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Abstract. We consider 2D incompressible Stokes flow with an internal interface at which the pressure is
discontinuous, as happens for example in problems involving surface tension. We assume that the internal
interface is a line that does not coincide with the mesh edges, and propose a piecewise-linear pressure
space with improved interpolation properties. The functions in the proposed space are discontinuous only
at the interface, coinciding with standardP1 functions away from it. Further, the degrees of freedom are
exactly the same as those of the standard, conformingP1 space, making it straightforward to incorporate
the proposed method in existing codes. We implement the well-known mini-element and show that
switching to the proposed pressure space at the elements cutby the interface significantly reduces the
error in both pressure and velocity.
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1 INTRODUCTION

Though much progress has been made over the last years in the field of finite-element-based
computational fluid mechanics, the accurate simulation of flows with significant surface tension
effects remains a challenge. This is a consequence of two main difficulties that are inherent to
such flows:

(i) The surface tension forceFΓ is a surface Dirac distribution over the interfaceΓ, proportional
to the curvature ofΓ. The singularity of the force, together with its dependenceof second
derivatives of the interface shape, renders it difficult to approximate.

(ii) Some of the flow variables, most importantly the pressure, are discontinuous acrossΓ. This
leads to suboptimal interpolation accuracy whenever the finite element interpolants are
continuous acrossΓ.

In a recent careful study,Gross and Reusken(2007a,b) (see alsoReusken(2008)), have
shown that both of the aforementioned difficulties need to bespecifically addressed or oth-
erwise the convergence is poor (of orderh

1

2 ). In this article the attention is focused in difficulty
(ii), for which Gross and Reusken propose to adopt an XFEM (Belytschko et al., 2001) enrich-
ment of the pressure space, incorporating functions that are discontinuous atΓ, as had been also
proposed byMinev et al.(2003). With this modification, they are able to get improved con-
vergence behavior, at the expense of the well-known pitfalls of the XFEM methodology: The
ill-conditioning of the system matrix due to approximate linear dependence of the basis, and the
introduction of new unknowns that depend on the location of the interface, thus requiring the
code to completely rebuild the linear system structure for each interface location.

Similar considerations have been made recently byGanesan et al.(2007). They compare
mixed finite elements with continuous and discontinuous approximations for the pressure, and
end up recommending the use of meshes that follow the interface together with discontinuous
pressure interpolants. Clearly, this is the only combination of classical finite elements that
yields a pressure space that is discontinuous atΓ, which is the key to properly tackle difficulty
(ii) above. However, in a dynamic simulation it is cumbersome and sometimes impossible to
maintain the mesh aligned with the interface, so that other remedies must be sought.

In this article we introduce a novel pressure space which accommodates discontinuities at the
(given) interfaceΓ, which is approximated by piecewise-linear segments in 2D and piecewise-
planar facets in 3D. The proposed space is nothing but the classical conformingP1 space, locally
modified at those elements that are cut by the interface (which will be denoted asinterface
elements). The modification is local, computed element-by-element,and it does not introduce
any additional degrees of freedom. It is thus extremely easyto incorporate the proposed space
into existing codes. Further, the only discontinuities take place atΓ, so that no special treatment
is needed at other interfaces (such as element-to-element interfaces, for example, as happens
with Discontinuous Galerkin methods).

The proposed pressure space will be introduced in the framework of the (two-dimensional
for simplicity) problem

− µ∇2u + ∇p = FΓ in Ω (1)

∇ · u = 0 in Ω (2)

u = 0 on∂Ω (3)

whereFΓ = f δΓ n, with f a given function,δΓ the Dirac delta distribution on the lineΓ, andn

its normal. The singular forceFΓ acts in fact as a jump condition on the normal stress acrossΓ,
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namely, s
−p + 2µ

∂un

∂n

{
= f, (4)

whereas both the velocity and the tangential stress remain continuous. In fact, in this constant-
viscosity case the velocity gradient exhibits no jump across Γ (Gross and Reusken, 2007a), so
that (4) reduces toJpK = −f . Notice that this simplified model also represents the so-called
actuator-disk modelthat is very popular in the analysis of rotors (propellers, wind turbines, etc.)
(Meyer and Kröger, 2001; Tahara et al., 2006; Carrica et al., 2008; Leclerc and Masson, 2005).

Denoting byV = H1
0 (Ω) × H1

0 (Ω) andQ = L2(Ω)/R, the variational formulation that
corresponds to (1)-(3) reads: “Find(u, p) ∈ V × Q such that

∫

Ω

[

µ(∇u + ∇T u) : ∇v − p ∇ · v + q ∇ · u
]

dΩ =

∫

Γ

f n · v dΓ (5)

for all (v, q) ∈ V ×Q”. The bilinear and linear forms associated to the variational formulation
will be denoted byB(·, ·) andL(·), so that (5) can be rewritten as

B((u, p), (v, q)) = L(v, q). (6)

Under reasonable regularity assumptions onΓ andf this problem admits a unique solution,
since it is only necessary thatL be a bounded linear functional. The finite element discretiza-
tion of (5) is briefly recalled in Section 2, together with the description of the proposed pressure
space. Section 3 contains several numerical experiments that assess the advantages of the pro-
posed space with respect to classical spaces. Some conclusions are finally drawn in Section
4.

2 FINITE ELEMENT APPROXIMATION

2.1 Galerkin mini-element formulation

In the Galerkin formulation, the exact variational formulation is restricted to the spaceVh ×
Qh, whereVh ⊂ V and Qh ⊂ Q are the approximation spaces for velocity and pressure,
respectively. The discrete formulation thus reads “Find(uh, ph) ∈ Vh × Qh such that

B((uh, ph), (vh, qh)) = L(vh, qh) (7)

for all (vh, qh) ∈ Vh × Qh”. As is well-known, for this formulation to be well-posed and
convergent it is sufficient that the Babuška-Brezzi stability condition (Babuška, 1973; Brezzi,
1974) be satisfied:

inf
qh ∈Qh

sup
vh ∈Vh

∫

Ω
qh ∇ · vh dΩ

‖qh‖Q ‖vh‖V

≥ β > 0 (8)

with β a mesh-independent constant.
The pressure and velocity spaces that correspond to the so-called mini-element (Arnold et al.,

1984) are, for a finite element meshTh:

Qh = Q1
h := {qh ∈ Q ∩ C0(Ω), qh|K ∈ P1(K), ∀K ∈ Th} (9)

Vh = V mini
h := {vh ∈ V, vh|K ∈ (P1(K) ⊕ span(bK))2 , ∀K ∈ Th} (10)

wherebK is the cubic bubble function that vanishes on all three edgesof K. Notice that the
pressure space is nothing but the usual continuousP1 space, while the space for each velocity
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Figure 1: Partition of a single finite element into subelements following the interfacePQ.

component has been enriched by the bubble functions so as to satisfy the stability condition.
Being stable, this element satisfies the a priori estimate

‖u − uh‖V + ‖p − ph‖Q ≤ C

(

inf
wh ∈Vh

‖u − wh‖V + inf
rh ∈Qh

‖p − rh‖Q

)

(11)

whereC does not depend on the mesh sizeh. In the case of a smooth solution, there exists
a constantc such thatinfwh ∈Vh

‖u − wh‖V ≤ c h |u|H2(Ω) whereasinfrh ∈Qh
‖p − rh‖Q ≤

c h2 |p|H2(Ω). In the case of non-smooth solutions involving pressure jumps, however, the latter
interpolation estimate deteriorates significantly (Gross and Reusken, 2007a), to

inf
rh ∈Qh

‖p − rh‖Q ≤ C
(

h
1

2 ‖JpK‖L∞(Γ) + h2 ‖p‖H2(Ω\Γ)

)

This approximation error of orderh
1

2 is a direct consequence of the pressure interpolants being
continuousacrossΓ, so that switching to discontinuous-pressure elements does not cure it,
unless the mesh follows the interface.

2.2 A discontinuous pressure space with the same unknowns

The proposed variant of the mini-element combines the velocity spaceV mini
h (Eq. 10) with a

new pressure spaceQΓ
h discussed below, without any modification of the Galerkin formulation

(7).

2.2.1 The finite element interpolant

Let us now propose a different finite element space, denoted by QΓ
h, which has the same

unknowns as the conformingP1 spaceQ1
h but admits discontinuities acrossΓ. For all elements

not cut byΓ standardP1 interpolants are chosen. The only modifications appear in interface
elements.

Consider the triangleABC, which is cut byΓ into subtriangleAPQ and subquadrilateral
BCQP (see Fig.1). We assume for simplicity that, locally,Γ is approximated by linear seg-
ments (this would probably add an additional error of orderh2, much smaller than the other
errors involved). LetpA, pB, pC denote the nodal values of the discrete pressureph, to be
interpolated in the triangleABC.

Let us arbitrarily denote the triangleAPQ the “green” side ofΓ and quadrilateralBCQP
the “red” side. For the approximation to be discontinuous, the functionph on the green side
needs to be solely determined by the only green node, i.e.,A. Similarly, ph on the red side
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(a) (b) (c)

Figure 2: Basis functions for the new finite element space inside an element crossed by the interface: (a)NA, (b)
NB and (c)NC .

must depend on justpB andpC . To accomplish this, we simply “carry” the value at each node
towards the intersection of any edge emanating from it with the interface.

In this way, on the green side ofΓ, the values atP andQ will be pA, and thusph will be
constant:

ph|APQ = pA

On the red side, the value atP will be pB and the value atQ will be pC . One can here choose
either to adopt aQ1 interpolation inBCQP from these nodal values, or subdivide the quadri-
lateral into two triangles,BCP andCQP . In any case, since the nodal values are given, the
interpolation is immediate. For the red triangleCQP , for example,ph will be the linear func-
tion that takes the valuepC at vertexC, the valuepC at vertexQ, and the valuepB at vertexP .
Notice that this interpolation leads toph being discontinuousonly atΓ, since the functionph

restricted to any edge of the triangle is uniquely determined by the values at the nodes lying at
the endpoints of that edge.

As a consequence of carrying the nodal values towards the intersection of each edge with the
interface, the spaceQΓ

h consists of functions with locally an oblique derivative (in the direction
of the edge that happens to crossΓ at each point) equal to zero. The interpolation error‖p −

Ihp‖Q is thus expected to be of orderh
3

2 for arbitraryp ∈ W 1,∞(Ω \ Γ).
Remark: It could be interesting to modify the proposed space in such away as to obtain an
interpolation order ofh2 for functions with any derivative atΓ. A suitable way to do this would
be by extrapolation along the edge using some recovered gradient at the nodes. This is an
operation that cannot be carried out at the element level alone, and has not been explored in this
work.
Remark: Some modifications are needed if the interfaceΓ ends within the domain (i.e., a
crackeddomain). Consider that the interface ends at some pointT that lies betweenP and
Q, so that the segmentTQ is not contained inΓ. In this case the value ofph at Q is computed
by linearly interpolating the valuespA andpC along the edgeAC. The treatment of the in-
tersection pointP is as before, so that the interpolant is continuous atQ and discontinuous at
P .

The extension of the proposed methodology to three dimensions follows the lines described
above. For completeness, the basis functions are given explicitly for the different possible cases
in the paragraphs that follow.
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Figure 3: EndpointT of the interfaceΓ inside the elementABC.

2.2.2 Two-dimensional case: Standard interface element

Consider as before the triangleABC, which is cut byΓ into the “green” subtriangleAPQ
and the “red” subtrianglesBCP andCQP . The basis functionsNA, NB andNC are defined
to be piecewise affine inside each of these subtriangles. It only remains to define their values at
the vertices of the subtriangles, i.e., at the pointsA, B, C, P andQ. However, since they are
discontinuous atΓ, two values are given at pointsP andQ. The values on the green side will
be assigned a “plus” sign, while those on the red side a “minus” sign. The values at the vertices
are:

NA( A ) = 1 NB( A ) = 0 NC( A ) = 0 (12)

NA( B ) = 0 NB( B ) = 1 NC( B ) = 0 (13)

NA( C ) = 0 NB( C ) = 0 NC( C ) = 1 (14)

NA(P+) = 1 NB(P+) = 0 NC(P+) = 0 (15)

NA(P−) = 0 NB(P−) = 1 NC(P−) = 0 (16)

NA(Q+) = 1 NB(Q+) = 0 NC(Q+) = 0 (17)

NA(Q−) = 0 NB(Q−) = 0 NC(Q−) = 1 (18)

Notice that these functions satisfy several useful properties: (i) They form a nodal basis, in
the sense that they take the value one at their correspondingnode and zero at the other nodes;
(ii) their sum equals the constant function equal to one inK; (iii) their extreme values (zero and
one) take place at the nodes. A picture of the interpolation functions for this case can be seen
on Fig.2.
Remark: Though unlikely in practical cases, it could happen thatΓ passes exactly through a ver-
tex. This is a degenerate case in which one of the subtriangles becomes a needle of vanishingly
small volume.

2.2.3 Two-dimensional case: Element containing an endpoint of the interface

In the case thatΓ has an endpoint at elementK, special basis functions are needed. Consider
P to be the last edge-interface intersection point, andT to be the interface endpoint (see Figure
3). The pointQ is defined as the intersection of the linePT with the edgeAC. The difference
with the previous case is that now the functions need to be continuous at pointQ.

For this purpose, letg be an affine function defined on the edgeAC such thatg(A) = 1 and
g(C) = 0 (in other words,g is the restriction to edgeAC of theP1 basis function corresponding
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(a) (b) (c)

Figure 4: Basis functions for the new finite element space inside an element containing an endpoint of the interface:
(a)NA, (b)NB and (c)NC .

to nodeA). The values ofNA, NB andNC at pointsA, B, C, P+ andP− are as in (12)-(16).
At point Q the functions are continuous, with values

NA(Q) = g(Q), NB(Q) = 0, NC(Q) = 1 − g(Q) (19)

Properties (i)-(iii ) above are also satisfied by this basis. An illustration of these functions can
be seen on Fig.4.

2.2.4 Three-dimensional case: Standard interface element

Consider that the elementK cut by the interface is the tetrahedronABCD as shown in Fig.
5, of which either three (case (a)) or four (case (b)) edges arecut byΓ.

A

B

C

D

P

Q

R

Γ

(a)

A

B

C

DP

Q

R

S

Γ

(b)

Figure 5: Partition of a tetrahedron following interfaceΓ: (a) Interface crossing three edges; (b) Interface crossing
four edges.

In case (a), there appear three intersection pointsP , Q andR (see Fig.5(a)), at which the
nodal functionsNA, NB, NC andND are bivaluated. As in the two-dimensional case, the plus
and minus values at the intersection points correspond to the “green” and “red” sides of the
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interface. Carrying the values to the interface as explained, the values of the basis functions at
the vertices and intersection points are:

NA( A ) = 1, NB( A ) = 0, NC( A ) = 0, ND( A ) = 0 (20)

NA( B ) = 0, NB( B ) = 1, NC( B ) = 0, ND( B ) = 0 (21)

NA( C ) = 0, NB( C ) = 0, NC( C ) = 1, ND( C ) = 0 (22)

NA( D ) = 0, NB( D ) = 0, NC( D ) = 0, ND( D ) = 1 (23)

NA(P+) = 1, NB(P+) = 0, NC(P+) = 0, ND(P+) = 0 (24)

NA(P−) = 0, NB(P−) = 1, NC(P−) = 0, ND(P−) = 0 (25)

NA(Q+) = 1, NB(Q+) = 0, NC(Q+) = 0, ND(Q+) = 0 (26)

NA(Q−) = 0, NB(Q−) = 0, NC(Q−) = 1, ND(Q−) = 0 (27)

NA(R+) = 1, NB(R+) = 0, NC(R+) = 0, ND(R+) = 0 (28)

NA(R−) = 0, NB(R−) = 0, NC(R−) = 0, ND(R−) = 1 (29)

The truncated tetrahedronBCDPQR is divided into subtetrahedra and from the values at
the vertices given above the basis functions are obtained byaffine interpolation over each sub-
tetrahedron. Satisfaction of 3D analogs of properties (i)-(iii ) is straightforward. In this case, for
the resulting interpolant not to be discontinuous at the faces (outsideΓ) the neighbor element
be subdivided in a compatible way. For faceABC, for example, continuity ofNB andNC is
only obtained if both elements sharing this face divide the quadrilateralBCPQ by the same
diagonal.

In case (b) there appear four intersection points, namelyP , Q, R andS (see Fig.5(b)). The
values of the basis functions atA, B, C andD are obviously the same as in (20)-(23). The
values at the intersection points follow the same procedureas before, yielding

NA(P+) = 1, NB(P+) = 0, NC(P+) = 0, ND(P+) = 0 (30)

NA(P−) = 0, NB(P−) = 0, NC(P−) = 1, ND(P−) = 0 (31)

NA(Q+) = 1, NB(Q+) = 0, NC(Q+) = 0, ND(Q+) = 0 (32)

NA(Q−) = 0, NB(Q−) = 0, NC(Q−) = 0, ND(Q−) = 1 (33)

NA(R+) = 0, NB(R+) = 1, NC(R+) = 0, ND(R+) = 0 (34)

NA(R−) = 0, NB(R−) = 0, NC(R−) = 1, ND(R−) = 0 (35)

NA(S+) = 0, NB(S+) = 1, NC(S+) = 0, ND(S+) = 0 (36)

NA(S−) = 0, NB(S−) = 0, NC(S−) = 0, ND(S−) = 1 (37)

Properties (i)-(iii ) are easily seen to hold, while continuity across the faces again depends on
the compatibility of the subdivisions between neighboringelements.

2.2.5 Three-dimensional case: Interface with boundary

If the interfaceΓ has a boundary∂Γ within the domain, the basis functions need to be
modified in much the same way as in the two-dimensional case. Let K be an element cut
by the surfaceΓ and such that∂Γ∩K 6= ∅. We assume thatΓ∩K is a planar polygon and thus
the intersection of this plane with the edges ofK defines the pointsP , Q, R and, in a case-(b)
situation,S, as before.
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Figure 6: Partition of a tetrahedronK where∂Γ ∩ K 6= ∅. PointS is obtained by intersecting planePQR with
edgeBD.

Consider for example that the intersection is as shown in Fig. 6, so that the subdivision
corresponds to case (b). Notice, however, that the edgeBD is not crossed by the interface,
so that the basis functions must be continuous along this edge and thus, in particular, at point
S. Proceeding as in the two-dimensional case, we assign toS a unique value provided by the
linear interpolation between nodesB andD. This procedure is adopted for all intersection
points falling outsideΓ. Properties (i)-(iii ) are easily seen to hold, as well as continuity of
the basis functions across the faces (again depending on a compatible choice of diagonals for
quadrilaterals).

3 NUMERICAL EXPERIMENTS

3.1 Interpolation properties of the spaceQΓ
h

We first assess purely the interpolation properties ofQΓ
h. For this purpose we perform tests

similar to those conducted by Reusken (Reusken, 2008). Let Ω = (−π
2
, π

2
) × (−π

2
, π

2
) and let

Γ = {(x, y) ∈ Ω | x = 0 , y > 0}. Let p be the function

p(x, y) =

{

e−x sin2(y) if (x > 0 andy > 0)
0 otherwise

. (38)

Notice thatΓ is a “crack” in the domain, and thatp is discontinuous acrossΓ.
For an arbitrary triangulationTh, the interfaceΓ is approximated byΓh, whereΓh is com-

posed of all the linear segments joining, in each triangleK totally cut byΓ, the two intersections
of Γ with the edges ofK, plus the triangle containing the endpoint ofΓ. Notice that this makes,
in this case, thatΓh is slightly bigger thanΓ, but the error introduced by this procedure is much
smaller than interpolation errors.

The interpolantIhp of p is now defined as the unique element ofQΓh

h that coincides withp
at all the vertices ofTh.

A sequence of unstructured meshes was built, of which the first one is shown in Fig.7. To
this mesh, which consists of 326 triangles, we assign a mesh size of h = 0.2. The following
meshes in the sequence are built by successively dividing each of the triangles of the previous
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Figure 7: First mesh used in the interpolation test, with 326elements. The interfaceΓ is a line from (0,0) to (0,π2 ).

h Q1
h QΓ

h

2.0 × 10−1 1.332321× 10−1 4.166473 × 10−2

1.0 × 10−1 1.120209× 10−1 1.593032 × 10−2

5.0 × 10−2 7.209146× 10−2 4.456308 × 10−3

2.5 × 10−2 5.126917× 10−2 1.606452 × 10−3

1.25 × 10−2 3.607274× 10−2 5.286712 × 10−4

6.25 × 10−3 2.565891× 10−2 2.010631 × 10−4

3.125 × 10−3 1.786352× 10−2 6.614845 × 10−5

Table 1: Error‖p − Ip‖L2(Ω) for the standardQ1
h

space, compared to the new pressure spaceQΓ
h
.

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

‖p
−
I
p
‖ L

2
(Ω

)

h

h
3

2

h
1

2

Q1
h

QΓ
h

Figure 8: Convergence rate of the error inL2-norm for the interpolated functionp(x, y) using standardQ1
h

and the
new pressure spaceQΓ

h
.
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Figure 9: Mesh with 220 elements,h = 0.176, for the Couette convergence test.

mesh into four equal triangles, leading to meshes withh = 0.1, h = 0.05 and so forth, until the
finest mesh withh = 3.125 × 10−3.

We measured the error ofp − Ihp in theL2(Ω)-norm. The results are shown in Table1, in
which we also include the interpolation error of theP1-conforming interpolant for comparison
(Q1

h). Figure8 displays the convergence rate of the order ofh
3

2 for both cases.

3.2 Couette flow

In this experiment we consider the domain[0, L]× [0, H ], with periodic boundary conditions
in thex1-direction. The velocity is set to zero at the top and bottom boundaries

u(x1, x2 = 0) = u(x1, x2 = H) = 0

and the interfaceΓ is a straight vertical linex1 = a, on which a constant unit normal force
f = 1 is imposed. The exact solution for this problem is

u1(x1, x2) =
1

2µL
x2 (H − x2) (39)

u2(x1, x2) = 0 (40)

p(x1, x2) = −
1

L
x1 + H(x1 − a) (41)

whereH(x1 − a) = 1 if x1 > a and zero otherwise, and the indeterminacy of the pressure was
removed by imposingp(0, 0) = 0 instead of setting the average to zero, for simplicity.

This problem, withL = 3, H = 1, µ = 1 anda = 2 was discretized with the mini-element,
using the classicalP1-conforming pressure space (denoted byQ1

h above) and the new spaceQΓ
h.

As in the previous section, a sequence of unstructured meshes was built, of which the first one
is shown in Fig.9. To this mesh, which consists of 220 triangles, we assign a mesh size ofh =
0.176. The following meshes in the sequence are built by subdivision. We measure the velocity
error in theH1(Ω)-norm and the pressure error in theL2(Ω)-norm for both methods as functions
of h. The results of the convergence analysis are displayed in Fig. 10. The experimental orders
of convergence are

‖u − uh‖H1(Ω) = O(h
1

2 ), ‖p − ph‖L2(Ω) = O(h
1

2 )

for the standardQ1
h space; and

‖u − uh‖H1(Ω) = O(h), ‖p − ph‖L2(Ω) = O(h)

for the proposed method. The optimal convergence of smooth problems is thus recovered with
the proposed modification of the pressure space.

The pressure fields corresponding to the classical mini-element is compared to that obtained
with the proposed method in Fig.11. As is clear from the figure, the improved pressure space
exhibits significantly smaller pressure oscillations nearthe interface than the mini-element.
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Figure 10: Error norms for the velocity (a) and pressure (b),showing the convergence rates for the Couette flow.
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Figure 12: Mesh for the static bubble convergence study, with 1104 elements andh = 0.2.

3.3 Static two-dimensional bubble

The second example we report here concerns a 2D static bubble. In this case the interface
Γ is the circle of radiusR centered at the origin. OnΓ, a constant (inwards) normal force is
imposed,f = σ

R
, whereσ represents the surface tension. Setting the pressure outside the bubble

arbitrarily to zero, the exact pressure inside the bubble equals σ
R

. The exact velocity vanishes
everywhere.

In this example we approximateΓ by Γh, which consists of straight segments inside each
element that join the intersections ofΓ with the element edges (i.e., the pointsP andQ are
joined by a straight segment). WithΓh fixed, we impose the surface tension force by

FΓ = −
σ

R
δΓh

er (42)

whereer is the radial unit vector, leading to

L(vh, qh) = −
σ

R

∫

Γh

er · vh dΓ (43)
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Figure 13: Error norms for the velocity (a) and pressure (b),showing the convergence rates for the static bubble.
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Figure 14: Pressure field for the mini-element with direct forcing, obtained withh = 0.05: (a)Q1
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; (b) QΓ

h
.
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For the numerical tests we choseR = µ = σ = 1, and the domain was set toΩ = (−2, 2) ×
(−2, 2). The velocity is set to zero on∂Ω, and the pressure at the left bottom corner of the
domain is set to zero to fully determine the pressure. A mesh refinement study was conducted
in the same way as in the previous examples, starting with themesh shown in Fig.12, to which
we assignh = 0.2. Logarithmic plots of the velocity and pressure errors are shown in Fig.
13. Clearly, the method converges with orderO(h

1

2 ) if the standard pressure spaceQ1
h is used,

while switching toQΓ
h improves the order toO(h

3

2 ). The obtained pressure and velocity fields
on the mesh withh = 0.05, which consists of 14900 elements, are shown in Figs.14 and
15. The improvements brought by the proposed method are evident. The parasitic velocities
obtained with this formulation have a maximum modulus of1.6 × 10−3 when theP1 space is
used for pressure, whereas with the proposed space this value is much smaller (4.5 × 10−5).

4 CONCLUSIONS

A new finite element spaceQΓ
h has been proposed, which has the same unknowns as the

P1-conforming space but consists of functions that are discontinuous across a given interface
Γ, assumed not aligned with the mesh. The proposed space is much simpler than the one
proposed byGross and Reusken(2007a), which is based on XFEM enrichment, and also to the
one proposed byFries and Belytschko(2006), which avoids introducing additional unknowns
by switching to a moving-least-squares approximation in the vicinity of Γ.

Through numerical tests it was shown that theL2(Ω)-interpolation accuracy ofQΓ
h for func-

tions that are smooth outsideΓ is O(h
3

2 ). This is a significant improvement with respect to the
accuracy of continuous spaces of any polynomial degree, which isO(h

1

2 )

An interpolation accuracy ofO(h
3

2 ) in theL2(Ω)-norm is suboptimal for piecewise linear
elements. However, the a priori estimate (11) implies that the spaceQΓ

h, when taken as pressure
space, willnot limit the accuracy of a (Navier-)Stokes calculation in the mini-element approx-
imation (neither in equal-order velocity-pressure approximations). In fact, in both cases the
global accuracy is limited by theH1(Ω)-accuracy of the velocity space, which isO(h).

The proposed space is easy to implement, requiring just local operations at the element level
to incorporate the improved pressure interpolation. Several tests were reported which illustrate
the improved behavior of both velocity and pressure when theelements cut by the interface are
treated with the proposed pressure interpolants.
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