Asociación Argentina

Mecánica Computacional Vol XXVIII, págs. 711-728 (artículo completo) Cristian García Bauza, Pablo Lotito, Lisandro Parente, Marcelo Vénere (Eds.) Tandil, Argentina, 3-6 Noviembre 2009

VIBRACIONES LIBRES DE PLACAS TRAPECIALES LAMINADAS MEDIANTE EL USO DE LA TEORÍA DE PRIMER ORDEN.

María V. Quintana, Liz G. Nallim

ICMASA - INIQUI - Facultad de Ingeniería - Universidad Nacional de Salta, Av. Bolivia 5150, 4400 Salta, Argentina, virginiaquintana@argentina.com, Inallim@unsa.edu.ar

Palabras claves: Placas trapeciales, Vibración, FSDT, Ritz, Vínculos Elásticos.

Resumen. Diferentes tipos de estructuras construidas con materiales compuestos reforzados con fibras se utilizan con frecuencia en diferentes áreas de la ingeniería, tales como la aeroespacial, mecánica y civil. Estos materiales exhiben excelentes propiedades mecánicas relacionadas a su elevada relación resistencia-peso y rigidez-peso, además de la posibilidad de ser diseñados de acuerdo a requerimientos específicos variando, por ejemplo, la secuencia de laminación ó la inclinación de las fibras.

Entre las diferentes tipologías estructurales las placas laminadas son utilizadas comúnmente, ya sea solas o formando parte de estructuras más complejas. En general, el enfoque que se sigue para analizar la respuesta dinámica de las mismas, es el correspondiente a la teoría clásica (CLPT) la cual desprecia el efecto de la deformación por corte. Una característica de las placas compuestas laminadas es que la relación entre la rigidez en el plano y la rigidez cortante transversal es elevada. Es por esto que la deformación por corte juega un importante rol en este tipo de estructuras, siendo su efecto más pronunciado en placas laminadas que en placas isótropas, aún cuando geométricamente puedan considerarse como delgadas. Por esto en este trabajo se utiliza la teoría de placas de primer orden (FSDT), la cual considera los efectos de la inercia rotatoria y de las deformaciones cortantes transversales de manera aproximada. La aplicación de esta teoría permite obtener mayor precisión en la determinación de los coeficientes de frecuencia correspondientes a los modos superiores de vibración aún para el caso de placas laminadas delgadas.

En este trabajo se presenta una formulación variacional general para la determinación de las frecuencias naturales y formas modales de vibración libre de placas trapeciales laminadas cruzadas y equiangulares utilizando la cinemática correspondiente a la Teoría de Primer Orden El problema de autovalores se obtiene a través de la aplicación del método de Ritz. La geometría de la placa se aproxima mediante el uso de coordenadas triangulares, mientras que los desplazamientos y las rotaciones son aproximados con conjuntos de polinomios simples independientes expresados en las coordenadas triangulares mencionadas.

El algoritmo desarrollado permite obtener soluciones analíticas aproximadas para placas laminadas con diferentes formas, relación de aspecto, número de capas, secuencia de apilamiento, ángulo de orientación de la fibra y condiciones de bordes incluyendo restricciones elásticas traslacionales y rotacionales en los bordes. El algoritmo es sencillo de programar y numéricamente estable. Además, palcas de forma triangular pueden generarse como caso particular.

1 INTRODUCCIÓN

Las placas anisótropas, en especial las constituidas de material compuesto reforzado con fibras se utilizan extensamente en diversas aplicaciones tecnológicas, industriales y en numerosas ramas de la ingeniería, tales como mecánicas, aeroespaciales, automotrices, etc. En muchos casos, la rápida y eficiente determinación de las frecuencias naturales de vibración y sus formas modales asociadas es fundamental en el diseño y evaluación del desempeño. Además, es importante incluir en el estudio restricciones parciales elásticas en los bordes para incluir a un grupo importante de problemas prácticos. Esto se debe a que las condiciones de contorno clásicas no pueden aplicarse a todas las situaciones reales y el modelado de restricciones elásticas puede asemejar de manera más racional las verdaderas condiciones de sujeción. En particular, la flexibilidad de los bordes tiene una significativa influencia en las vibraciones de las placas.

Los trabajos publicados respecto a las vibraciones de placas trapeciales están basados, en su mayoría, en la teoría de placas delgadas. Una excelente fuente de referencias la constituyen los trabajos de Leissa (1969, 1977, 1981, 1987). La teoría de placas delgadas desprecia los efectos de la deformación por corte y de la inercia rotatoria y esto conduce a resultados que sobrestiman las frecuencias de vibración. Este error es mayor cuando se incrementa el espesor de la placa. La alternativa más simple para considerar los efectos mencionados es el uso de la teoría de deformación por corte de primer orden para placas moderadamente gruesas, propuesta por Reissner (1945) y Mindlin (1951), en la cual se incorpora el efecto de la inercia rotatoria. Además, esta teoría requiere el uso de un factor de corrección para compensar el error resultante de la aproximación hecha respecto a la distribución no uniforme de deformaciones y tensiones cortantes.

Liew et al. (1995) presenta una revisión de los trabajos realizados sobre las vibraciones de placas gruesas que utilizan, fundamentalmente, la teoría de primer orden. Reddy (1997) presenta un tratamiento detallado y completo de las vibraciones transversales de placas gruesas rectangulares laminadas.

El estudio de placas gruesas de forma diferente a la rectangular mediante métodos analíticos aproximados presenta la dificultad de la construcción de simples y adecuadas funciones de aproximación que puedan aplicarse al dominio entero de la placa. Cuando estas placas tienen, además, restricciones elásticas en sus bordes, la estructura matemática de las condiciones de contorno se torna compleja dificultando la generación de tales funciones de aproximación. Para superar esta dificultad se desarrollaron y perfeccionaron diferentes técnicas. Karunasena et al. (1996) emplearon el método de Rayleigh–Ritz pb-2 para el análisis de vibración libre de placas triangulares Mindlin en voladizo. Posteriormente, Karunasena y Kitipornchai (1997) extendieron la metodología anterior a diferentes combinaciones de condiciones de contorno clásicas. Wu y Liu (2005) emplearon el método de la cubatura diferencial para el análisis de placas gruesas de forma arbitraria. Zhong (2000) analizó también las vibraciones libres de placas triangulares mediante el método de la cuadratura diferencial triangular. Todos estos trabajos están referidos a placas de material isótropo.

Haldar y Manna (2003) propusieron un elemento triangular con deformación por corte de alta precisión para analizar las vibraciones de placas trapeciales compuestas. Gürses y otros (2009) emplearon el método de convolución singular discreta (DSC) para el análisis de las vibraciones libres de placas laminadas trapeciales. En todos estos trabajos se consideraron condiciones de contornos clásicas.

La presencia de vínculos elásticos en el contorno de placas gruesas fue considerada por algunos autores, aunque sólo para el caso de placas de forma rectangular (Zhou, 2001; Malekzadeh y Shahpari, 2005; Xiang y otros, 1997; Chung y otros 1993).

De acuerdo a lo expresado en los párrafos anteriores, el objetivo de este trabajo es

proponer un algoritmo general que permita la obtención de soluciones analíticas aproximadas para el estudio de las vibraciones libres de placas gruesas laminadas trapeciales y triangulares, con contornos restringidos elásticamente contra rotación y traslación. Para ello, se presenta una metodología desarrollada en base a una extensión y generalización de un trabajo previo (Quintana y Nallim, 2008), el cual fue formulado para placas isótropas. El procedimiento se basa en el método de Ritz y engloba dos aspectos. El primero es la aproximación de la geometría de la placa mediante coordenadas triangulares y el segundo la aproximación de las componentes del campo de desplazamientos con polinomios simples de generación automática a partir de un polinomio base.

2 FORMULACION MATEMATICA.

Figura 1. Descripción general de la geometría de la placa $(c_l = c/l)$.

2.1 Características geométricas y mecánicas de la placa.

El esquema general de la placa de material compuesto analizada se muestra en la Figura 1. El laminado es de espesor uniforme h y, en general, consituido por láminas de material compuesto reforzado con fibras unidireccionales, con esquema de laminación simétrico respecto del plano medio. La orientación de la fibra está indicada mediante el ángulo β medido desde el eje x hacia la dirección de la fibra, tal como se muestra en la Figura 2a. Las restricciones rotacionales están caracterizadas mediante resortes de constante c_{R_i} , i = 1, ...4 y

las restricciones traslacionales mediante resortes de constante $\,c_{_T}\,,i=1,..4$.

Figura 2. Sistema mecánico. a) Orientación de la fibra de refuerzo. b) perfil y secuencia de apilamiento del laminado

El presente estudio se basa en la teoría de placas de primer orden (Reddy, 1997), FSDT según sus siglas en inglés. La FSDT extiende la teoría clásica de placas (CLPT) incluyendo una deformación transversal por corte constante en el espesor de la placa en las hipótesis cinemáticas. Esta teoría requiere que el campo de desplazamientos en las direcciones x, y, zdenotado respectivamente por $\overline{u}, \overline{v}, \overline{w}$, en cualquier instante de tiempo t sean tales que

$$\overline{u}(x, y, z, t) = z\phi_x(x, y, t)
\overline{v}(x, y, z, t) = z\phi_y(x, y, t)
\overline{w}(x, y, z, t) = w(x, y, t),$$
(1)

donde w(x, y, t) es la deflexión del plano medio, $\phi_y(x, y, t)$ y $\phi_x(x, y, t)$ denotan las rotaciones de la sección transversal alrededor de las coordenadas $x \in y$ respectivamente. La máxima energía cinética de la placa ejecutando vibraciones libres, se puede expresar en coordenadas cartesianas rectangulares por

$$T_{\rm max} = \frac{\rho h \omega^2}{2} \iint_A \left[w^2 + \frac{h^2}{12} \left(\phi_x^2 + \phi_y^2 \right) \right] dA$$
(2)

donde ρ es la densidad de masa del material de la placa, h es el espesor de la placa, ω es la frecuencia circular y A es el dominio de la placa.

La máxima energía de deformación del sistema está dada por

$$U_{\max} = U_{P,\max} + U_{R,\max} + U_{T,\max}$$
 (3)

donde $U_{P,\max}$ es la máxima energía de deformación debida a la flexión de la placa y en un sistema de coordenadas rectangulares está dada por

$$\begin{split} U_{P,\max} &= \frac{1}{2} \iint_{A} \left\{ D_{11} \left(\frac{\partial \phi_{x}}{\partial x} \right)^{2} + D_{22} \left(\frac{\partial \phi_{y}}{\partial y} \right)^{2} + 2D_{12} \frac{\partial \phi_{x}}{\partial x} \frac{\partial \phi_{y}}{\partial y} + 2D_{16} \left(\frac{\partial \phi_{x}}{\partial x} \frac{\partial \phi_{x}}{\partial y} + \frac{\partial \phi_{x}}{\partial x} \frac{\partial \phi_{y}}{\partial x} \right) \\ &+ 2D_{26} \left(\frac{\partial \phi_{y}}{\partial y} \frac{\partial \phi_{x}}{\partial y} + \frac{\partial \phi_{y}}{\partial y} \frac{\partial \phi_{y}}{\partial x} \right) + D_{66} \left(\frac{\partial \phi_{x}}{\partial y} + \frac{\partial \phi_{y}}{\partial x} \right)^{2} + A_{44} \left(\frac{\partial w}{\partial y} + \phi_{y} \right)^{2} + \\ &+ 2A_{45} \left(\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} + \phi_{x} \frac{\partial w}{\partial y} + \phi_{y} \frac{\partial w}{\partial x} + \phi_{x} \phi_{y} \right) + A_{55} \left(\frac{\partial w}{\partial x} + \phi_{x} \right)^{2} \right\} dx dy \end{split}$$

$$(4)$$

donde los coeficientes D_{ij} , i, j = 1, 2, 6 son las rigideces flexionales, torsionales y de acoplamiento y están dadas por

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{N_c} \bar{Q}_{ij}^{(k)} \left(z_{k+1}^3 - z_k^3 \right)$$
(5)

y los $A_{ij}, i, j = 4, 5$ son los coeficientes de rigideces por corte dados por

$$A_{ij} = \frac{1}{3} \kappa \sum_{k=1}^{N_c} \bar{Q}_{ij}^{(k)} \left(z_{k+1} - z_k \right), \tag{6}$$

donde κ es el factor de corrección por corte, z_{k-1} , z_k son las distancias medidas desde el plano medio a la parte superior e inferior de la k-ésima lámina, N_c es el número total de láminas que compone el laminado (ver Figura 2b) y \bar{Q}_{ij} son las rigideces reducidas transformadas para un estado de tensiones plano y están dadas por:

$$\begin{split} \bar{Q}_{11} &= Q_{11}\cos^4\beta + 2\left(Q_{12} + 2Q_{66}\right)\sin^2\beta\cos^2\beta + Q_{22}\sin^4\beta, \\ \bar{Q}_{12} &= \left(Q_{11} + Q_{22} - 4Q_{66}\right)\cos^2\beta\sin^2\beta + Q_{12}\left(\sin^4\beta + \cos^4\beta\right), \\ \bar{Q}_{22} &= Q_{11}\sin^4\beta + 2\left(Q_{12} + 2Q_{66}\right)\sin^2\beta\cos^2\beta + Q_{22}\cos^4\beta, \\ \bar{Q}_{16} &= \left(Q_{11} - Q_{12} - 2Q_{66}\right)\sin\beta\cos^3\beta + \left(Q_{12} - Q_{22} + 2Q_{66}\right)\sin^3\beta\cos\beta, \\ \bar{Q}_{26} &= \left(Q_{11} - Q_{12} - 2Q_{66}\right)\sin^3\beta\cos\beta + \left(Q_{12} - Q_{22} + 2Q_{66}\right)\sin\beta\cos^3\beta, \\ \bar{Q}_{66} &= \left(Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66}\right)\sin^2\beta\cos^2\beta + Q_{66}\left(\sin^4\beta + \cos^4\beta\right), \\ \bar{Q}_{44} &= Q_{44}\cos^2\beta + Q_{55}\sin^2\beta, \\ \bar{Q}_{45} &= \left(Q_{55} - Q_{44}\right)\sin\beta\cos\beta, \\ \bar{Q}_{55} &= Q_{44}\sin^2\beta + Q_{55}\cos^2\beta, \\ \bar{Q}_{55} &= Q_{44}\sin^2\beta + Q_{55}\cos^2\beta, \\ \text{siendo} \end{split}$$

$$Q_{11} = \frac{E_1}{1 - \nu_{12}\nu_{21}}, \quad Q_{22} = \frac{E_2}{1 - \nu_{12}\nu_{21}}, \quad Q_{12} = \nu_{12}Q_{11}, \quad Q_{66} = G_{12}, \quad Q_{44} = G_{23}, \quad Q_{55} = G_{13}, \quad Q_{55} = G_{15}, \quad Q_{15} = G_{15}, \quad Q_{15}$$

donde E_i , ν_{ij} y G_{ij} son los módulos elásticos, los módulos de Poisson y los módulos de corte respectivamente.

La máxima energía de deformación de los resortes traslacionales y rotacionales ubicados en los bordes de la placa están dadas, respectivamente, por:

$$U_{T,\max} = \frac{1}{2} \oint_{\partial A} c_T(s) w^2 ds = \frac{1}{2} \sum_{i=1}^4 \int_0^{l_i} c_{T_i} w^2 ds,$$
(7)

$$U_{R,\max} = \frac{1}{2} \oint_{\partial A} c_R(s) \phi_n^{\ 2} ds = \frac{1}{2} \sum_{i=1}^4 \int_0^{l_i} c_{R_i} \phi_{ni}^{\ 2} ds, \tag{8}$$

donde ϕ_{ni} denota el giro de la sección transversal alrededor de la coordenada correspondiente y l_i la longitud del lado ∂A_i (i = 1, ..., 4).

2.2 Mapeo Geométrico: Coordenadas triangulares no ortogonales.

Por conveniencia, la placa real, de forma trapecial, en el plano x, y es mapeada en una placa rectangular en el plano u, v usando una transformación de coordenadas dada por las relaciones entre las coordenadas rectangulares y las coordenadas triangulares no-ortogonales según las siguientes expresiones:

$$x = ul, \qquad y = uvl\tan\alpha_1 \tag{9}$$

donde $\tan \alpha_1$ es la pendiente del lado superior de la placa.

La relación entre las derivadas parciales en ambos sistemas de coordenadas está dada por:

$$\begin{bmatrix} \underline{\partial}(\cdot) \\ \overline{\partial}x \\ \underline{\partial}(\cdot) \\ \overline{\partial}y \end{bmatrix} = \mathbf{J}^{-1} \begin{bmatrix} \underline{\partial}(\cdot) \\ \overline{\partial}u \\ \underline{\partial}(\cdot) \\ \overline{\partial}v \end{bmatrix} = \begin{bmatrix} \frac{J_{22}}{|\mathbf{J}|} & -\frac{J_{12}}{|\mathbf{J}|} \\ -\frac{J_{21}}{|\mathbf{J}|} & \frac{J_{11}}{|\mathbf{J}|} \end{bmatrix} \begin{bmatrix} \underline{\partial}(\cdot) \\ \overline{\partial}u \\ \underline{\partial}(\cdot) \\ \overline{\partial}v \end{bmatrix}$$
(10)

donde J denota la matriz del Jacobiano del mapeo geométrico y está dada por:

$$\mathbf{J} = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} l & vl \tan \alpha_1 \\ 0 & ul \tan \alpha_1 \end{bmatrix}$$
(11)

y $|\mathbf{J}|$ es el determinante del Jacobiano de la transformación de coordenadas triangulares a cartesianas.

La máxima energía cinética y la máxima energía de deformación debida a la flexión se pueden expresar ahora en función de las coordenadas triangulares, reemplazando las ecs. (9) y (10) en las ecs. (2) y (3) se tiene:

$$T_{\max} = \frac{\rho h \omega^2}{2} \int_{c_l}^{1} \int_{v_0}^{1} \left[w^2 + \frac{h^2}{12} \left(\phi_x^2 + \phi_y^2 \right) \right] \left| \mathbf{J} \right| du dv$$
(12)

$$\begin{split} U_{P,\max} &= \frac{1}{2} \int_{c_{1}}^{1} \int_{v_{0}}^{1} \left\{ S_{1} \left(\frac{\partial w}{\partial u} \right)^{2} + 2S_{2} \frac{\partial w}{\partial u} \frac{\partial w}{\partial v} + S_{3} \left(\frac{\partial w}{\partial v} \right)^{2} + 2S_{4} \frac{\partial w}{\partial u} \phi_{x} + 2S_{5} \frac{\partial w}{\partial v} \phi_{x} + \\ &+ 2S_{6} \frac{\partial w}{\partial u} \phi_{y} + 2S_{7} \frac{\partial w}{\partial v} \phi_{y} + S_{8} \left(\frac{\partial \phi_{x}}{\partial u} \right)^{2} + 2S_{9} \frac{\partial \phi_{x}}{\partial u} \frac{\partial \phi_{x}}{\partial v} + S_{10} \left(\frac{\partial \phi_{x}}{\partial v} \right)^{2} + S_{11} \left(\phi_{x} \right)^{2} + \\ &+ 2S_{12} \frac{\partial \phi_{x}}{\partial u} \frac{\partial \phi_{y}}{\partial v} + 2S_{13} \frac{\partial \phi_{x}}{\partial v} \frac{\partial \phi_{y}}{\partial u} + 2S_{14} \frac{\partial \phi_{x}}{\partial v} \frac{\partial \phi_{y}}{\partial v} + 2S_{15} \phi_{x} \phi_{y} + 2S_{16} \frac{\partial \phi_{y}}{\partial u} \frac{\partial \phi_{y}}{\partial u} + \\ &+ 2S_{17} \frac{\partial \phi_{y}}{\partial u} \frac{\partial \phi_{y}}{\partial v} + 2S_{18} \frac{\partial \phi_{y}}{\partial u} \frac{\partial \phi_{y}}{\partial v} + 2S_{19} \frac{\partial \phi_{y}}{\partial v} \frac{\partial \phi_{y}}{\partial v} + S_{20} \left(\phi_{y} \right)^{2} \right\} \left| \mathbf{J} \right| du dv \end{split}$$

$$\tag{13}$$

donde $S_i(i = 1...20)$, son funciones que dependen de los parámetros del problema, por ej., de la geometría y de los coeficientes del material de la placa, y están definidos en el Anexo A.

La máxima energía de deformación almacenada en los resortes traslacionales puede ser expresada ahora en función de las coordenadas triangulares reemplazando el cambio de variable (9) en la ec.(7):

$$U_{T,\max} = \frac{1}{2} l \bigg[c_{T_1} \tan \alpha_1 c_l \int_{v_0}^1 w^2 \Big|_{u=c_l} dv + c_{T_2} \tan \alpha_1 \int_{v_0}^1 w^2 \Big|_{u=1} dv + \frac{c_{T_3}}{\cos \alpha_2} \int_{c_l}^1 w^2 \Big|_{v=v_0} du + \frac{c_{T_4}}{\cos \alpha_1} \int_{c_l}^1 w^2 \Big|_{v=1} du \bigg],$$
(14)

Finalmente la máxima energía de deformación almacenada en los resortes rotacionales puede ser expresada ahora en función de las coordenadas triangulares reemplazando las ecs. (9) en la ec. (8):

$$U_{R,\max} = \frac{1}{2} l \bigg(c_{R_1} \tan \alpha_1 c_l \int_{v_0}^{1} \phi_x^2 \Big|_{u=c_l} dv + c_{R_2} \tan \alpha_1 \int_{v_0}^{1} \phi_x^2 \Big|_{u=1} dv + \frac{c_{R_3}}{\cos \alpha_2} \int_{c_l}^{1} \phi_y^2 \Big|_{v=v_0} du + \frac{c_{R_4}}{\cos \alpha_1} \int_{c_l}^{1} \phi_y^2 \Big|_{v=1} du \bigg),$$
(15)

2.3 Funciones de aproximación.

La deflexión transversal y las rotaciones se expresan como productos de polinomios simples unidimensionales en cada una de las coordenadas triangulares, de la siguiente manera:

$$w(u,v) = \sum_{i=1}^{M} \sum_{j=1}^{N} c_{ij}^{(w)} p(u)_{i}^{(w)} q(v)_{j}^{(w)}$$
(16)

$$\phi_x(u,v) = \sum_{i=1}^M \sum_{j=1}^N c_{ij}^{(\phi_x)} p(u)_i^{(\phi_x)} q(v)_j^{(\phi_x)}$$
(17)

$$\phi_y(u,v) = \sum_{i=1}^M \sum_{j=1}^N c_{ij}^{(\phi_y)} p(u)_i^{(\phi_y)} q(v)_j^{(\phi_y)}$$
(18)

donde los $c_{ij}^{(w)}$, $c_{ij}^{(\phi_u)}$ y $c_{ij}^{(\phi_v)}$ son los coeficientes de ponderación desconocidos que se determinarán a través de la aplicación del método de Ritz.

Es suficiente que las funciones de aproximación satisfagan todas las condiciones de

contorno geométricas o esenciales ya que a medida que el número de funciones de aproximación tiende a infinito las condiciones de contorno naturales se satisfacen en forma exacta (Miklin, 1964). En consecuencia el polinomio base de cada conjunto de polinomios $\left\{p(u)_i^{(w)}\right\}, \left\{q(v)_j^{(\phi_x)}\right\}, \left\{q(v)_i^{(\phi_x)}\right\}, \left\{q(v)_j^{(\phi_y)}\right\}, \left\{p(u)_i^{(\phi_y)}\right\}, \left\{q(v)_j^{(\phi_y)}\right\}, \left\{q(v)_j^{(\phi_y)}\right\}\right\}$ se obtiene como el polinomio mas simple correspondientes a la viga equivalente en cada coordenada que satisface todas las condiciones de borde esenciales. En el caso de placas con bordes libres o restringidos elásticamente se puede adoptar como polinomio base a un polinomio de orden cero dado que todas las condiciones de contorno son naturales.

Los polinomios de orden superior se generan automáticamente usando el siguiente procedimiento, por ej. :

$$\begin{split} p(u)_i^{(w)} &= p(u)_1^{(w)} u^{i-1}, \quad i = 2, \dots, M, \\ p(u)_i^{(\phi_x)} &= p(u)_1^{(\phi_x)} u^{i-1}, \quad i = 2, \dots, M, \\ p(u)_i^{(\phi_y)} &= p(u)_1^{(\phi_y)} u^{i-1}, \quad i = 2, \dots, M, \end{split}$$

Los conjuntos de polinomios en la variable v se generan usando el mismo procedimiento. En este trabajo se consideran placas con distintas condiciones de contorno y los polinomios bases usados, en el caso de restricciones clásicas, están dados en el Anexo B.

3 MÉTODO DE RITZ.

La aplicación del método de Ritz requiere la minimización del siguiente funcional de energía:

$$\Pi = U_{\max} - T_{\max} \tag{19}$$

donde T_{max} y U_{max} están dados respectivamente por las ecs. (12) y (13)-(15).

Del proceso de minimización del funcional dado por la ec. (19), se obtiene el siguiente sistema de ecuaciones lineales, expresado en forma matricial:

$$\left(\left[K\right] - \omega^2 \left[M\right]\right) \left\{\overline{c}\right\} = \left\{0\right\},\tag{20}$$

donde

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} K^{ww} \end{bmatrix} \begin{bmatrix} K^{w\phi_x} \end{bmatrix} \begin{bmatrix} K^{w\phi_y} \end{bmatrix}$$
$$\begin{bmatrix} K^{\phi_x\phi_y} \end{bmatrix} \begin{bmatrix} K^{\phi_x\phi_y} \end{bmatrix}$$
$$y \begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} M^{ww} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$
$$\begin{bmatrix} M^{\phi_x\phi_x} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$
$$\begin{bmatrix} M^{\phi_x\phi_x} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$
$$\begin{bmatrix} M^{\phi_y\phi_y} \end{bmatrix}$$
$$(21)$$

Las expresiones de los distintos elementos de la matriz de rigidez $\lfloor K \rfloor$ y de la matriz de masa $\lfloor M \rfloor$ están dados por:

$$\begin{split} K_{ijkh}^{ww} &= \int_{c_l}^1 \int_{v_0}^1 \Bigl[S_1 P_{ik}^{(w,w)(1,1)} Q_{jh}^{(w,w)(0,0)} + S_2 \left(P_{ik}^{(w,w)(1,0)} Q_{jh}^{(w,w)(0,1)} + P_{ik}^{(w,w)(0,1)} Q_{jh}^{(w,w)(1,0)} \right) + \\ &+ S_3 P_{ik}^{(w,w)(0,0)} Q_{jh}^{(w,w)(1,1)} \Bigr] \Bigl| \mathbf{J} \Bigr| \, du \, dv + \\ &+ c_{T_1} c_l \tan \alpha_1 \int_{v_0}^1 \Bigl(P_{ik}^{(w,w)(0,0)} Q_{jh}^{(w,w)(0,0)} \Bigr) \Bigr|_{u=c_l} dv + c_{T_2} \tan \alpha_1 \int_{v_0}^1 \Bigl(P_{ik}^{(w,w)(0,0)} Q_{jh}^{(w,w)(0,0)} \Bigr) \Bigr|_{u=1} dv + \end{split}$$

$$+\frac{c_{T_3}}{\cos\alpha_2}\int_{c_l}^1 \left(P_{ik}^{(w,w)(0,0)}Q_{jh}^{(w,w)(0,0)}\right)\Big|_{v=v_0} du + \frac{c_{T_4}}{\cos\alpha_1}\int_{c_l}^1 \left(P_{ik}^{(w,w)(0,0)}Q_{jh}^{(w,w)(0,0)}\right)\Big|_{v=1} du$$
(22)

$$K_{ijkh}^{w\phi_x} = \int_{c_l}^1 \int_{v_0}^1 \left(S_4 P_{ik}^{(w,\phi_x)(1,0)} Q_{jh}^{(w,\phi_x)(0,0)} + S_5 P_{ik}^{(w,\phi_x)(0,0)} Q_{jh}^{(w,\phi_x)(1,0)} \right) \left| \mathbf{J} \right| du dv$$
(23)

$$K_{ijkh}^{w\phi_y} = \int_{c_l}^{1} \int_{v_0}^{1} \left(S_6 P_{ik}^{(w,\phi_y)(1,0)} Q_{jh}^{(w,\phi_y)(0,0)} + S_7 P_{ik}^{(w,\phi_x)(0,0)} Q_{jh}^{(w,\phi_x)(1,0)} \right) \left| \mathbf{J} \right| du dv$$
(24)

$$K_{ijkh}^{\phi_{x}\phi_{x}} = \int_{c_{l}}^{1} \int_{v_{0}}^{1} \left[S_{8} P_{ik}^{(\phi_{x},\phi_{x})(1,1)} Q_{jh}^{(\phi_{x},\phi_{x})(0,0)} + S_{9} \left(P_{ik}^{(\phi_{x},\phi_{x})(1,0)} Q_{jh}^{(\phi_{x},\phi_{x})(0,1)} + P_{ik}^{(\phi_{x},\phi_{x})(0,1)} Q_{jh}^{(\phi_{x},\phi_{x})(1,0)} \right) + S_{10} P_{ik}^{(\phi_{x},\phi_{x})(0,0)} Q_{jh}^{(\phi_{x},\phi_{x})(0,0)} Q_{jh}^{(\phi_{x},\phi_{x})(0,0)} Q_{jh}^{(\phi_{x},\phi_{x})(0,0)} \right] \left| \mathbf{J} \right| du dv +$$

$$(25)$$

$$+c_{R_{1}}c_{l}\tan\alpha_{1}\int_{v_{0}}^{1} \left(P_{ik}^{(\phi_{x},\phi_{x})(0,0)}Q_{jh}^{(\phi_{x},\phi_{x})(0,0)}\right)\Big|_{u=c_{l}}dv + c_{R_{2}}\tan\alpha_{1}\int_{v_{0}}^{1} \left(P_{ik}^{(\phi_{x},\phi_{x})(0,0)}Q_{jh}^{(\phi_{x},\phi_{x})(0,0)}\right)\Big|_{u=1}dv$$

$$K_{ijkh}^{\phi_{x}\phi_{y}} = \int_{c_{l}}^{1} \int_{v_{0}}^{1} \left[S_{12}P_{ik}^{(\phi_{x},\phi_{y})(1,1)}Q_{jh}^{(\phi_{x},\phi_{y})(0,0)} + S_{13}P_{ik}^{(\phi_{x},\phi_{y})(1,0)}Q_{jh}^{(\phi_{x},\phi_{y})(0,1)} + S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,1)}Q_{jh}^{(\phi_{x},\phi_{y})(1,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,1)}Q_{jh}^{(\phi_{x},\phi_{y})(0,1)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,1)}Q_{jh}^{(\phi_{x},\phi_{y})(1,0)}Q_{jh}^{(\phi_{x},\phi_{y})(1,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,1)}Q_{jh}^{(\phi_{x},\phi_{y})(0,1)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,1)}Q_{jh}^{(\phi_{x},\phi_{y})(1,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,1)}Q_{jh}^{(\phi_{x},\phi_{y})(1,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,1)}Q_{jh}^{(\phi_{x},\phi_{y})(1,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,0)}Q_{jh}^{(\phi_{x},\phi_{y})(1,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,0)}Q_{jh}^{(\phi_{x},\phi_{y})(0,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,0)}Q_{jh}^{(\phi_{x},\phi_{y})(0,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,0)}Q_{jh}^{(\phi_{x},\phi_{y})(0,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,0)}Q_{jh}^{(\phi_{x},\phi_{y})(0,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,0)}Q_{jh}^{(\phi_{x},\phi_{y})(0,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,0)}Q_{jh}^{(\phi_{x},\phi_{y})(0,0)}}{(\phi_{x},\phi_{y})(0,0)} + \frac{S_{14}P_{ik}^{(\phi_{x},\phi_{y})(0,0)}Q_{jh}^{(\phi_{x},\phi_{y})(0,0)}}{(\phi_{x},\phi_{y})(\phi_{x},\phi_{y})(\phi_{x},\phi_{y})(\phi_{x},\phi_{y})}}$$

$$+S_{15}P_{ik}^{(\phi_x,\phi_y)(0,0)}Q_{jh}^{(\phi_x,\phi_y)(1,1)} + S_{16}P_{ik}^{(\phi_x,\phi_y)(0,0)}Q_{jh}^{(\phi_x,\phi_y)(0,0)}\Big] \Big| \mathbf{J} \Big| dudv$$

$$W^{\phi,\phi_x} = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} G_{ij} P_{ij}^{(\phi_x,\phi_y)(1,1)} P_{ij}^{(\phi_x,\phi_y)(0,0)} + P_{ij}^{(\phi_x,\phi_y)(0,0)} P_{ij}^{(\phi_x,\phi_y)(0,0)} \Big| \mathbf{J} \Big| dudv$$
(20)

$$K_{ijkh}^{\phi_{y}\phi_{y}} = \int_{c_{l}}^{r} \int_{v_{0}}^{r} \left[S_{17} P_{ik}^{(\phi_{y},\phi_{y})(1,1)} Q_{jh}^{(\phi_{y},\phi_{y})(0,0)} + S_{18} \left(P_{ik}^{(\phi_{y},\phi_{y})(1,0)} Q_{jh}^{(\phi_{y},\phi_{y})(0,1)} + P_{ik}^{(\phi_{y},\phi_{y})(0,1)} Q_{jh}^{(\phi_{y},\phi_{y})(1,0)} \right) + S_{19} P_{ik}^{(\phi_{y},\phi_{y})(0,0)} Q_{jh}^{(\phi_{y},\phi_{y})(0,0)} Q_{jh}^{(\phi_{y},\phi_{y})(0,0)} Q_{jh}^{(\phi_{y},\phi_{y})(0,0)} \right] \left| \mathbf{J} \right| du dv + \frac{c_{R_{3}}}{\cos \alpha_{v}} \int_{c_{l}}^{1} \left(P_{ik}^{(\phi_{y},\phi_{y})(0,0)} Q_{jh}^{(\phi_{y},\phi_{y})(0,0)} \right) \right|_{v=v} du + \frac{c_{R_{4}}}{\cos \alpha_{v}} \int_{c_{l}}^{1} \left(P_{ik}^{(\phi_{y},\phi_{y})(0,0)} Q_{jh}^{(\phi_{y},\phi_{y})(0,0)} \right) \right|_{v=1} du$$

$$(27)$$

$$M_{ijmn}^{ww} = \rho h \int_{c_i}^{1} \int_{v_0}^{1} P_{ik}^{(w,w)(0,0)} Q_{jh}^{(w,w)(0,0)} \left| \mathbf{J} \right| du dv$$
(28)

$$M_{ijmn}^{\phi_x\phi_x} = \frac{\rho h^3}{12} \int_{c_l}^{1} \int_{v_0}^{1} P_{ik}^{(\phi_x,\phi_x)(0,0)} Q_{jh}^{(\phi_x,\phi_x)(0,0)} \left| \mathbf{J} \right| du dv$$
(29)

$$M_{ijmn}^{\phi_y \phi_y} = \frac{\rho h^3}{12} \int_{c_l}^{1} \int_{v_0}^{1} h^2 P_{ik}^{(\phi_y, \phi_y)(0,0)} Q_{jh}^{(\phi_y, \phi_y)(0,0)} \left| \mathbf{J} \right| du dv$$
(30)

$$\operatorname{con} \ P_{ik}^{(\alpha,\beta)(r,s)} = \frac{\partial^r p_i^{(\alpha)}(u)}{\partial u^r} \frac{\partial^s p_k^{(\beta)}(u)}{\partial u^s}, \quad Q_{jh}^{(\alpha,\beta)(r,s)} = \frac{\partial^r q_j^{(\alpha)}(v)}{\partial v^r} \frac{\partial^s q_h^{(\beta)}(v)}{\partial v^s},$$

4 RESULTADOS NUMÉRICOS.

En esta sección se presentan resultados numéricos que permiten apreciar la variación del parámetro de frecuencia adimensional para distintas geometrías de placas trapeciales y triangulares y para diferentes condiciones de apoyo perimetral. Se introduce la siguiente terminología usada para describir las condiciones de borde. La designación CSFS, por ej., identifica una placa cuadrilátera con los bordes 1 empotrado, 2 simplemente apoyado, 3 libre y 4 simplemente apoyado (ver Figura 1). En los casos particulares donde la placa tiene forma triangular el borde 1 desaparece y la nomenclatura se inicia a partir del borde 2.

4.1 Comparación de resultados.

En esta sección se llevan a cabo comparaciones con los valores numéricos proporcionados por otros investigadores mediante la aplicación de otros métodos para validar la aproximación porpuesta. La Tabla 1 muestra los valores del coeficiente de frecuencia fundamental

719

 $\Omega = \omega b^2 \sqrt{\rho h/D}$ para distintas placas trapeciales. Los valores obtenidos fueron comparados con los valores reportados por Haldar y Manna (2003) quienes utilizaron un elemento triangular con deformación por corte de alta precisión y por Gürses y otros (2009) quienes emplearon el método de convolución singular discreta (DSC). En su trabajo Gürses y otros (2009) realizaron un estudio de convergencia del método propuesto incrementando la cantidad de puntos de la grilla. Los valores de los coeficientes de frecuencias obtenidos por estos autores que figuran en la Tabla 1 y 2 fueron calculados con una grilla de 15x15 puntos. Por otro lado los valores de los coeficientes de frecuencias obtenidos en la método de Ritz, propuesto en este trabajo, fueron obtenidos utilizando siete términos en las funciones de aproximación en cada una de las direcciones (M = N = 7). Se debe tener en cuenta que los valores obtenidos con el método de Ritz son cotas superiores de los valores exactos.

$\tan\alpha_1$	c_l	h/b	Presente	Haldar y Manna (2003)	Gürses y otros (2009)
0.4	0.2	0.01	6.0214	5.99	6.02
0.3	0.4		4.9160	4.90	4.91
0.2	0.6		4.0834	4.06	4.09
0.1	0.8		3.5199	3.51	3.52

Tabla1. Parámetros de frecuencias fundamentales adimensionales $\Omega = \omega b^2 \sqrt{\rho h/D}$ para placas trapeciales isótropas $(\nu = 0.3, \kappa = 0.833, \tan \alpha_2 = -\tan \alpha_1)$.

$\tan c$	$\alpha_1 c_l$	h/b		SSSS			CCCC	
			Presente	Gürses y	Haldar y	Presente	Gürses y	Haldar y
				Otros	Manna		otros (2009)	Manna
				(2009)	(2003)			(2003)
0.4	0.2	0.1	27.4992	27.54	27.50	34.7488	34.76	34.74
0.3	0.4		23.8160	24.06	23.91	30.9378	31.08	30.95
0.2	0.6		20.3205	20.48	20.35	27.5372	27.62	27.53
0.1	0.8		17.3748	18.41	17.39	24.7568	25.12	24.73
0.4	0.2	0.2	17.5348	17.63	17.54	19.4716	19.51	19.45
0.3	0.4		15.3903	15.46	15.44	17.4697	17.56	17.45
0.2	0.6		13.4812	13.51	13.49	15.7885	15.88	15.76
0.1	0.8		11.9789	11.99	11.97	14.4980	14.59	14.46

Tabla 2. Parámetros de frecuencias fundamentales adimensionales $\Omega^* = \omega b^2 \sqrt{\rho/E_2} / h$ para placas trapeciales $(\tan \alpha_2 = -\tan \alpha_1)$ laminadas cruzadas [90 / 0 / 0 / 90].

La Tabla 2 presenta valores del coeficiente de frecuencia fundamental $\Omega^* = \omega b^2 \sqrt{\rho/E_2}/h$ para placas trapeciales $(\tan \alpha_2 = -\tan \alpha_1)$ laminadas cruzadas. Las propiedades físicas del material de la placa están dadas por: $E_1 = 40E_2, G_{12} = G_{13} = 0.6E_2, G_{23} = 0.5E_2$ $\nu_{12} = 0.25$ y $\kappa = 0.833$. Se consideran dos condiciones de contorno distintas, SSSS y CCCC, relaciones h/b = 0.1, 0.2 y distintas configuraciones geométricas. En todos los casos se observa coincidencia en los valores numéricos lo que indica la precisión que se puede lograr mediante la aplicación de esta metodología con el uso de polinomios simples como funciones de forma.

4.2 Resultados numéricos nuevos.

En esta sección se presentan resultados numéricos que pueden servir como un suplemento a la base de dato existente sobre las vibraciones características de placas trapeciales y triangulares moderadamente gruesas. En particular se presentan resultados para placas con diferentes restricciones elásticas en los contornos, se considera variación de los coeficientes de restricción rotacional y traslacional. La Tabla 3 muestra la variación del coeficiente de frecuencia $\Omega^{**} = \omega l^2 \sqrt{\rho h/D_0}$ con $D_0 = E_1 h^3 / 12(1 - \nu_{12}\nu_{21})$ para placas triangulares isósceles ($\alpha_1 = -\alpha_2 = 15^\circ$) con sus tres lados restringidos elásticamente contra rotación y traslación. Se consideraron dos relaciones de h/l = 0.1, 0.2, y dos ángulos distintos de inclinación de la fibra de refuerzo $\beta = 0^\circ$ y $\beta = 30^\circ$. La placa está formada por una única lámina de boro-epoxi con $E_1 = 207$ Gpa, $E_2 = 21$ Gpa, $\nu_{12} = 0.3, G_{12} = G_{13} = 7$ Gpa, $G_{23} = 4.2$ Gpa y $\kappa = 5/6$. Los coeficientes adimensionales que caracterizan a los vínculos elásticos están dados por: $R_i = c_{R_i} l/D_0$, $T_i = c_{T_i} l^3/D_0$, i = 1,2,3.

4.3 Formas modales.

En esta sección se presentan formas modales de placas triangulares y trapeciales con diferentes condiciones de contorno obtenidas con la metodología propuesta. Todas las placas consideradas en esta sección están constituidas por una única lámina de boro – epoxi.

Las Figuras 3 y 4 muestran las seis primeras formas modales de una placa triangular y una placa trapecial respectivamente. En ambos casos se considera algún borde restringido elásticamente.

5 CONCLUSIONES

En este trabajo se propone un algoritmo simple, preciso y general para analizar las vibraciones transversales de placas trapeciales y triangulares mediante la determinación de los parámetros adimensionales de frecuencias y las formas modales de vibración libre. La metodología se basa en el método de Ritz y en el uso de coordenadas triangulares no ortogonales para la aproximación del dominio de la placa. El campo de desplazamientos se aproxima mediante conjuntos de polinomios simples que se generan automáticamente. El algoritmo permite el tratamiento unificado de placas gruesas laminadas simétricamente con respecto a su plano medio con distintas formas geométricas, condiciones de contorno, incluvendo bordes elásticamente restringidos contra rotación y traslación y secuencias de apilamiento arbitrarias. La solución obtenida tiene la ventaja de ser una solución analítica, que permite apreciar de manera clara la forma en que los distintos parámetros mecánicos y geométricos influyen en la respuesta dinámica del sistema, lo que resulta especialmente atractivo en problemas de diseño y optimización. Finalmente, se destaca que el método propuesto puede ser fácilmente extendido para su aplicación al análisis estático y de estabilidad. También puede ser generalizado para estudiar placas trapeciales gruesas con esquema de laminación no simétrico respecto del plano medio.

Agradecimientos

Este trabajo fue financiado por el Proyecto de Investigación PICTO – UNSa Nº 36690.

h/l	β	$T_{\!_1}=T_{\!_2}=T_{\!_3}$	Ω_1^{**}	Ω_2^{**}	Ω_3^{**}	Ω_4^{**}	Ω_5^{**}
0.1	0	$R_1 = R_2 = R_3 = 0$					
		10	8.8596	12.9869	13.1944	21.1688	25.6800
		50	16.6428	24.9218	27.2887	35.2862	37.8434
		100	20.4885	31.5216	35.4297	45.3232	45.3450
		1000	28.2317	48.1133	55.2800	67.2016	76.9101
		∞	29.6561	51.5719	59.4189	72.8520	84.4889
		$R_1 = R_2 = R_3 = 1$					
		10	9.0223	14.0184	17.4090	26.7242	31.5405
		50	17.5331	25.7223	28.6378	38.4587	40.6999
		100	21.9828	32.4106	35.9700	45.9584	48.4773
		1000	31.6724	50.5033	56.7538	69.0430	77.6589
		∞	33.5935	54.6418	61.7398	75.5628	86.2242
		$R_1 = R_2 = R_3 = 10$					
		10	9.0941	15.4940	19.4886	28.5265	38.0426
		50	18.1062	26.8141	29.3164	39.5838	44.8331
		100	23.1215	33.3869	36.2963	46.9344	51.1007
		1000	35.2387	52.8613	58.3365	70.9982	78.3059
		∞	37.9004	57.9476	64.3810	78.7914	87.8862
		$R_1 = R_2 = R_3 = 100$					
		10	9.1062	15.9436	19.9217	29.1932	39.7094
		50	18.2196	27.1863	29.4455	40.0202	46.0003
		100	23.3725	33.6914	36.3565	47.2954	51.8967
		1000	36.2406	53.3853	58.8000	71.4490	78.4411
		∞	39.1749	58.7696	65.1827	79.6195	88.2719
0.2	0	$R_{\!_1}=R_{\!_2}=R_{\!_3}=0$					
		10	8.43846	11.68331	11.95309	16.18746	20.16124
		50	14.2904	20.8137	22.3420	24.7234	28.7000
		100	16.3718	24.4269	24.4269	28.8137	32.7070
		1000	19.1780	29.5791	34.6356	37.6990	38.6119
		∞	19.5634	30.2703	35.5133	38.8310	39.6686
		$R_{\!_1}=R_{\!_2}=R_{\!_3}=1$					
		10	8.5791	12.8568	15.3042	20.6018	23.7328
		50	14.9078	21.4401	23.9642	29.1790	31.8166
		100	17.2746	25.0784	28.0774	33.2062	36.6520
		1000	20.5828	30.5738	34.7952	40.3052	45.8582
		∞	21.0475	31.3518	35.7947	41.4686	47.1516
		$R_{\!_1}=R_{\!_2}=R_{\!_3}=10$					
		10	8.6409	13.7729	16.2979	21.0267	26.1726
		50	15.2366	21.9583	24.3045	29.4527	33.0979
		100	17.8002	25.5285	28.2332	33.4969	37.3869
		1000	21.5070	31.2175	34.8829	40.8731	45.9550
		∞	22.0394	32.0661	35.9134	42.1279	47.4044

		$R_1 = R_2 = R_3 = 100$					
		10	8.6511	14.0000	16.4498	21.1303	26.6210
		50	15.2921	22.0808	24.3501	29.5092	33.3274
		100	17.8937	25.6218	28.2540	33.5515	37.5098
		1000	21.6860	31.3318	34.9047	40.9802	45.9623
		∞	22.2340	32.1942	35.9423	42.2535	47.4143
0.1	30	$R_1 = R_2 = R_3 = 0$					
		10	8.73751	12.14035	13.23303	18.29803	26.45221
		50	16.7875	23.4818	27.7043	31.4541	39.4186
		100	20.9779	30.1204	36.3415	39.7185	48.1492
		1000	30.0225	47.5531	58.7151	65.8267	78.6892
		∞	31.8314	51.4623	63.8552	72.7126	87.2826
		$R_1 = R_2 = R_3 = 1$					
		10	8.91611	13.22669	18.05694	21.99265	30.96322
		50	17.4849	24.2220	29.4137	33.7908	41.8628
		100	22.0766	22.0766	37.0513	41.3052	49.8181
		1000	32.6446	49.1759	59.8659	66.9877	79.4023
		∞	34.9160	53.6775	65.7739	74.7189	88.8657
		$R_{\!_1}=R_{\!_2}=R_{\!_3}=10$					
		10	8.98240	13.98581	20.62641	23.86004	35.16434
		50	17.9936	24.7733	30.4128	35.3900	44.3311
		100	23.0342	31.3161	37.5211	42.5245	51.3740
		1000	35.5067	50.9568	61.1492	68.2745	80.1734
		∞	38.3970	56.2707	68.0200	77.2354	90.6653
		$R_1 = R_2 = R_3 = 100$					
		10	8.99299	14.18899	21.14055	24.27771	36.03792
		50	18.1018	24.9130	30.6242	35.7161	44.9263
		100	23.2532	31.4374	37.6237	42.7808	51.7734
		1000	36.2168	51.3848	61.4730	68.5849	80.3697
		∞	39.2721	56.9193	68.5943	77.8872	91.1171
0.2	30	$R_1 = R_2 = R_3 = 0$					
		10	8.34632	11.30107	11.75267	15.92984	18.42826
		50	14.4336	20.0515	22.6937	24.5901	25.8684
		100	16.7065	23.8385	27.5723	28.3677	30.7296
		1000	19.8761	29.4859	35.9567	37.6609	38.6158
		∞	20.3219	30.2607	36.9434	38.8309	40.0943
		$R_1 = R_2 = R_3 = 1$					
		10	8.4942	12.2121	15.6017	18.2678	23.7010
		50	14.9239	20.6128	24.5005	27.2872	32.6665
		100	17.4013	24.3112	28.8761	31.7198	37.6163
		1000	20.9736	30.1320	36.2098	39.8301	46.0916
		∞	21.4886	30.9860	37.3155	41.1944	46.2905
		$R_{\!_1}=R_{\!_2}=R_{\!_3}=10$					
		10	8 54591	12 71674	16 77830	18 95096	25 09848

 50	15.2083	20.9008	24.9223	27.7358	33.3775
100	17.8452	24.5718	29.0678	32.0244	38.0373
1000	21.7381	30.5547	36.3341	40.1811	47.2048
∞	22.3080	31.4654	37.4803	41.6183	48.4176
$R_{\!_1}=R_{\!_2}=R_{\!_3}=100$					
10	8.55396	12.83284	16.96173	19.06037	25.32183
50	15.2590	20.9620	24.9853	27.8006	33.4988
100	17.9264	24.6238	29.0965	32.0701	38.1057
1000	21.8811	30.6324	36.3564	40.2459	47.2425
 ∞	22.4616	31.5529	37.5093	41.6969	48.5827

Tabla 3. Valores del parámetros de frecuencia natural $\Omega^{**} = \omega l^2 \sqrt{\rho h / D_0}$ para placas de boro/epoxi de forma triangular isósceles $(\alpha_1 = -\alpha_2 = 15^\circ)$ con sus tres lados restringidos elásticamente contra rotación y traslación.

Figura 3. Primeros seis valores del coeficiente de frecuencia $\Omega^{**} = \omega l^2 \sqrt{\rho h/D_0}$ y formas modales de una placa triangular isósceles $(\alpha_1 = -\alpha_2 = 20^\circ)$ de boro/epoxi $(\beta = 20^\circ)$ con su lado 1 restringido elásticamente contra rotación $(R_1 = 10, T_1 = \infty, R_2 = T_2 = 0, R_3 = T_3 = \infty)$.

Figura 3. Primeros seis valores del coeficiente de frecuencia $\Omega^{**} = \omega l^2 \sqrt{\rho h / D_0}$ y formas modales de una placa trapecial $(\alpha_1 = -\alpha_2 = 20^\circ, c_l = 0.2)$ de boro/epoxi $(\beta = 20^\circ)$ con su lado 2 restringidos elásticamente contra rotación $(R_1 = T_1 = R_3 = T_3 = 0, R_2 = 10, T_2 = \infty, R_4 = T_4 = \infty)$.

,

$$\begin{split} & \mathbf{ANEXO} \; \mathbf{A} \\ & S_1 = \frac{1}{\left| \mathbf{J} \right|^2} \Big(A_{44} J_{21}^2 - 2 A_{45} J_{21} J_{22} + A_{55} J_{22}^2 \Big) \\ & S_2 = \frac{1}{\left| \mathbf{J} \right|^2} \Big[-A_{44} J_{21} J_{11} + A_{45} (J_{12} J_{21} + J_{22} J_{11}) - A_{55} J_{12} J_{22} \Big] \\ & S_3 = \frac{1}{\left| \mathbf{J} \right|^2} \Big(A_{44} J_{11}^2 - 2 A_{45} J_{12} J_{11} + A_{55} J_{12}^2 \Big), \\ & S_4 = \frac{1}{\left| \mathbf{J} \right|} \Big(-A_{45} J_{21} + A_{55} J_{22} \Big), \\ & S_5 = \frac{1}{\left| \mathbf{J} \right|} \Big(A_{45} J_{22} - A_{55} J_{12} \Big), \\ & S_6 = \frac{1}{\left| \mathbf{J} \right|} \Big(-A_{44} J_{21} + A_{45} J_{22} \Big), \\ & S_7 = \frac{1}{\left| \mathbf{J} \right|} \Big(A_{44} J_{11} - A_{45} J_{12} \Big), \end{split}$$

$$\begin{split} S_8 &= \frac{1}{\left|\mathbf{J}\right|^2} \left(D_{11} J_{22}^2 - 2 D_{16} J_{21} J_{22} + D_{66} J_{21}^2 \right), \\ S_9 &= \frac{1}{\left|\mathbf{J}\right|^2} \left[- D_{11} J_{12} J_{22} + D_{16} (J_{12} J_{21} + J_{22} J_{11}) - D_{66} J_{21} J_{11} \right], \\ S_{10} &= \frac{1}{\left|\mathbf{J}\right|^2} \left(D_{11} J_{12}^2 - 2 D_{16} J_{12} J_{11} + D_{66} J_{11}^2 \right), \\ S_{11} &= A_{55}, \\ S_{12} &= \frac{1}{\left|\mathbf{J}\right|^2} \left(- D_{12} J_{22} J_{21} + D_{16} J_{22}^2 + D_{26} J_{21}^2 - D_{66} J_{21} J_{22} \right) \\ S_{13} &= \frac{1}{\left|\mathbf{J}\right|^2} \left(D_{12} J_{22} J_{11} - D_{16} J_{22} J_{12} - D_{26} J_{21} J_{11} + D_{66} J_{21} J_{12} \right) \\ S_{14} &= \frac{1}{\left|\mathbf{J}\right|^2} \left(D_{12} J_{12} J_{21} - D_{16} J_{22} J_{12} - D_{26} J_{21} J_{11} + D_{66} J_{11} J_{22} \right) \\ S_{15} &= \frac{1}{\left|\mathbf{J}\right|^2} \left(- D_{12} J_{12} J_{11} + D_{16} J_{12}^2 + D_{26} J_{11}^2 - D_{66} J_{12} J_{11} \right) \\ S_{16} &= A_{45} \\ S_{17} &= \frac{1}{\left|\mathbf{J}\right|^2} \left(D_{66} J_{22}^2 - 2 D_{26} J_{21} J_{22} + D_{22} J_{21}^2 \right) \\ S_{18} &= \frac{1}{\left|\mathbf{J}\right|^2} \left[- D_{66} J_{12} J_{22} + D_{16} (J_{12} J_{21} + J_{22} J_{11}) - D_{66} J_{21} J_{11} \right], \\ S_{19} &= \frac{1}{\left|\mathbf{J}\right|^2} \left(D_{66} J_{12}^2 - 2 D_{26} J_{12} J_{11} + D_{22} J_{11}^2 \right) \\ S_{20} &= A_{44} \end{split}$$

ANEXO B

Polinomios bases en las coordenadas $u \ge v$ para diferentes combinaciones de condiciones de contorno.

		Condiciones de contorno						
		Libre (F):			$w \neq 0, \phi_n \neq 0, \phi_s \neq 0$			
Contornos		Simplemente Apoyado (S):		$w = 0, \phi_n \neq$	$w=0, \phi_{n}\neq 0, \phi_{s}=0 \qquad (*)$			
			Empotrado (C):		$w=0, \phi_{_n}=0, \phi_{_s}=0$			
$u = 0$ $v = v_0$	u = 1 $v = 1$	$p(u)_1^{(w)}$	$q(v)_1^{(w)}$	$p(u)_1^{(\phi_x)}$	$q(v)_1^{(\phi_x)}$	$p(u)_1^{(\phi_y)}$	$q(v)_1^{(\phi_y)}$	
S	F	u	$v-v_{_0}$	1	$v-v_0$	u	1	
С	F	u	$v-v_{_0}$	u	$v-v_{_0}$	u	$v-v_{_0}$	
S	S	u(u-1)	$(v - v_0)(v - 1)$	1	$(v - v_0)(v - 1)$	u(u-1)	1	
S	С	u(u-1)	$(v - v_0)(v - 1)$	u-1	$(v - v_0)(v - 1)$	u(u-1)	v-1	
С	С	u(u-1)	$(v - v_0)(v - 1)$	u(u-1)	$(v - v_0)(v - 1)$	u(u-1)	$(v - v_0)(v - 1)$	
F	F	1	1	1	1	1	1	
F	S	u-1	v-1	1	v-1	u-1	1	
F	С	u-1	v-1	u-1	v-1	u-1	v-1	
C	S	u(u-1)	$(v-v_{\scriptscriptstyle 0})(v-1)$	u	$(v - v_0)(v - 1)$	u(u-1)	$v-v_{_0}$	

(*) ϕ_{a} denota la rotación alrededor de la coordenada normal *n*.

6 REFERENCIAS

- Chung J.H., Chung T.Y. y K.C. Kim. Vibrations analysis of orthotropic Mindlin plates with edges elastically against rotation. *Journal of Sound and vibration*, *163(1)*:151-163, 1993.
- Gürses M., Civalek Ö., Ersoy H., Kiracioglu O. Analysis of shear deformable laminated composite trapezoidal plates, *Materials and Design*, 30: 3030-3035, 2009.
- Haldar S., Manna M. C. A high precision shear deformable element for free vibration of thick/thin composite trapezoidal plates. *Steel Composite Structure*, **3** (3), 213–229, 2003.
- Karunasena, W. and Kitipornchai, S. Free vibration of shear-deformable general triangular plates. *Journal of Sound and Vibration*, 199(4): 595-613, 1997.
- Karunasena, W., Kitipornchai, S. and Al-bermani, F.G.A. Free vibration of cantilevered arbitrary triangular Mindlin plates. *International Journal of Mechanical Science*, 38(4): 431-442, 1996.
- Leissa, A. W. Vibration of plates. NASA SP-160, 1969.
- Leissa, A.W. Recent research in plate vibrations: classical theory. *The Shock and Vibration Digest*, 9 (10), 13–24, 1977.
- Leissa, A.W. Plate vibration research, 1976–1980: classical theory. *The Shock and Vibration Digest*, 13 (9), 11–22, 1981.
- Leissa, A.W. Recent studies in plate vibrations, 1981–1985. Part I: classical theory. *The Shock and Vibration Digest*, 19 (2), 11–18, 1987.
- Liew, K. M., Xiang, Y. and Kitipornchai, S. Research on thick plate vibration: A literature survey. *Journal of Sound and Vibration*, 180(1): 163-176, 1995.
- Malekzadeh, P. and Shahpari, S.A. Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by DQM. *Thin-Walled* Structures, 43: 1037–1050, 2005.

Mikhlin, S. Variational Methods of Mathematical Physics. Mac Millan Co., New York, 1964.

Mindlin, R.D. Influence rotatory inertia and shear in flexural motion of isotropic, elastic plates. *ASME Journal of Applied Mechanics*, 18, 31–38, 1951.

- Quintana, M.V. y L.G. Nallim. Una formulación variacional para el análisis dinámico de placas trapeciales. *Mecánica Computacional*, XXVII, 2069-2084, 2008.
- Reddy, J. N. Mechanics of Laminated Anisotropic Plates: Theory and Analysis. CRC Press, Boca Raton, Florida, 1997.
- Reissner, E. The effect of transverse shear deformation on the bending of elastic plate. *American Society of Mechanical Engineers Journal of Applied Mechanics*, 12,69-76, 1945
- Wu L. and Liu J.. Free vibration analysis of arbitrary shaped thick plates by differential cubature method. *International Journal of Mechanical Science*, 47: 63-81, 2005.
- Xiang, Y., Liew, K. M. and Kitipornchai, S. Vibration analysis of rectangular Mindlin plates resting on elastic edge supports. *Journal of Sound and Vibration*, 204(1): 1-16, 1997.
- Zhong, H. Z., Free vibration analysis of isosceles triangular Mindlin plate by the triangular differential quadrature method. *Journal of Sound and Vibration*, 237(4): 697-708, 2000.
- Zhou, D. Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh-Ritz method. *International Journal of Solid and Structure*, 38:5565-5580, 2001.