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Abstract. We consider 2D incompressible Stokes flow with an internaiface at which the pressure is
discontinuous, as happens for example in problems invplsinface tension. We assume that the internal
interface is a line that does not coincide with the mesh edmad propose a piecewise-linear pressure
space with improved interpolation properties. The fundim the proposed space are discontinuous only
at the interface, coinciding with standaRy functions away from it. Further, the degrees of freedom are
exactly the same as those of the standard, conformjrgpace, making it straightforward to incorporate
the proposed method in existing codes. We implement the-kmellvn mini-element and show that
switching to the proposed pressure space at the elemenkyy ¢he interface significantly reduces the
error in both pressure and velocity.
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1 INTRODUCTION

Though much progress has been made over the last years ielthefffinite-element-based
computational fluid mechanics, the accurate simulatioroefgiwith significant surface tension
effects remains a challenge. This is a consequence of two difficulties that are inherent to
such flows:

() The surface tension fordg- is a surface Dirac distribution over the interfdégoroportional
to the curvature of. The singularity of the force, together with its dependesicgecond
derivatives of the interface shape, renders it difficultpgpraximate.

(i) Some of the flow variables, most importantly the pressueegdecontinuous acro$s This
leads to suboptimal interpolation accuracy whenever thtefelement interpolants are
continuous acrosBs.

In a recent careful studyGross and Reuskef2007ab) (see alsoReusken(2008), have
shown that both of the aforementioned difficulties need tcspecifically addressed or oth-
erwise the convergence is poor (of Or(ﬂzél). In this article the attention is focused in difficulty
(i), for which Gross and Reusken propose to adopt an XFB®I\tschko et a].2001) enrich-
ment of the pressure space, incorporating functions tleadiacontinuous dt, as had been also
proposed byMinev et al.(2003. With this modification, they are able to get improved con-
vergence behavior, at the expense of the well-known pstfaliithe XFEM methodology: The
ill-conditioning of the system matrix due to approximateglar dependence of the basis, and the
introduction of new unknowns that depend on the locatiorhefihterface, thus requiring the
code to completely rebuild the linear system structure &mheanterface location.

Similar considerations have been made recenthGlayesan et a[2007). They compare
mixed finite elements with continuous and discontinuous@gmations for the pressure, and
end up recommending the use of meshes that follow the icetzgether with discontinuous
pressure interpolants. Clearly, this is the only comboratf classical finite elements that
yields a pressure space that is discontinuous athich is the key to properly tackle difficulty
(ii) above. However, in a dynamic simulation it is cumbergoamd sometimes impossible to
maintain the mesh aligned with the interface, so that otheredies must be sought.

In this article we introduce a novel pressure space whicbraotodates discontinuities at the
(given) interfacd”, which is approximated by piecewise-linear segments in 2D@Eecewise-
planar facets in 3D. The proposed space is nothing but tsickl conforming®; space, locally
modified at those elements that are cut by the interface fwivitl be denoted asnterface
elements The modification is local, computed element-by-elemant] it does not introduce
any additional degrees of freedom. It is thus extremely ¢agycorporate the proposed space
into existing codes. Further, the only discontinuitiestplace af’, so that no special treatment
is needed at other interfaces (such as element-to-elemientaices, for example, as happens
with Discontinuous Galerkin methods).

The proposed pressure space will be introduced in the frameof the (two-dimensional
for simplicity) problem

—uNV*u+Vp = Fp in Q (1)
Vou = 0 in Q (2)
u = 0 on o 3)

whereftr = f or n, with f a given functiongr the Dirac delta distribution on the lifé andn
its normal. The singular forcer- acts in fact as a jump condition on the normal stress adrpss
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namely,

H—p + 2#%%" = f, (4)
n
whereas both the velocity and the tangential stress rensaitinzious. In fact, in this constant-
viscosity case the velocity gradient exhibits no jump asfo$Gross and ReuskeB0073, so
that @) reduces tdp] = —f. Notice that this simplified model also represents the dedta
actuator-disk modehat is very popular in the analysis of rotors (propellensiditurbines, etc.)
(Meyer and Kroger2001, Tahara et a).2006 Carrica et al.2008 Leclerc and Massqr2005.
Denoting byV = H(Q) x H}(Q) and@Q = L*(Q)/R, the variational formulation that
corresponds tol)-(3) reads: “Find(u,p) € V x @ such that

/[u(Vu+VTu):Vv—pV-v+qV-u} dQ:/fn-vdF (5)
Q r

forall (v,q) € V x @Q". The bilinear and linear forms associated to the variatidormulation
will be denoted byB(-,-) and L(-), so that §) can be rewritten as

B((u,p), (v,q)) = L(v, q). (6)

Under reasonable regularity assumptionsioand f this problem admits a unique solution,
since it is only necessary thatbe a bounded linear functional. The finite element discaetiz
tion of (5) is briefly recalled in Section 2, together with the desooipbf the proposed pressure
space. Section 3 contains several numerical experimeatsitisess the advantages of the pro-
posed space with respect to classical spaces. Some camdwsie finally drawn in Section
4.

2 FINITE ELEMENT APPROXIMATION

2.1 Galerkin mini-element formulation

In the Galerkin formulation, the exact variational forntida is restricted to the spadg x
Qn, WwhereV, ¢ V and@, C @ are the approximation spaces for velocity and pressure,
respectively. The discrete formulation thus reads “Rind p,) € V}, x @} such that

B((un, pn)s (vn, qn)) = L(vn, qn) (7)

for all (vn,qn) € Vi x Qp". As is well-known, for this formulation to be well-posed d@n
convergent it is sufficient that the BabuSka-Brezzi stgbdondition Babuska 1973 Brezzi
1974 be satisfied:

: Jo@n NV - v dQ2
inf  sup
n€Qnv, cviy llanllQ lonllv

with 5 a mesh-independent constant.
The pressure and velocity spaces that correspond to thallealmini-elementArnold et al,
1984 are, for a finite element mesh:

Qh = Q}L = {thQﬂCO(Q), qh\Kepl(K), VKEZL} (9)
Vh = thini = {Uh - V, Uh|K € (Pl(K) &P spambK))Q, VK e 771} (10)

>3>0 (8)

whereb is the cubic bubble function that vanishes on all three eddgds. Notice that the
pressure space is nothing but the usual continuguspace, while the space for each velocity
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Figure 1: Partition of a single finite element into subeletadollowing the interface”q).

component has been enriched by the bubble functions so agisfyshe stability condition.
Being stable, this element satisfies the a priori estimate

|u —unlly + |lp = pallo £ C ( inf |lu —wp|ly + inf Hp—'f’hHQ) (11)
wp, €V, Th €Qp

whereC' does not depend on the mesh slzeln the case of a smooth solution, there exists
a constant such thatinf,, cv, ||v — wi|lv < ch|u|g2) Whereasinf,, cq, [|p — mullo <

ch? |pluz2(o- In the case of non-smooth solutions involving pressurepsirhowever, the latter
interpolation estimate deteriorates significan®rg¢ss and ReuskeA0073, to

. 1
Jinf o= rillo < C (A TNy + 1 ol )

This approximation error of ordér: is a direct consequence of the pressure interpolants being
continuousacrossI’, so that switching to discontinuous-pressure elements doé cure it,
unless the mesh follows the interface.

2.2 Adiscontinuous pressure space with the same unknowns

The proposed variant of the mini-element combines the wglspaceV,"™ (Eq. 10) with a
new pressure spacg, discussed below, without any modification of the Galerkimfolation

7).

2.2.1 The finite element interpolant

Let us now propose a different finite element space, denote@'h which has the same
unknowns as the conforming space?} but admits discontinuities acroEs For all elements
not cut byI" standardP; interpolants are chosen. The only modifications appeartarface
elements.

Consider the trianglel BC', which is cut byI" into subtriangleA PQ) and subquadrilateral
BCQP (see Fig.1). We assume for simplicity that, locally, is approximated by linear seg-
ments (this would probably add an additional error of orkfermuch smaller than the other
errors involved). Leta, pr, pc denote the nodal values of the discrete pressurdo be
interpolated in the triangld BC.

Let us arbitrarily denote the triangléP(Q the “green” side of" and quadrilateraBC'Q P
the “red” side. For the approximation to be discontinuobs, functionp, on the green side
needs to be solely determined by the only green node,A.e Similarly, p, on the red side
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Figure 2: Basis functions for the new finite element spacieléan element crossed by the interface: Na), (b)
Np and (c)N¢.

must depend on jugtz andps. To accomplish this, we simply “carry” the value at each node
towards the intersection of any edge emanating from it vinéhibterface.

In this way, on the green side of the values af” and @ will be p,4, and thusp, will be
constant:

ph\APQ =PAa

On the red side, the value & will be pg and the value af) will be p~. One can here choose
either to adopt &), interpolation inBC'Q) P from these nodal values, or subdivide the quadri-
lateral into two trianglesBC'P andC'QP. In any case, since the nodal values are given, the
interpolation is immediate. For the red triangl€) P, for examplep;, will be the linear func-
tion that takes the valug- at vertexC, the valuep at vertex(), and the valueg at vertexP.
Notice that this interpolation leads g being discontinuousnly atI’, since the functiom,,
restricted to any edge of the triangle is uniquely deterohimgthe values at the nodes lying at
the endpoints of that edge.

As a consequence of carrying the nodal values towards tlesetttion of each edge with the
interface, the spaa@}, consists of functions with locally an oblique derivative the direction
of the edge that happens to crdsat each point) equal to zero. The interpolation effor
I1pl|q is thus expected to be of order for arbitraryp € Wee(Q\ T).
Remark: It could be interesting to modify the proposed space in sualay as to obtain an
interpolation order ofi? for functions with any derivative dt. A suitable way to do this would
be by extrapolation along the edge using some recoveredegtaak the nodes. This is an
operation that cannot be carried out at the element levekakind has not been explored in this
work.
Remark Some modifications are needed if the interfacends within the domain (i.e., a
crackeddomain). Consider that the interface ends at some @ititat lies between” and
Q, so that the segmefitQ is not contained ii". In this case the value gf, at () is computed
by linearly interpolating the values, andp. along the edgedC. The treatment of the in-
tersection pointP is as before, so that the interpolant is continuou§ and discontinuous at
P.

The extension of the proposed methodology to three dimaagalows the lines described
above. For completeness, the basis functions are givercilior the different possible cases
in the paragraphs that follow.
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A

Figure 3: Endpoini’ of the interfacd” inside the elemend BC.

2.2.2 Two-dimensional case: Standard interface element

Consider as before the triangleBC', which is cut byl into the “green” subtrianglel PQ)
and the “red” subtriangleB8C' P andC'QP. The basis functiond/,, Nz and N are defined
to be piecewise affine inside each of these subtriangleslyjtremains to define their values at
the vertices of the subtriangles, i.e., at the poitits3, C, P and(). However, since they are
discontinuous al’, two values are given at poinf3 and(. The values on the green side will
be assigned a “plus” sign, while those on the red side a “misigs. The values at the vertices
are:

Na(A)=1 Np(A)=0 Nc(A)=0 (12)
Na(B)=0 Np(B)=1 Ne(B)=0 (13)
NA(C)=0 Np(C)=0 No(C)=1 (14)
Na(PT) =1 Np(P*)=0 Ne(P*)=0 (15)
Na(P7) =0 Np(P7)=1 Nc(P7)=0 (16)
Na(@") =1 Np(Q")=0 Nc(Q")=0 (17)
Na(Q@7)=0 Np(@Q)=0 Ne(@)=1 (18)

Notice that these functions satisfy several useful prageer{i) They form a nodal basis, in
the sense that they take the value one at their corresponduigyand zero at the other nodes;
(ii) their sum equals the constant function equal to on&'jriii) their extreme values (zero and
one) take place at the nodes. A picture of the interpolatimetions for this case can be seen
on Fig. 2.

Remark Though unlikely in practical cases, it could happen thpaisses exactly through a ver-
tex. This is a degenerate case in which one of the subtriaihgleomes a needle of vanishingly
small volume.

2.2.3 Two-dimensional case: Element containing an endpdiof the interface

In the case thdf has an endpoint at elemefit special basis functions are needed. Consider
P to be the last edge-interface intersection point, Anid be the interface endpoint (see Figure
3). The pointQ) is defined as the intersection of the likg” with the edgeAC'. The difference
with the previous case is that now the functions need to baraarus at point).

For this purpose, lej be an affine function defined on the ed¢€' such thayy(A) = 1 and
g(C) = 0 (in other wordsy is the restriction to edgaC' of the P, basis function corresponding
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Figure 4: Basis functions for the new finite element spadé@an element containing an endpoint of the interface:
(@) N4, (b) Ng and (C)N¢.

to nodeA). The values ofV,, Nz and N¢ at pointsA, B, C, P and P~ are as in {2)-(16).
At point ) the functions are continuous, with values

Na(Q) = 9(Q), Np(Q) =0, Ne(Q) =1-9(Q) (19)
Propertiesi|-(iii ) above are also satisfied by this basis. An illustration eséhfunctions can
be seen on Figd.
2.2.4 Three-dimensional case: Standard interface element

Consider that the eleme#t cut by the interface is the tetrahedrdiBC D as shown in Fig.
5, of which either three (case (a)) or four (case (b)) edgesutrbyT.

B B
P S
D D
A A
Q Q
C C
(@) (b)

Figure 5: Partition of a tetrahedron following interfdce(a) Interface crossing three edges; (b) Interface crgssin
four edges.

In case (a), there appear three intersection pdimt® and R (see Fig.5(a)), at which the
nodal functionsV,4, N, Nc and N, are bivaluated. As in the two-dimensional case, the plus
and minus values at the intersection points correspondedgireen” and “red” sides of the
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interface. Carrying the values to the interface as expthitiee values of the basis functions at
the vertices and intersection points are:

Na(A) =1, Np(A)=0, Ng(A)=0, Np(A)=0 (20)
Na(B ) =0, Np(B)=1, Nc(B)=0, Np(B)=0 (21)
Na(C) =0, Np(C)=0, Nc(C)=1 Np(C)=0 (22)
Na(D ) =0, Np(D )=0, Ne(D)=0, Np(D)=1 (23)
Na(P*) =1, Np(P*)=0, No(P*)=0, Np(P")=0 (24)
Na(P™) =0, Np(P7)=1, Nc(P7)=0, Np(P7)=0 (25)
Na(@%) =1, Np(QT) =0, Ne(Qt)=0, Np(Q")=0 (26)
Na(Q™)=0, Np(Q)=0, Ne(@)=1, Np(Q)=0 (27)
Na(R") =1, Np(R")=0, Ne¢(R*)=0, Np(R")=0 (28)
Na(R™) =0, Np(R7)=0, N¢(R")=0, Np(R")=1 (29)

The truncated tetrahedrdBC'D PQR is divided into subtetrahedra and from the values at
the vertices given above the basis functions are obtainedfinye interpolation over each sub-
tetrahedron. Satisfaction of 3D analogs of propertig§i() is straightforward. In this case, for
the resulting interpolant not to be discontinuous at thedgoutsidd") the neighbor element
be subdivided in a compatible way. For fad&C, for example, continuity ofVz and N¢ is
only obtained if both elements sharing this face divide thadyilateralBC' P by the same
diagonal.

In case (b) there appear four intersection points, nariely, R andS (see Fig.5(b)). The
values of the basis functions dt B, C' and D are obviously the same as i80}-(23). The
values at the intersection points follow the same procedsiteefore, yielding

Na(P") =1, Np(P*)=0, Nc¢(P*)=0, Np(P")=0 (30)
Na(P™) =0, Np(P7)=0, Ne(P7)=1, Np(P7)=0 (31)
Na(@QY) =1, Np(QT) =0, Ne(@Q)=0, Np(Q")=0 (32)
Na(Q™)=0,  Np(@Q)=0, Ne(@)=0, NpQ)=1 (33)
Na(RY) =0,  Ng(R") =1, No(RY)=0, Np(R")=0 (34)
Na(R™) =0, Np(R™)=0, Nc(R7)=1,  Np(R)=0 (35)
NA(ST) =0,  Np(SH) =1, No(S*)=0, Np(ST)=0 (36)
Na(S)=0,  Nu(5)=0, No(S)=0, Np(S)=1 37)

Propertiesi{-(iii ) are easily seen to hold, while continuity across the fagasadepends on
the compatibility of the subdivisions between neighboefgments.

2.2.5 Three-dimensional case: Interface with boundary

If the interfacel’ has a boundaryI’ within the domain, the basis functions need to be
modified in much the same way as in the two-dimensional cas#.Kl.be an element cut
by the surfacé” and such thatl’ N K # (). We assume thdtN K is a planar polygon and thus
the intersection of this plane with the edgegoflefines the point®, ), R and, in a case-(b)
situation,S, as before.
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B

Q

C

Figure 6: Partition of a tetrahedrdid wheredT' N K # (). PointS is obtained by intersecting plariéQ R with
edgeBD.

Consider for example that the intersection is as shown in Bigso that the subdivision
corresponds to case (b). Notice, however, that the d¢lfeis not crossed by the interface,
so that the basis functions must be continuous along this add thus, in particular, at point
S. Proceeding as in the two-dimensional case, we assighatanique value provided by the
linear interpolation between nodés and D. This procedure is adopted for all intersection
points falling outsidel’. Propertiesif-(iii) are easily seen to hold, as well as continuity of
the basis functions across the faces (again depending ompatible choice of diagonals for
quadrilaterals).

3 NUMERICAL EXPERIMENTS
3.1 Interpolation properties of the space));,

We first assess purely the interpolation propertie@pf For this purpose we perform tests
similar to those conducted by Reuské&e(sken200§. LetQ2 = (-3, 3) x (=5, ) and let
I'={(z,y) € Q|z =0,y > 0}. Letp be the function

[ e ®sin®*(y)  if (x>0 andy > 0)
pay) = { 0 otherwise ' (38)

Notice thatl" is a “crack” in the domain, and thatis discontinuous acrods

For an arbitrary triangulatioff,,, the interfacd” is approximated by';,, wherel';, is com-
posed of all the linear segments joining, in each triadgketally cut byI", the two intersections
of I" with the edges off, plus the triangle containing the endpointiofNotice that this makes,
in this case, thalf}, is slightly bigger thart’, but the error introduced by this procedure is much
smaller than interpolation errors.

The interpolantZ,p of p is now defined as the unique elemen@:ﬁ that coincides withp
at all the vertices of/},.

A sequence of unstructured meshes was built, of which thieoiirs is shown in Fig7. To
this mesh, which consists of 326 triangles, we assign a meslosh = 0.2. The following
meshes in the sequence are built by successively dividicly efthe triangles of the previous
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jus

2

h

Qj

Qh

2.0 x 1071
1.0 x 107!
5.0 x 1072
2.5 x 1072
1.25 x 1072
6.25 x 1073
3.125 x 1073

1.332321 x 1071
1.120209 x 1071
7.209146 x 1072
5.126917 x 1072
3.607274 x 1072
2.565891 x 1072
1.786352 x 1072

4.166473 x 1072
1.593032 x 1072
4.456308 x 1073
1.606452 x 1073
5.286712 x 10~
2.010631 x 10~*
6.614845 x 1075

Table 1: Errorf|p — Zp| 12« for the standard);, space, compared to the new pressure spjce

lp — Zpll L2

Figure 8: Convergence rate of the errodifrnorm for the interpolated functign(z, y) using standard@);, and the

new pressure spacg) .
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0 1 2 3

Figure 9: Mesh with 220 elements,= 0.176, for the Couette convergence test.

mesh into four equal triangles, leading to meshes with 0.1, » = 0.05 and so forth, until the
finest mesh withh = 3.125 x 1073,

We measured the error pf— Z,,p in the L?(Q)-norm. The results are shown in Tallgin
which we also include the interpolation error of tRe-conforming interpolant for comparison
(Q})- Figure8 displays the convergence rate of the ordeh bfor both cases.

3.2 Couette flow

In this experiment we consider the dom&inZ] x [0, H], with periodic boundary conditions
in the z;-direction. The velocity is set to zero at the top and botta@urzaries

w(zy, e =0) = u(z1, 29 = H) =0

and the interfacé’ is a straight vertical linec; = a, on which a constant unit normal force
f = lisimposed. The exact solution for this problem is

Ui (l‘l, {EQ) = 2#% ) (H — 1‘2) (39)
us(z1,2) = 0 (40)
plar,z0) = —%:{:1 + H(zy — a) (41)

whereH(z; — a) = 1if 2; > a and zero otherwise, and the indeterminacy of the pressuse wa
removed by imposing(0,0) = 0 instead of setting the average to zero, for simplicity.

This problem, withL = 3, H = 1, p = 1 anda = 2 was discretized with the mini-element,
using the classicaP; -conforming pressure space (denotedjyabove) and the new spa€g .

As in the previous section, a sequence of unstructured megrebuilt, of which the first one
is shown in Fig.9. To this mesh, which consists of 220 triangles, we assignshraee ofh =
0.176. The following meshes in the sequence are built by subdinisiVe measure the velocity
error in theH }(©2)-norm and the pressure error in th§2)-norm for both methods as functions
of h. The results of the convergence analysis are displayedjirilBi The experimental orders
of convergence are

lu—unllm@y = O, lIp = pallizey = O(h2)
for the standard)} space; and
lu = unll 1) = O(h), 1P = pull2@) = O(h)

for the proposed method. The optimal convergence of smaothigms is thus recovered with
the proposed modification of the pressure space.

The pressure fields corresponding to the classical mimiefe is compared to that obtained
with the proposed method in Figl. As is clear from the figure, the improved pressure space
exhibits significantly smaller pressure oscillations rtbarinterface than the mini-element.
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Figure 10: Error norms for the velocity (a) and pressuregbdwing the convergence rates for the Couette flow.

Copyright © 2009 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXVIII, pags. 1131-1148 (2009) 1143

043 +—a QL
—e Q} [
029 —  Exact ’

Figure 11: Computed pressure using the stable formulatidmi{element), with standard and new pressure space.

2..

921
I R
Figure 12: Mesh for the static bubble convergence study ¥i04 elements and= 0.2.

3.3 Static two-dimensional bubble

The second example we report here concerns a 2D static bulobilkis case the interface
I" is the circle of radiusk centered at the origin. OR, a constant (inwards) normal force is
imposed,f = %, whereo represents the surface tension. Setting the pressureletit& bubble
arbitrarily to zero, the exact pressure inside the bubblaksg;. The exact velocity vanishes
everywhere.

In this example we approximaite by I';,, which consists of straight segments inside each
element that join the intersections Bfwith the element edges (i.e., the poirdtsand () are
joined by a straight segment). With, fixed, we impose the surface tension force by

o

Fr = R 5rh €r (42)
wheree, is the radial unit vector, leading to
g
L(vp,qn) =—— | e v dl (43)
R Jr,
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Figure 13: Error norms for the velocity (a) and pressureghdwing the convergence rates for the static bubble.
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Figure 14: Pressure field for the mini-element with directiiog, obtained withh = 0.05: (a) Q}; (b) QL.
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Figure 15: Spurious velocities for the mini-element witredt forcing, obtained witth = 0.05: (a) Q}; (b) Q%.
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For the numerical tests we choBe= i = o = 1, and the domain was setfb= (—2,2) x
(—2,2). The velocity is set to zero ofi2, and the pressure at the left bottom corner of the
domain is set to zero to fully determine the pressure. A meBhament study was conducted
in the same way as in the previous examples, starting witimésgh shown in Figl2, to which
we assignh = 0.2. Logarithmic plots of the velocity and pressure errors dens in Fig.
13. Clearly, the method converges with or(diéfh%) if the standard pressure spa@g is used,
while switching toQ} improves the order t(j)(h%). The obtained pressure and velocity fields
on the mesh withh = 0.05, which consists of 14900 elements, are shown in Fig$.and
15. The improvements brought by the proposed method are aviddme parasitic velocities
obtained with this formulation have a maximum modulud of x 10~2 when theP, space is
used for pressure, whereas with the proposed space thisigatuuch smaller4(5 x 10~°).

4 CONCLUSIONS

A new finite element spac@} has been proposed, which has the same unknowns as the
P,-conforming space but consists of functions that are discoaus across a given interface
I', assumed not aligned with the mesh. The proposed space is sipler than the one
proposed byGross and Reuskg®0073g, which is based on XFEM enrichment, and also to the
one proposed bifries and Belytschk¢2006, which avoids introducing additional unknowns
by switching to a moving-least-squares approximation @wicinity of I'.

Through numerical tests it was shown that fI7¢Q)-interpolation accuracy ap} for func-
tions that are smooth outsideis (’)(h%). This is a significant improvement with respect to the
accuracy of continuous spaces of any polynomial degree;h/\ih@(h%)

An interpolation accuracy of)(h2) in the L2(£2)-norm is suboptimal for piecewise linear
elements. However, the a priori estimatd)(implies that the spaa@},, when taken as pressure
space, willnot limit the accuracy of a (Navier-)Stokes calculation in theirelement approx-
imation (neither in equal-order velocity-pressure apprations). In fact, in both cases the
global accuracy is limited by th&!(Q)-accuracy of the velocity space, which@¥h).

The proposed space is easy to implement, requiring just épeaations at the element level
to incorporate the improved pressure interpolation. Sdvests were reported which illustrate
the improved behavior of both velocity and pressure wherelents cut by the interface are
treated with the proposed pressure interpolants.

ACKNOWLEDGMENTS: The authors acknowledge partial support from FAPESP (Brasi
CNPq (Brasil), CNEA (Argentina) and CONICET (Argentina).

REFERENCES

Arnold D., Brezzi F., and Fortin M. A stable finite element tbe stokes equationgalcolo,
21:337-344,1984.

Babuska I. The finite element method with Lagrangian muéigl Numerische Mathematik
20:179-192, 1973.

Belytschko T., Moés N., Usui S., and Parimi C. Arbitrary distinuities in finite elementdnt.
J. Numer. Meth. Engn¢0:993-1013, 2001.

Brezzi F. On the existence, uniqueness and approximati@aadle—point problems arising
from lagrange multipliersRAIRO Anal. Numér8:129-151, 1974.

Carrica P., Paik K., Hosseini H., and Stern F. Urans anabfsessbroaching event in irregular
guartering seasl. Marine Sci. Technqgl13:395-407, 2008.

Copyright © 2009 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



1148 F.S. SOUSA, R.F. AUSAS, G.C. BUSCAGLIA

Fries T.P. and Belytschko T. The intrinsic XFEM: a methoddditrary discontinuities without
additional unknownsint. J. Numer. Meth. Eng68:1358-1385, 2006.

Ganesan S., Matthies G., and Tobiska L. On spurious vedsdit incompressible flow prob-
lems with interfacesComput. Methods Appl. Mech. Engrj96:1193-1202, 2007.

Gross S. and Reusken A. An extended pressure finite elemerd §@r two-phase incompress-
ible flows with surface tensionl. Comput. Phys224:40-58, 2007a.

Gross S. and Reusken A. Finite element discretization emalysis of a surface tension force
in two-phase incompressible flowSIAM J. Numer. Anal45:1679-1700, 2007b.

Leclerc C. and Masson C. Wind turbine performance predistigsing a differential actuator—
lifting disk model.J. Solar Energy Engng127:200-208, 2005.

Meyer C. and Kréger D. Numerical simulation of the flow field vicinity of an axial flow
fan. Int. J. Numer. Meth. Fluids36:947-969, 2001.

Minev P.D., Chen T., and Nandakumar K. A finite element teghaifor multifluid incompress-
ible flow using Eulerian grids]. Comput. Phys187:255-273, 2003.

Reusken A. Analysis of an extended pressure finite elemeawsedpr two—phase incompressible
flows. Comput. Visual. Sci11:293-305, 2008.

Tahara V., Wilson R., Carrica P., and Stern F. Rans simulati@ container ship using a single—
phase level-set method with overset grids and the progftrsgtension to a self—propulsion
simulator.J. Marine Sci. Technql11:209-228, 2006.

Copyright © 2009 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



	INTRODUCTION
	Finite element approximation
	Galerkin mini-element formulation
	A discontinuous pressure space with the same unknowns
	The finite element interpolant
	Two-dimensional case: Standard interface element
	Two-dimensional case: Element containing an endpoint of the interface
	Three-dimensional case: Standard interface element
	Three-dimensional case: Interface with boundary


	Numerical experiments
	Interpolation properties of the space Qh
	Couette flow
	Static two-dimensional bubble

	Conclusions

