: Structural model: a circumferential thick arc. 

In order to derive the governing equations the following hypotheses are performed: 
 
(a) The present study is confined within the context of strength of materials theory. 
(b) The cross-section shape is not affected by the deformation: although the following 

developments are carried out for a rectangular cross section, it still being valid for any section 
with symmetry respect to a plane containing points G and D.   

(c) The following displacements are defined as: 
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where u is the transverse displacement, w is the tangential displacement and θ is the 
bending rotation all of them measured with respect to point D, t is the time. Then:   
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In Eq. (5), dΩ is the element of area and s and sP are the circumferential co-ordinates of the 
arc containing point D and a generic point P, respectively.   

2.2 Kinematical Relations. Strains and Stresses  

According to the assumptions taken into account, the kinematical relationships are defined 
in polar coordinates as:  
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Now, substituting Eq. (4) into Eq. (6) one obtains: 
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where, primes mean derivation with respect to variable α. 
For a functionally graded material, the classical linear constitutive law can be written as: 
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Notice that Eq (8b) is not employed in the context of strength of materials theory. 

2.3 Axial force and bending moment. Neutral Axis.  

The axial force N and bending moment M are defined in terms of the normal stress by 
means of the following expressions: 
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Then employing the previous definitions one obtains: 
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In Eq. (10), the coefficients αm, m= 0,1,2, are:  
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In order to obtain the expression for the neutral axis (for 0N ≠  and ) one should 
guarantee 

0M ≠
0== σε , thus from Eq (8a): 
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Once the neutral axis has been generically defined, it is possible to rearrange the origin 
location (Point D) with the scope to substantially reduce the algebraic manipulation, under the 
following condition:  

0a =   when .0N =  (15)

Then, according to Eq. (14), the condition given in Eq. (15) leads to: 

01 =α   (16)

Then, from Eq. (16) and Eq. (11) one deduces the neutral axis radius as: 
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where in the present case q0 and q1 are 
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Remark: If the material is homogeneous (q1=0), then 

[ ]ie r/rLn
hR =   

which is the neutral radius used in Strength of material theory for thick curved beam. 
  
Finally, with Eq. (16), the coefficients α0 and α2 are automatically defined as: 
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with these definitions it is possible to introduce the following entities: 

,bRJ
,bRA

2

0

α
α

=
=

  (20)

that mean material area and material moment of inertia, respectively. In the case of a 
homogeneous material and straight beam, A = Ω and J = JG, i.e. the area and centroidal 
moment of inertia. 

2.4 Constitutive equations. Shear coefficient 

Under the assumption of α1=0 applied to Eq. (10), we can write: 
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The derivation of the shear force Q expression in terms of the displacements is a more 
difficult task than the derivation of Eq. (21). In order to deduce the shear force expression the 
following steps have to be performed: 

(a) From the expression of internal equilibrium in polar coordinates: 
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one can find the solution as: 
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Notice that Eq. (23) is a generalization of the classical Colignon-Jouravsky formulae, 
although for curved bar and for non-homogeneous and graded materials.  

To determine B two equivalent conditions can be employed: 
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(b) Derivation of the shear coefficient expression 
Appealing to the deformation energy U in terms of the stresses:  
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Then integrating Eq. (27), with σ taken from Eq. (8a) and τ taken from Eq (23), one 
obtains: 
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Where the shear coefficient is defined as: 
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In Eq (29) the following constants have been employed: 
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If  the straight beam case is obtained: J = J∞→GR G and m=6/5. 
 
(c) Shear force: 
To obtain the expression of the shear force in terms of the displacements one should come 

across that the deformation energy due to shear effects can be written as: 
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Where, the last one is the classical definition of the deformation energy, and can be 
expressed as: 
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Comparing Eq. (32) with the second expression of Eq. (31) and taking into account Eq. (7), 
one finally gets: 
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Eq. (33) and Eq. (21) fulfill the constitutive equations for a problem in the plane. 
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2.5 Equations of motion  

In order to deduce the equations of motions the principle of Hamilton is employed. Then, 
the kinetic energy K is (recall Eq. (4)):  
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where, points indicate derivation with respect time t. 
Now introducing: 
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Then Eq. (34) can be written as: 
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On the other hand, the potential energy P due to external loads is written as: 
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where, pr, pt and µθ are the distributed radial force on the neutral axis, the distributed 
tangential force on the neutral axis and the distributed moment applied on the same axis, 
respectively.  

The deformation energy is taken from Eq. (28), and remembering the constitutive 
expressions given in Eq. (21) and Eq. (33), it can be then rewritten in terms of displacements: 
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Finally performing the conventional variational steps in the Hamilton’s principle one gets 
the following equations of motions in terms of displacements:  
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It is interesting to remark that Eq. (39) are a generalization of the Timoshenko straight 
beam approach in the context of functionally graded material for curved beam. Besides Eq. 
(39) is formally the same of the problem corresponding to the homogeneous case developed 
by Filipich (1991).  

Notice that the differential problem given by Eq. (39) is a completely coupled system, but 
if the structure is such that , the model is reduced to the case of a straight beam 
where the longitudinal motion is decoupled from the shear and bending motion. 

∞→GR
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3 NUMERICAL ANALYSIS AND COMPARISONS 

3.1 Power series method for the natural frequencies problem 

In order to study vibratory patterns of this type of structures, the motion equations are 
solved with a power series solution. The exact solution of the eigenvalue problem can be 
carried out by means of a generalization of the power series scheme developed originally by 
Filipich et al. (2003) and Rosales and Filipich (2006) for structural problems involving 
isotropic materials. The methodology requires a previous non-dimensional re-definition of the 
differential equations, which implies that [ ]1,0L/Rx ∈= α  [ ]α∆α ,0∈∀ , being L the 
circumferential length of the neutral axis of the curved beam, and α∆  is the subtended angle 
of the curved beam. 

The displacement variables have the common harmonic motion: 

{ } { } tie,w,u,w,u  ωθθ =  (41)

where ω is the circular frequency of the curved beam measured in rad/seg and 1−=i , 
and { θ,w,u } are the corresponding modal shapes. Now working without the presence of 
external loads and accepting Eq. (41) the differential equations system given by Eq. (39) can 
be re-arranged in the following form: 
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Where: 
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In Eq (42) the primes mean derivation with respect to x. 
The displacements are expanded with the following power series: 
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Theoretically ∞→Z , however for practical purposes Z may be an arbitrary large integer. 
Applying the boundary conditions (see Appendix II) in non-dimensional form and 

appealing to a recurrence scheme of the power series (Filipich et al, 2003; Piovan et al., 
2008b) one can represent the solution system in the following form: 
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One should note, the differential system given in Eq (42) can be rearranged as a one 
differential equation of sixth order; so one has six arbitrary integration constants. Three of 
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them are imposed in one end and the remaining three symbolically expressed as { }*** ,W,U Θ  
in Eq. (45) mean the three free coefficients after the substitution of the power series in the 
problem (for further explanations see Piovan et al., 2008; Filipich et al, 2003 and Rosales and 
Filipich, 2006). Thus, from Eq (45) where one can obtain the solution for the eigenvalue 
problem through out this characteristic equation:  

( )[ ] 0Det =λε  (46)

The aforementioned recurrence scheme (Filipich et al, 2003; Piovan et al., 2008b) allows 
to shrink the algebraic problem from 3(M+1) unknowns to only 3 unknown coefficients that 
can be selected according to the boundary equations.  

It should be stressed that the solution expressed in Eq. (46) lead to an arbitrary precision 
value for the frequency by selecting appropriately the limit Z of the power series. The 
orthogonality conditions among the modal shapes for the present problem are offered in the 
Appendix I. 

Once the eigenvalues λj with j=1,2,3 are calculated by means of Eq. (46), the eigenvector 
related to a given eigenvalue λj should be calculated. As one can see Eq. (45) is not of the 
canonical form (e.g. 0IqAq =− µ , where µ is the eigenvalue, and I the unit matrix), 
consequently it can not be solved with the common functions of many programs like Matlab, 
Maple or Mathematica. As the set of eigenvalues is known, one can define a matrix A=ε(λi). 
Now, implementing 0IqAq =− µ  and remembering that Det[A] = µ1 µ2 µ3, from Eq.(46) one 
should note that, at least one µj = 0. Thus, one can calculate (with Matlab, Maple or 
Mathematica) the eigenvector qj for µj = 0 and according to Eq. (45) one 
obtains{ } { }T

3j2j1j

T*** ,,,W,U qqq=Θ . Knowing this last vector and appealing to the recurrence 
scheme implemented within the power series method (Filipich et al, 2003; Piovan et al, 
2008b), by means of Eq. (44) the modal shapes for a given eigenvalue λj are obtained.   

3.2 Numerical analysis 

In this section some numerical studies are performed in order to show certain features of 
the dynamics of curved beam associated with the imposition of the boundary conditions (see 
Appendix II). In Table 1 the material properties of a ceramic and a metal are shown. All the 
following examples hold the same ceramic/metal distribution. In fact, the properties are 
graded according to Eq. (2) from a full metallic inner surface (at r = ri) to a full ceramic outer 
surface (at r = re).  

 
Properties of materials Steel Alumina 

(Al2O3) 
Young’s Modulus E (GPa) 214.00 390.00 

Shear modulus G (GPa) 82.20 137.00 
Material Density ρ 

(Kg/m3) 
7800.00 3200.00 

Table 1: Properties of metallic and ceramic materials. 

The first example corresponds to a comparison of the present model with other approaches. 
The present strength of materials approach for the curved beam is compared with the response 
of a flexible 3D general solver (called FlexPDE) of partial differential equations within the 
context of the finite element method. In this solver one can easily cope with the complex 
material laws to be included in the structural model as well as the model itself (see 
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http://www.pdesolutions.com for further explanations and illustrative examples of the 
program, also see the book of Backstrom, 1998). Also another one dimensional model of a 
FGM curved beam (Piovan et al, 2008a) derived according to the Hellinger-Reissner principle 
(HR) is employed for comparison purposes. The boundary conditions of the curved beam can 
be clamped at both ends or clamped in one end and free to move in the remaining. The 
geometric features of the curved beam are the following: b = 20 mm, h = 50 mm, ∆α = 1 rad 
and RG = 500 mm, the shear coefficient is m = 1.1619 and the ratio R/RG = 1.004046. Note 
that the neutral axis is greater than the RG radius, conversely to the homogeneous classical 
approach. In the following Table 2 the comparison of the three models and numerical 
approaches is presented for the first four frequencies of the arch. PSM intend for power series 
method. The calculations were carried out with fifty terms in the PSM (or Z = 50), ten quadric 
curved beam elements (for HR model) and nearly 850 tetrahedral elements in FlexPDE. 

As one can see in Table 2, differences between the approaches are negligible; however it 
should be mentioned that the 3D approach demanded more than 20 minutes to reach the 
desired precision on a 3.7 GHz Pentium IV computer (this is due to the quite fine mesh 
employed in order to cope with the non-homogeneity of the material). On the other hand both 
1D numerical approaches demanded just two or three seconds. 

 
Frequencies [Hz] Boundary  

Conditio
n 

Model [approach] 
First Second Third Fourth 

1D Present model [PSM] 2364.97 3388.57 6417.37 7657.81 
1D HR model [FEM] 2364.97 3388.57 6417.37 7657.81 

Clamped 
Clamped 

3D [FEM] 2366.59 3431.47 6497.00 7702.20 
1D Present model [PSM] 240.28 1237.25 3394.78 4397.86 

1D HR model [FEM] 240.28 1237.24 3394.78 4397.86 Clamped 
Free 

3D [FEM] 241.39 1244.95 3418.79 4396.93 

Table 2: Comparison of frequencies of different models and numerical approaches. 

The second example corresponds to a study of the vibratory behavior for the generalized 
simply supported boundary condition (see Appendix II). The curved beam is such that RG = 
500 mm., the height of the section is b = 20 mm., the subtended angle is ∆α = 1 rad., the depth 
of the cross-section h =  150 mm. The arch has simply supported boundary conditions in both 
ends; however the restrictions can be applied at the points corresponding to RG, R, re or ri. 
Table 3 shows the first five vibration frequencies for the mentioned varieties of the simply 
supported boundary condition. Notice the difference in the values of the frequencies when the 
supports are located at ri and re in comparison to the ones when the supports are located at R 
or RG. The shear coefficient m = 1.1601 and the ratio R/RG = 0.9950.  

  
Frequency [Hz] Location of the 

support First Second Third Fourth Fifth 
ri 5972 14001 23609 27052 36759 
R 11950 20419 23737 29473 36119 
RG 11833 20627 23734 29268 36264 
re 8388 12386 23579 31868 32969 

Table 3: Frequencies of different varieties of the simply supported boundary condition. 

Figure 2 shows a curved beam defined by two parameters: the horizontal distance between 
the centroidal points of both ends ‘a’ and the arch height parameter ‘c’ which is measured 
between the horizontal level and the centroidal point (i.e. G) of the mid cross-section. In the 
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following example the influence of shallowness ratio c/a together with the position of the 
support at the ends is analyzed. The horizontal distance is fixed to a = 1000 mm. The cross-
section is such that b = 20 mm and h = 80 mm.  

Figure 3 shows the variations of the frequencies (related to a particular mode shape) with 
respect to the shallowness ratio c/a, for the case where the beam is supported at both ends in 
the point corresponding to RG. Figure 4 shows the proper frequency variation with c/a but for 
the case where the supports are located at ri.   

 

 
Figure 2: Sketch of a shallow arc. 
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Figure 3: Variation of the frequencies with parameter c/a for arches supported at  r = RG. 
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Figure 4: Variation of the frequencies with parameter c/a for arches supported at r = ri. 

In the previous two figures the nomenclature F1u intend for the first flexural dominant 
mode F1uw mean the first flexural dominant mode with membranal coupling; whereas F2wu, 
F3uw are second and third flexural – membranal coupled modes. The first letter after the 
number means the dominating motion, eg. F3uw means a coupled mode with bending 
dominant motion. 

A difference between these two figures can be observed in Figure 5 but only for the first 
two modes. Note how sensible is the variation of frequency value with the change of the 
supporting point along the same cross section in the case of the coupled modes; whereas the 
bending dominant mode has a practically stable difference surrounding 10% along the 
shallowness ratio c/a.  
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Figure 5: Difference in percentage of the first two modes. 

4 CONCLUSIONS 

In the present article a model for non-homogeneous thick curved beam settled in the 
context of the theory of strength of materials is developed. The structural non-homogeneity is 
confined in the context of functionally graded materials. The derivation process consisted in 
the employment of the concept of neutral–axis shifting, which allows the possibility to reduce 
the algebraic manipulation, leading to the possibility to find analytical solutions of the 
governing differential system, even if the differential system has variable coefficients. The 
motion equations are solved with a power series approach which gives arbitrary precision to 
the frequencies values. An especial analysis featuring simply supported conditions is 
performed. This analysis have shown the strong dependence of the position along the end of 
the simply support restrictions in the firsts in-plane frequencies for the graded material 
especially if the bending and axial motions are coupled.    
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APPENDIX I: Sixth order Sturm-Liouville problem: orthogonality conditions 
 

To find the solution to a forced vibrations separable problem, the algorithm of modal 
superposition is usually employed. Consequently one should know the orthogonality 
conditions in order to diagonalize the problem in terms of the time. By means of an 
appropriate and selective manipulation in the differential system given by Eq (42) one arrives 
to a non-classical sixth order Sturm-Liouville problem whose orthogonality conditions are 
given by the following expression:  
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where ( )xuk , ( )xwk  and ( )xkθ  are the modal shapes corresponding to k-th natural 
frequency ωk of the countable set (k=1,2,3,4,…).  

Then:  
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If one divides each modal shape by Ni, the conditions of orthonormality are obtained. 
 

APPENDIX II: Boundary conditions  
In Figure A.1 one can see the sketch to describe a generalized simple support not 

necessarily located at the neutral axis.  

 
Figure A.1: Sketch of a generic end. 

The boundary conditions at α =0 are:  

0M
0w
0u

0

0

0

=
=
=

 (II.1)

Consequently, Eq. (II.1) can be rewritten, according to Eq. (3) and (4),  as: 

0NM
0w

0u

=+
=−

=

δ
θδ  (II.2)

According to Eq. (21), then Eq. (II.2) can be written in terms of displacements as: 

0wAJ
0w

0u

=′+′
=−

=

θ
θδ  (II.3)

On the other hand the boundary conditions corresponding to a clamped end are: 
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0
0w
0u

=
=
=

θ
 (II.4)

The boundary conditions corresponding to a free end are: 

0Q
0M
0N

=
=
=

 (II.5)

Then, according to Eq (21) and Eq (33), Eq (II.5) writes as: 

0Ruw
0

0uw

=+′+
=′

=−′

θ
θ  (II.6)

Evidently, the boundary conditions in the other end are treated in the same way. 
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