Asociacion Argentina AMCL

de Mecanica Computacional

Mecénica Computacional Vol XXVIII, pags. 1517-1541 (articulo completo)
Cristian Garcia Bauza, Pablo Lotito, Lisandro Parente, Marcelo Vénere (Eds.)
Tandil, Argentina, 3-6 Noviembre 2009

SOLUTIONS OF THE EULER EQUATIONS USING IMPLICIT TVD
HIGH RESOLUTION ALGORITHMS IN THREE-DIMENSIONS

Edisson Savio de Gboes Maciel
edissonsavio@yahoo.com.br
Mechanical Engineer / Researcher
Rua Demdcrito Cavalcanti, 152 — Afogados — Recife — PE — Brazil — 50750-080

Keywords: Steger and Warming algorithm, Van Leer algorithm, Implicit and TVD schemes,
MUSCL procedure, Flux vector splitting.

Abstract. In the present work, the Steger and Warming and the Van Leer schemes are implemented,
on a finite volume context and using a structured spatial discretization, to solve the Euler equations in
the three-dimensional space. The Steger and Warming and the Van Leer schemes are flux vector
splitting ones and in their original implementation are first order accurate. A MUSCL approach is
implemented in these schemes aiming to obtain second order spatial accuracy. The Minmod non-linear
limiter is employed to guarantee such accuracy and TVD high resolution properties. Both schemes are
implemented following an implicit formulation. The flux vector splitting schemes employ approximate
factorizations in ADI form. Both schemes are first order accurate in time. The algorithms are
accelerated to the steady state solution using a spatially variable time step procedure, which has
demonstrated effective gains in terms of convergence rate, as shown in Maciel. Both schemes are
applied to the solution of the physical problems of the supersonic flow along a ramp and the “cold
gas” hypersonic flow along a diffuser. The results have demonstrated that the most accurate results are
obtained with the Steger and Warming TVD high resolution scheme.
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1. INTRODUCTION

Conventional non-upwind algorithms have been used extensively to solve a wide variety
of problems (Kutler, 1975, and Steger, 1978). Conventional algorithms are somewhat
unreliable in the sense that for every different problem (and sometimes, every different case in
the same class of problems) artificial dissipation terms must be specially tuned and judicially
chosen for convergence. Also, complex problems with shocks and steep compression and
expansion gradients may defy solution altogether.

Upwind schemes are in general more robust but are also more involved in their derivation
and application. Some upwind schemes that have been applied to the Euler equations are: Roe
(1981), Steger and Warming (1981) and Van Leer (1982). Some comments about these
methods are reported below:

Roe (1981) presented a work that emphasized that several numerical schemes to the
solution of the hyperbolic conservation equations were based on exploring the information
obtained in the solution of a sequence of Riemann problems. It was verified that in the
existent schemes the major part of these information was degraded and that only certain
solution aspects were solved. It was demonstrated that the information could be preserved by
the construction of a matrix with a certain “U property”. After the construction of this matrix,
its eigenvalues could be considered as wave velocities of the Riemann problem and the U -Ug
projections over the matrix’s eigenvectors would be the jumps which occur between
intermediate stages.

Steger and Warming (1981) developed a method that used the remarkable property that
the non-linear flux vectors of the inviscid gasdynamic equations in conservation law form
were homogeneous functions of degree one of the vector of conserved variables. This
property readily permitted the splitting of the flux vectors into subvectors by similarity
transformations so that each subvector had associated with it a specified eigenvalue spectrum.
As a consequence of flux vector splitting, new explicit and implicit dissipative finite-
difference schemes were developed for first-order hyperbolic systems of equations.

Van Leer (1982) suggested an upwind scheme based on the flux vector splitting concept.
This scheme considered the fact that the convective flux vector components could be written
as flow Mach number polynomial functions, as main characteristic. Such polynomials
presented the particularity of having the minor possible degree and the scheme had to satisfy
seven basic properties to form such polynomials. This scheme was presented to the Euler
equations in Cartesian coordinates and three-dimensions.

Second order spatial accuracy can be achieved by introducing more upwind points or
cells in the schemes. It has been noted that the projection stage, whereby the solution is
projected in each cell face (i-%,i+%2) on piecewise constant states, is the cause of the first
order space accuracy of the Godunov schemes (Hirsch, 1990). Hence, it is sufficient to
modify the first projection stage without modifying the Riemann solver, in order to generate
higher spatial approximations. The state variables at the interfaces are thereby obtained from
an extrapolation between neighboring cell averages. This method for the generation of second
order upwind schemes based on variable extrapolation is often referred to in the literature as
the MUSCL (“Monotone Upstream-centered Schemes for Conservation Laws”) approach.
The use of non-linear limiters in such procedure, with the intention of restricting the
amplitude of the gradients appearing in the solution, avoiding thus the formation of new
extrema, allows that first order upwind schemes be transformed in TVD high resolution
schemes with the appropriate definition of such non-linear limiters, assuring monotone
preserving and total variation diminishing methods.

Traditionally, implicit numerical methods have been praised for their improved stability
and condemned for their large arithmetic operation counts (Beam and Warming, 1978). On
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the one hand, the slow convergence rate of explicit methods become they so unattractive to
the solution of steady state problems due to the large number of iterations required to
convergence, in spite of the reduced number of operation counts per time step in comparison
with their implicit counterparts. Such problem is resulting from the limited stability region
which such methods are subjected (the Courant condition). On the other hand, implicit
schemes guarantee a larger stability region, which allows the use of CFL numbers above 1.0,
and fast convergence to steady state conditions. Undoubtedly, the most significant efficiency
achievement for multidimensional implicit methods was the introduction of the Alternating
Direction Implicit (ADI) algorithms by Douglas (1955), Peaceman and Rachford (1955), and
Douglas and Gunn (1964), and fractional step algorithms by Yanenko (1971). ADI
approximate factorization methods consist in approximating the Left Hand Side (LHS) of the
numerical scheme by the product of one-dimensional parcels, each one associated with a
different spatial coordinate direction, which retract nearly the original implicit operator. These
methods have been largely applied in the CFD community and, despite the fact of the error of
the approximate factorization, it allows the use of large time steps, which results in significant
gains in terms of convergence rate in relation to explicit methods.

In the present work, the Steger and Warming (1981) and the Van Leer (1982) schemes
are implemented, on a finite volume context and using a structured spatial discretization, to
solve the Euler equations in the three-dimensional space. The Steger and Warming (1981) and
the Van Leer (1982) schemes are flux vector splitting ones and in their original
implementation are first order accurate. A MUSCL approach is implemented in these schemes
aiming to obtain second order spatial accuracy. The Minmod non-linear limiter is employed to
guarantee such accuracy and TVD high resolution properties. Both schemes are implemented
following an implicit formulation. The flux vector splitting schemes employ approximate
factorizations in ADI form. Both schemes are first order accurate in time. The algorithms are
accelerated to the steady state solution using a spatially variable time step, which has
demonstrated effective gains in terms of convergence rate (Maciel, 2005 and 2008). Both
schemes are applied to the solution of the physical problems of the supersonic flow along a
ramp and the “cold gas” hypersonic flow along a diffuser. The results have demonstrated that
the most accurate results are obtained with the Steger and Warming (1981) TVD high
resolution scheme.

2. EULER EQUATIONS

The fluid movement is described by the Euler equations, which express the conservation
of mass, of linear momentum and of energy to an inviscid, heat non-conductor and
compressible mean, in the absence of external forces. In the integral and conservative forms,
employing a finite volume formulation and using a structured spatial discretization, to three-
dimensional simulations, these equations can be represented by:

ofat [ Qav + [ (E,n, +F.n, +G,n, Jis =0, 1)

where Q is written to a Cartesian system, V is a cell volume, which corresponds to an
hexahedron in the three-dimensional space, ny, ny and n, are the components of the normal
unity vector pointing outward to the flux face, S is the surface area and E., Fe and G, represent
the components of the convective flux vector. Q, Ee, Fe and G, are represented by:
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p pu pv pw
pu pu’ +p puv puw
Q=9pVv¢, Ee = puv J Fe = sz +Po Ge = pvw : (2)
pW pUW pVW pW? + p
e (e+ p)u (e+ p)v (e+ p)w

The quantities that appear above are described as follows: p is the fluid density, u, v and w are
the Cartesian components of the flow velocity vector in the x, y and z directions, respectively;
e is the total energy per unity volume of the fluid; and p is the fluid static pressure.

The Euler equations were nondimensionalized in relation to the freestream density, o..,
and the freestream speed of sound, a.,, for the studied problems. To allow the solution of the
matrix system of five equations to five unknowns described by Eq. (1), it is employed the
state equation of perfect gases presented below:

p=(y-1)e—0.5p(u? +v? +w?)], (3)

where vy is the ratio of specific heats at constant pressure and volume, respectively, which
assumed a value 1.4 to the atmospheric air. The total enthalpy is determined by:

H=(e+p)p. (4)
3. GEOMETRICAL CHARACTERISTICS OF THE SPATIAL DISCRETIZATION

Adopting in Equation (1) Q as a constant on a computational cell and using a structured
mesh notation to the fluid and flow quantities, it is possible to write:

0Q;, [0t =—1N, |, LIN(EenX +F.n, +G.n, ), dS; (5)

A given computational cell in this notation is composed by the following nodes: (i,j,k),
(i+1,5,k), (i+1,j+1,k), (i,j+1,k), (i,j,k+1), (i+1,j,k+1), (i+1,j+1,k+1) and (i,j+1,k+1). Figure 1
shows a representation of the computational cell, which is a hexahedron in three-dimensions.

Ltk [+ j+1, k1)

(L5 (it E
(iLiktD) (L jkH)

(1K) (rLpK

Figure 1: Computational cell to structured discretization.
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The calculation of the volume of the computational cells is based, in the more general

case, in the determination of the volume of a deformed hexahedron in the three-dimensional

space. This volume is determined by the summation of the volumes of the six tetrahedrons

which composes the given hexahedron. Figure 2 exhibits the division of a hexahedron in its
six tetrahedral components, as well the nodes of the vertices which define each tetrahedron.
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Figure 2: Definition of a hexahedron and its six tetrahedral components.

The volume of a tetrahedron is given by the calculation of the following determinant:

Xp Yo Zp
X y Z
VPABC == g g ! (6)
Xg  Ys Zg
Xe Yo Zc

where Xp, Yp, Zp, Xa, YA, Za, X8, VB, ZB, Xc, Yc and zc are Cartesian coordinates of the nodes
which define the tetrahedron represented in Fig. 3.

P
a - Fhax
Surface
/ F/
b
C ! $a j
[ ]
[
B
Figure 3: Reference tetrahedron. Figure 4: Flux area (hexahedron).
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The flux area of the hexahedron is calculated by the sum of half areas defined by the

vector external products éxB‘ and éxa‘,where a,b, ¢ and d are vectors formed by the

nodes which define a given flux surface, conform exhibited in Fig. 4. The physical quantity
O.SQ §x5‘+‘6x5‘) determines the flux area of each face, which is nothing more than the

area of a deformed rectangle.
The normal unity vector pointing outward at each flux face is calculated taking into

account the vector external product fi = éxﬁ/‘ axb ‘ , as shown in Fig. 5. An additional test is
necessary to verify if this unity vector in point inward or outward of the hexahedron. This test
is based on the following vector mixed product l(éxB)/‘éxBJo f, where f is the vector

formed by one of the nodes of the flux face under study and one node of the hexahedron that
be contained at the face immediately opposed, and “e” represents the vector inner product.
The positive signal indicates that the normal vector is pointing inward the hexahedron, what
imposes that it should be changed by their opposed vector.

Figure 5: Normal unity vector (hexahedron).
4. NUMERICAL SCHEME OF STEGER AND WARMING (1981)
4.1 Theory for the one-dimensional case
If the homogeneous Euler equations are put in characteristic form

OW /ot + AW /dx =0, @)

where W is the vector of characteristic variables (defined in Hirsch, 1990) and A is the
diagonal matrix of eigenvalues, the upwind scheme:

umt — u' =—At/Ax [5-+ (Uin - uiril)—'_ a (uin+1 —uy )]' (8)

where u is a scalar property, " = 0.5(a +[a]) and &~ = 0.5(& - [3]), can be applied to each of
the three characteristic variables separately, with the definitions

% =050, +[x,[) and A7 =050, ~[a,]) 9)
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for each of the eigenvalues of A

A= A, = u+a . (10)

This defines two diagonal matrices A*:

A 0.5(u +u])
A = 5 = 0.5(u +a|u+a) : (11)
/5 0.5(u-a+u—al)

where A" has only positive eigenvalues, A” only negative eigenvalues, and such that
A=A"+A and [A|=A"-A" or A =i +1; and [\ [=%] A, (12)

The quasi-linear coupled equations are obtained from the characteristic form by the
transformation matrix P (defined in Hirsch, 1990), with the Jacobian A satisfying

A=PAP™, resulting in 6Q/ot + AdQ/ox =0. (13)
Hence an upwind formulation can be obtained with the Jacobians
A" =PA'P™ and A =PA P withh A=A"+A and [Al=A"-A".  (14)
The fluxes associated with these split Jacobians are obtained from the remarkable
property of homogeneity of the flux vector f(Q). f(Q) is a homogeneous function of degree
one of Q. Hence, f = AQ and the following flux splitting can be defined:
f"=A"Q and f =AQ,with: f=Ff"+1f". (15)

This flux vector splitting, based on Eq. (9), has been introduced by Steger and Warming
(1981). The split fluxes f* and f ~ are also homogeneous functions of degree one in Q.

4.2 Arbitrary meshes
In practical computations one deal mostly with arbitrary meshes, considering either in a
finite volume approach or in a curvilinear coordinate system.

In both cases, the upwind characterization is based on the signs of the eigenvalues of the
matrix

K™ = Aefi=An, +Bn, +Cn,, (16)

where A, B and C are the Jacobian matrices written to the Cartesian system.
The fluxes will be decomposed by their components
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F"™ =Fen=En, +Fn, +Gn, (17)

and separated into positive and negative parts according to the sign of the eigenvalues of K™
as described above, considering the normal direction as a local coordinate direction.

For a general eigenvalue splitting, as Eq. (9), the normal flux projection, Eq. (17), is
decomposed by a Steger and Warming (1981) flux splitting as

(04
au + a()ﬁz - ké)nx
I-:l(n) :ﬂ aV+a(7Li2_7Li3>1y , (18)
Yy aw-+a(ls -5,
2 2 2 + +
ol PV W +avn(x§—x§)+a2—K2+k3
2 Y-
where the eigenvalues of the matrix K are defined as
A, =Veni=v ,A,=Veli+a and A,=Veli—-a, (19)

with vV being the flow velocity vector, and + sign indicates the positive or negative parts
respectively. The parameter o is defined as

o =2y —LA% +A% + A%, (20)
4.3 Definition of the RHS

The numerical scheme of Steger and Warming (1981) implemented in this work is based
on a finite volume formulation, where the fluxes at interface are calculated as

IEi,j—l/Z,k = (I—Ei,_j—l,k + 'E|+Jk )Si,j—lIZ,k ) ~i+1/2,j,k = (l—fill,j,k + E.ik )Si+1/2,j,k ; (21)
Fiiox = (Fi]+1,k + Fij,k )Si,j+1/2,k’ Fiiojx = (Fi:l,j,k + R Siaagk (22)
Fi,j,k—l/Z = (Fi,_j,k—l + Fi,+j,k )Si,j,k—llz ) Fi,j,k+1/2 = (Fi,_j,k+l + Fi,+j,k )Si,j,k+l/2’ (23)

where S is the flux area calculated at each interface according to the procedure described in
Section 3.

The Right-Hand-Side (RHS) of the Steger and Warming (1981) scheme, necessaries to
the resolution of the implicit scheme, is defined by:

RHS(SW)';, =—At j, /Vi,j,k (Fi,nj—llz,k + Rk T Filrox +FRlyojx t Rl + Fi,nj,k+1/2)' (24)
The terms in brackets at the RHS are a sum of normal fluxes because the correct signal of
these fluxes is considered in Egs. (21) to (23) by the signal of the normal unity vector
components.

This version of the flux vector splitting algorithm of Steger and Warming (1981) is first
order accurate in space. The second order version, with TVD properties, is implemented via a
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MUSCL procedure (details in Hirsch, 1990). In this work, the non-linear limiter employed in
the numerical simulations was the Minmod.

5 NUMERICAL SCHEME OF VAN LEER (1982)

The approximation to the integral Equation (1) to a hexahedron finite volume yields an
ordinary differential equation system with respect to time:
Vi,j,k in,j,k/dt:_Ri,j,k’ (25)

with Rijx representing the neat flux (residual) of the conservation of mass, of linear
momentum and of energy in the Vj;x volume. The residual is calculated as:

Ri,j,k = Ri+l/2,j,k - Ri—1/2,j,k + Ri,j+1/2,k - Ri,j—l/Z,k + Ri,j,k+1/2 - Ri,j,k—l/Z’ (26)

where R, 5 = R/, 4 inWhich “c” is related to the flow convective contribution.

The discrete convective flux calculated by the AUSM scheme (“Advection Upstream
Splitting Method”) can be interpreted as a sum involving the arithmetical average between the
right (R) and the left (L) states of the (i+%,),k) cell face, related to cells (i,j,k) and (i+1,j,k),
respectively, multiplied by the interface Mach number, and a scalar dissipative term, as shown
in Liou and Steffen Jr. (1993). Hence,

pa pa pa pa 0
pau pau pau pau S.p
1 1
Rk :‘S‘M,z,j,k EMi+1/2,j,k pav | -+ pav _E¢i+1/2,j,k pav | —| pav +S,p ,
paw paw paw paw S,p
_pa'H_L _pa'H_R _pa'H_R _paH_L L 0 divr2jk

(27)

where S, = [S S SZL/HK defines the normal area vector to the (i+%2,j,k) surface.

X y
The “a” quantity represents the speed of sound, calculated as a = \/yp/p . Mi+s,j« defines the
advective Mach number at the (i+%,j,k) face of the cell (i,j,k), which is calculated according

to Liou and Steffen Jr. (1993) as:
Mi+l/2,j,k :ME+MF;’ (28)

where the M*'" separated Mach numbers are defined by Van Leer (1982) as:

M, if M>1; 0, if M>1;
M* =|0.25M +1)*, if IM[<, and M~ =|-0.25M -1)°, if M| <1; (29)
0, if M <-1; M, if M<-1.

M. and Mg represent the Mach numbers associated to the left and right states, respectively.
The advection Mach number is defined as:
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M =(S,u+S,v+S,w)/(as)). (30)

The pressure at the (i+%2,),k) face of the (i,j,k) cell is calculated from a similar way:
Pii1s2jk = P+ Pr, (31)

with p*’" representing the pressure separation defined according to Van Leer (1982):

P, if M>1; 0, if M>1,
p*=|0.25p(M +1)*(2-M), if [M|<1; and p =|0.25p(M -1)*(2+M), if [M|<1; (32)
0, if M <-1; p, if M<-1.

The definition of the ¢ dissipation term determines the particular formulation to the
convective fluxes. The following choice corresponds to the Van Leer (1982) scheme,
according to Radespiel and Kroll (1995):

‘Mi+1/2,j,k‘7 if ‘Mi+1/2,j,k‘21;
Piaraik :¢\i/:1/2,j,k = ‘Mi+1/2,j,k‘+0'5(MR —1)2, if0<M,,; <L (33)
Mo ] +05(M +1), if ~1<M,,,,, <O0.

The right-hand-side of the Van Leer (1982) scheme, necessaries to the implicit resolution of
this algorithm, is defined as:

RHS(VL)irjj,k = _Ati,j,k /Vi,j,k (Rin+1/2,j,k - Rin—llz,j,k + Rirjj+1/2,k - Rirjj—llz,k + Rirjj,k+1/2 - Rir,]j,k—llz)' (34)

The terms in brackets at the RHS are a sum of differences of normal fluxes because the
correct signal of these fluxes is not completely considered in Eq. (27), requiring that the
correct signal should be considered explicitly.

This version of the Van Leer (1982) scheme is first order accurate in space. The second
order version, with TVD properties, is implemented via a MUSCL procedure (details in
Hirsch, 1990). In this work, the non-linear limiter employed in the numerical simulations was
the Minmod.

6 IMPLICIT FORMULATION

Both implicit schemes implemented in this work used backward Euler in time and ADI
approximate factorization to solve a three-diagonal system in each direction.

The ADI approximate factorization form to the implicit schemes of Steger and Warming
(1981) and of Van Leer (1982) is presented in three stages, each one associated with a
different coordinate direction:

[l +Ati,j,kA§+Ai_+l/2,j,k +Ati,j,kAé—Aij-l/2,j,k ]AQi*,j,k =RHS; ;5 (35)
[I + AL AVB 0k AL ATB o ]AQl*jk = AQi*,j,k ; (36)
[I +Ati,j,kAc+Ci7,j+1/2,k +Ati,j,kAg—Ci+,j+1/2,k ]Aanjﬂk = AQ:},k’ (37)
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where: RHS; « is defined by Egs. (24) or (34), depending if the Steger and Warming (1981) or
the Van Leer (1982) scheme is being solved, respectively; the difference operators are defined
as:

Aé() ()I+1jk_()ljk’ Ag—('):()i,j,k_(')i—l,j,k'Ai(') ()|j+1k_()|,j,k; (38)
ALC) = s = O 850 =0 giea =i A0 =0 e = O (39)

and the update of the conserved variable vector is proceeded as follows:

Q% =Qf« +AQ (40)

This system of 5x5 block three-diagonal linear equations is solved using LU decomposition
and the Thomas algorithm applied to systems of block matrices.
The splitting matrices A*, A", B*, B", C* and C" are defined as:

+7T -1 1 + +7 -1 - -1 + +
A" =T AT, A=TAT B =TAT B =TAT"C TcAcTe; ; (41)
C =TAT™ (42)

where the similar transformation matrix T and its inverse specified by:

h, h, h
A Uiy h;/ int =1%o hzulnt hypmt
[T]: h‘th"'hl Pint hyth AV hxpmt
g =Ny W NP how,
B A L R LT L U A
o
oc(uInt +hxamt) a( — a,m)
alv, +ha) alvy —ha) , (43)
oc(wInt +hza,m) ( W, hza,m)
a[d) +amt)/(V 1)+ inté] O‘[(‘b +aint)/(y 1)- aintél

h'x(l_(l)z/a-iznt)_(h'zvim y |nt) Pint x( ) |nt/a12nt h'z /pint +h;<(y_1)\/int/ai2r1t
h;/(l_q)z/aiznt)_( x Wing — z Int)/plnt -h /plnt +h |nt/a1nt h;(V_l)Vim/aiit
[Til] = hlz (1_¢2/ai2nt) ( y mt -h th) Pint y/pmt +hz ) lnt/a'mt -h /pmt +h ( 1)\/int/a'iznt
Bd) a'mt B[h;(aint _(Y _1)uim] B[ yamt ( 1)Vint]
(I)Z +a'int6 _B[h;(a'int _(Y _1)uint] B[hya'mt 1)Vint]
- h;/ /pint + h;( (Y _1)Wint /ai2nt - h;< (Y _1)/ai2nt |
hlx/pint + hIy (Y _l)Wint /aiit - h;/ (Y _1)/ai2nt

h‘ (Y 1) Wint / aiit - h'z (V - l)/ aiit ' (44)
B[hz Aint Y 1)Wint ] B(Y _1)
B[hz e +¥ — 1)Wint ] B(Y _1)
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with the general parameters defined according to:

o =pu /(W28 ), B=1/N2ppay ), 67 =0.5(y —1)fu?, +V +w?) (45)
and the specific parameter defined by:
0= h U +h vy, +how,,, (46)
with the metric terms to this generalized coordinate system defined as:
h, =S, i /\/int , h, =S, /Vint , h, =S, i /Vim and h, =SSN, , 47)

where S, ;, =n,S, S, ;, =n,S, S, ;;, =n,S are de Cartesian components of the flux area

and S is the flux area, calculated as described in section 3. The Viy is calculated as the
arithmetical average between the volumes which shares the flux interface. The normalized
metric terms are given by:

X _int z_int

h.=h,/h,, h,=h /h and h,=h,/h,. (48)

The interface values are obtained by arithmetical average between right and left states of the
interface flux face. Finally, the diagonal matrices of eigenvalues are determined by:

05 05
25T e
AL = 25" and A, = A ; (49)
Ny 25
I Ay i A5
BN | PV |
Ay NS
A = AL and A, = N , (50)
M ny
I " i A
e - i -
ey 25
AL = 25" and A, = 2y , (51)
2 25
i A5 | I Ay

with the eigenvalues of the Euler equations in the & mn and { directions, normal to the
respective cell faces, evaluated by:

h, +v._h +w._h

int" 'x int''y int' 'z

v, =u

A=V, Ay=V,, Ay =V, A, =V, +4a

h

int" 'n

A =

Vi, — Qi hn ) (52)
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where the eigenvalue splitting defined according to Steger and Warming (1981), Eq. (9). This
implicit formulation to the Left-Hand-Side (LHS) of the Steger and Warming (1981) and of
the Van Leer (1982) schemes is first order accurate in time and space. As the steady state
condition is the desirable solution, the spatial solution accuracy is determined by the RHS
accuracy, which is second order with the MUSCL implementation on both schemes, since the
LHS tends to zero in the steady condition.

7 SPATIALLY VARIABLE TIME STEP

The idea of a spatially variable time step consists in keeping constant a CFL number in
the calculation domain and to guarantee time steps appropriated to each mesh region during
the convergence process. The spatially variable time step can be defined by:

_ CFL(%s), ,,

At ., = , 53
O T (53)

where CFL is the Courant-Friedrichs-Lewis number to method stability; (As)i'jyk is a
characteristic length of information transport; and (}q|+a)i i is the maximum characteristic
speed of information transport, where a is the speed of sound. The characteristic length of
information transport, (As), ; ., can be determined by:

(As)i,j,k :[MIN(IMIN Cum )]i,j,k’ (54)

where Iy is the minimum side length which forms a computational cell and Cyy is the
minimum distance of baricenters among the computational cell and its neighbors. The

maximum characteristic speed of information transport is defined by (]q|+a)i'j'k, with
q=+u? +v2 +w? .
8 INITIAL AND BOUNDARY CONDITIONS
8.1 Initial condition
The initial condition adopted for the problems is the freestream flow in all calculation

domain (Jameson and Mavriplis, 1986, and Maciel, 2002). The vector of conserved variables
is expressed as follows:

t
M2
Q,=91 M_cos® M _senfcosy M _senBseny { L + “l : (55)
Wy-1) 2

where M., represents the freestream Mach number, 6 is the flow incidence angle downstream
the configuration under study and v is the angle in the configuration longitudinal plane.

8.2 Boundary conditions
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The different types of implemented boundary conditions are described as follows. They
are implemented in special cells named “ghost cells”, as referred in the Computational Fluid
Dynamics (CFD) community.
a) Wall - The Euler case requires the flux tangency condition. On the context of finite
volumes, this imposition is done considering that the tangent flow velocity component to the
wall of the ghost cell be equal to the tangent flow velocity component to the wall of the
neighbor real cell. At the same time, the normal flow velocity component to the wall of the
ghost cell should be equal to the negative of the normal flow velocity component to the wall
of the neighbor real cell. Batina (1993) suggests that these procedures lead to the following
expressions to the velocity components u, v and w of the ghost cells:

U, = (1-2n,n)u,., + (_2nxny)vreal +(=2n,n,)w,, ; (56)
Vy =(—2nynX W ea +(1—2nyny Wrea +(—2nynZ W, s (57)
W, =(=2n,n, e +(=2n,0 Vo +(1-2n,0, )W, . (58)

The fluid pressure gradient in the direction normal to the wall is equal to zero for the
inviscid case. The temperature gradient is equal to zero along the whole wall, according to the
condition of adiabatic wall. With these two conditions, a zero order extrapolation is performed
to the fluid pressure and to the temperature. It is possible to conclude that the fluid density
will also be obtained by zero order extrapolation. The energy conserved variable is obtained
from the state equation to a perfect gas, Eq. (3).

b) Far field - In the implementation of the boundary conditions in the mesh limit external
region to the ramp problem (external flow), it is necessary to identify four possible situations:
entrance with subsonic flow, entrance with supersonic flow, exit with subsonic flow and exit
with supersonic flow. These situations are described below.

b.1) Entrance with subsonic flow — Considering the one-dimensional characteristic relation
concept in the normal direction of flow penetration, the entrance with subsonic flow presents
four characteristic velocities of information propagation which have direction and orientation
point inward the calculation domain, which implies that the variables associated with these
waves cannot be extrapolated (Maciel, 2002). It is necessary to specify four conditions to
these four information. Jameson and Mavriplis (1986) indicate as appropriated quantities to be
specified the freestream density and the freestream Cartesian velocity components u, v and w.
Just the last characteristics, “(gs-a)”, which transports information from inside to outside of
the calculation domain, cannot be specified and will have to be determined by interior
information of the calculation domain. In this work, a zero order extrapolation to the pressure
is performed, being the total energy defined by the state equation of a perfect gas.

b.2) Entrance with supersonic flow - All variables are specified at the entrance boundary,
adopting freestream values.

b.3) Exit with subsonic flow - Four characteristics which govern the Euler equations proceed
from the internal region of the calculation domain. So, the density and the Cartesian velocity
components are extrapolated from the interior domain (Maciel, 2002). One condition should
be specified to the boundary. In this case, the pressure is fixed in the calculation domain exit,
keeping its respective value of freestream flow. Total energy is specified by the equation of
state to a perfect gas.

b.4) Exit with supersonic flow - The five characteristics which govern the Euler equations
proceed from the internal region of the calculation domain. It is not possible to specify
variable values at the exit. The zero order extrapolation is applied to density, Cartesian
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velocity components and pressure. Total energy is specified by the equation of state to a
perfect gas.

c) Entrance and exit — The entrance and exit boundaries are applied to the ramp and diffuser
problems. Boundary conditions which involve flow entrance in the calculation domain had
the flow properties fixed with freestream values. Boundary conditions which involve flow
exit of the computational domain used simply the zero order extrapolation to the
determination of properties in this boundary. This procedure is correct because the entrance
flow and the exit flow are no minimal supersonic to both studied examples.

9 RESULTS

Tests were performed in a microcomputer with processor AMD SEMPRON (tm) 2600+,
1.83GHz, and 512 Mbytes of RAM. As the interest of this work is steady state problems, one
needs to define a criterion which guarantees that such condition was reached. The criterion
adopted in this work was to consider a reduction of 3 orders in the magnitude of the
maximum residual in the domain, a typical criterion in the CFD community. The residual to
each cell was defined as the numerical value obtained from the discretized conservation
equations. As there are five conservation equations to each cell, the maximum value obtained
from these equations is defined as the residual of this cell. Thus, this residual is compared
with the residual of the others cells, calculated of the same way, to define the maximum
residual in the domain. The configuration downstream and the configuration longitudinal
plane angles were set equal to 0.0°.

The physical problems to be studied are the supersonic flow along a ramp with 20° of
inclination and the “cold gas” hypersonic flow along a diffuser also with 20° of inclination at
the contraction region. The ramp and diffuser configurations in the xy plane are described in
Figs. 6 and 7. The ramp spanwise length is 0.25m, while the diffuser spanwise length is
0.10m.

x
g
& g g
i |
v 20°
0.10m 0.10m 0. 10t
¥ 20°
0.15m 0.12m 0.15m
Figure 6: Ramp configuration in the xy plane. Figure 7: Diffuser configuration in the xy plane.
Ramp Diffuser
Finite difference representation | 61(£)x60(n)x10(¢) | 61(E)x51(n)x10()
Cells (Finite Volumes) 31,860 27,000
Nodes (Finite volumes) 36,600 31,110

Table 1: Computational data of the ramp and diffuser meshes.
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In the ramp problem, an oblique shock wave and an expansion fan are formed, at the
ramp and after the ramp, respectively. In the diffuser problem, the two oblique shock waves
originated by the convergent walls suffer interference after the throat and expansions waves
are formed after the contraction region in both upper and lower walls.

The computational data of the generated meshes to both problems are presented in Tab. 1.

9.1 Ramp physical problem

The freestream Mach number adopted as initial condition to this simulation was 3.0,
characterizing a supersonic flow regime.

Figures 8 to 11 show the density contours obtained by the Steger and Warming (1981)
first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming (1981)
high resolution TVD scheme using Minmod limiter and the Van Leer (1982) high resolution
TVD scheme using Minmod limiter, respectively. All solutions present good quality
characteristics with the shock being well captured by all schemes. The Van Leer (1982) TVD
scheme using Minmod limiter presents the densest field in comparison with the others

schemes.
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Figure 8: Density contours (SW-1a). Figure 9: Density contours (VL-1a).
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Figure 10: Density contours (SW-2a-MIN). Figure 11: Density contours (VL-2a-MIN).

Figures 12 to 15 exhibit the pressure contours obtained by the Steger and Warming
(1981) first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming
(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using
Minmod limiter, respectively. The most severe pressure field was obtained by the Steger and
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Warming (1981) TVD scheme using Minmod limiter. Good qualitative characteristics are
observed in all solutions with the oblique shock wave appropriately captured.
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Figure 14: Pressure contours (SW-2a-MIN).
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Figure 16: Mach contours (SW-1a). Figure 17: Mach contours (VL-1a).

Figures 16 to 19 show the Mach number contours obtained by the Steger and Warming
(1981) first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming
(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using
Minmod limiter, respectively. The Van Leer (1982) TVD scheme using Minmod limiter
presents the most intense Mach number field in comparison with the others schemes.
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Figure 18: Mach contours (SW-2a-MIN). Figure 19: Mach contours (VL-2a-MIN).

Figure 20 presents the wall pressure distributions obtained with the Steger and Warming
(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using
Minmod limiter, evaluated at the computational plane k = kmax/2, where “kmax” is the
maximum number of points at the z direction. They are compared with exact solutions of the
oblique shock wave and the Prandtl-Meyer expansion theories. Both schemes represent
accurately the pressure plateau at the ramp, agreeing with the oblique shock wave theory.
However, the best width of the pressure plateau is determined by the Steger and Warming
(1981) TVD scheme using Minmod limiter. Both schemes detect appropriately the pressure at
the end of the expansion fan, after the ramp.
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Figure 20: Wall pressure distributions.
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Figure 21 exhibits the wall pressure distributions obtained only with the Steger and
Warming (1981) versions, first order and TVD variant. They are again compared with exact
solutions of the oblique shock wave and the Prandtl-Meyer expansion theories. As expected,
the TVD variant presents better pressure width at the pressure plateau, appropriately
estimation of the pressure at the ramp and better pressure at the end of the expansion fan.
Figure 22 shows the wall pressure distributions obtained only with the Van Leer (1982)
versions, first order and TVD variant. Opposed to the behavior observed with the Steger and
Warming (1981) TVD scheme, the first order Van Leer (1982) scheme presents the best
pressure width at the pressure plateau. However, the pressure at the ramp and the pressure at
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the end of the expansion fan are better estimated by the TVD variant of the VVan Leer (1982)

scheme.
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Figure 21: Wall pressure distributions (SW). Figure 22: Wall pressure distributions (VL).

One way to quantitatively verify if the solutions generated by each scheme are
satisfactory consists in determining the shock angle of the oblique shock wave, 3, measured in
relation to the initial direction of the flow field. Anderson Jr. (1984) (pages 352 and 353)
presents a diagram with values of the shock angle, B, to oblique shock waves. The value of
this angle is determined as function of the freestream Mach number and of the deflection
angle of the flow after the shock wave, ¢. To ¢ = 20° (ramp inclination angle) and to a
freestream Mach number equals to 3.0, it is possible to obtain from this diagram a value to 8
equals to 37.7°. Using a transfer in Figures 12 to 15, considering the xy plane, it is possible to
obtain the values of 3 to each scheme, as well the respective errors shown in Tab. 2. Basically,
all schemes predicted accurately the shock angle of the oblique shock wave, with errors less
than 1%. The exception is the first order scheme of VVan Leer (1982).

Algorithm: B (°) Error (%)
Steger and Warming (1981) — 1a 38.0 0.796
Steger and Warming (1981) — 2a — Minmod 38.0 0.796
Van Leer (1982) — la 38.5 2.122
Van Leer (1982) — 2a — Minmod 37.4 0.796

Table 2: Shock angle of the oblique shock wave at the ramp and percentage error to each scheme.

9.2 Diffuser physical problem

The freestream Mach number adopted as initial condition to this simulation was 7.0,
characterizing a “cold gas” hypersonic flow regime. Results with the Steger and Warming
(1981) scheme, in its first order and second order versions, and the VVan Leer (1982) scheme,
also in its first order and second order versions, are presented.

Figures 23 to 26 show the density contours obtained by the Steger and Warming (1981)
first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming (1981)
TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using Minmod
limiter, respectively. All solutions present good quality characteristics with the shock
interference being well captured by all schemes. The Van Leer (1982) TVD scheme using
Minmod limiter presents the densest field in comparison with the others schemes.

Figures 27 to 30 exhibit the pressure contours obtained by the Steger and Warming
(1981) first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming
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(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using
Minmod limiter, respectively. The Van Leer (1982) TVD scheme using Minmod limiter
presents the most severe pressure field in comparison with the others schemes.
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Figure 25: Density contours (SW-2a-MIN).
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Figure 27: Pressure contours (SW-1a). Figure 28: Pressure contours (VL-1a).

Figures 31 to 34 show the Mach number contours obtained by the Steger and Warming
(1981) first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming
(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using
Minmod limiter, respectively. The first order scheme of Steger and Warming (1981) presents
the most intense Mach number field.

Figure 35 exhibits the lower wall pressure distributions obtained only with the Steger and
Warming (1981) versions, first order and TVD variant. They are again compared with exact
solutions of the oblique shock wave and the Prandtl-Meyer expansion theories. As expected,
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the TVD variant present better pressure width at the pressure plateau, underprediction of the
pressure at the ramp (convergent region of the diffuser), also observed in the first order
version, and better pressure at the end of the expansion fan. Figure 36 shows the lower wall
pressure distributions obtained only with the VVan Leer (1982) versions, first order and TVD
variant. Again, opposed to the behavior observed with the Steger and Warming (1981) TVD
scheme, the first order Van Leer (1982) scheme presents the best pressure width at the
pressure plateau. The pressure at the ramp is underpredicted by all versions of the Van Leer
(1982) scheme and the pressure at the end of the expansion fan is better estimated by the first
order version of the VVan Leer (1982) scheme.
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Figure 29: Pressure contours (SW-2a-MIN). Figure 30: Pressure contours (VL-2a-MIN).
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Figure 33: Mach contours (SW-2a-MIN). Figure 34: Mach contours (VL-2a-MIN).

Figure 37 exhibits the lower wall pressure distributions involving the Steger and
Warming (1981) and the Van Leer (1982) schemes, in all their versions. The best compromise
involving qualitative and quantitative features are observed with the Steger and Warming
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(1981) TVD variant, with close pressure in comparison with the pressure plateau and
appropriately pressure width at the ramp region (convergent region of the diffuser).
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Lower wall Upper wall
Algorithm B (°) Error (%) B (°) | Error (%)
Steger and Warming (1981) — la 28.0 1.818 28.6 4.000
Steger and Warming (1981) —2a- MIN | 27.2 1.091 27.7 0.727
Van Leer (1982) — 1a 28.0 1.818 28.9 5.091
Van Leer (1982) — 2a - MIN 27.0 1.818 28.2 2.545

Table 3: Shock angles of the oblique shock waves at lower and upper walls of the diffuser and
percentage errors to each scheme.

Another way to check the accuracy of the Steger and Warming (1981) scheme and the
Van Leer (1982) scheme in their two variants to this problem consists in determining the
shock angle B of the oblique shock waves at the lower and upper walls of the diffuser.
Following the same analysis described in the ramp problem, to ¢ = 20°, angle of inclination of
the convergent region of the diffuser and of the deflection of the flow after the shock wave,
and to a freestream Mach number equals to 7.0, it is possible to find from Anderson Jr. (1984)
the value B = 27.5°. Using a transfer in Figures 27 to 30, in the xy plane, it is possible to
obtain the values of the oblique shock wave angles at the upper and lower walls and
respective percentage errors shown in Tab. 3.
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As can be observed from Table 3, the TVD version of the Steger and Warming (1981)

scheme presents the best values to the shock angles of the oblique shock waves at the lower

and upper wall of the diffuser in comparison with the others schemes, resulting in the best
choice to this problem.

9.3 Numerical data of the simulations

Table 4 shows the numerical data of the simulations: maximum CFL number, number of
iterations to convergence and computational cost of each scheme analyzed in this work.

Ramp Diffuser
Algorithm CFL | Iterations | CFL | iterations | Cost™
Steger and Warming (1981) — la 3.0 98 3.6 99 0.0000711
Steger and Warming (1981) - MIN | 2.6 242 1.3 365 0.0000931
Van Leer (1982) - 1a 2.4 121 3.1 113 0.0000703
Van Leer (1982) — MIN 1.9 182 1.5 357 0.0000742
U Measured in seconds/per cell/per iteration.

Table 4: Numerical data of the simulations.

As can be observed from Table 4, the first order scheme of Van Leer (1982) is the
cheapest, while the Steger and Warming (1981) TVD scheme using Minmod limiter is the
most expensive. It is approximately 32.43% more expensive than the first order Van Leer
(1982) scheme. It is possible to note that CFL numbers above 1.0 could be used, however, the
maximum CFL number employed by all schemes was 3.6, which is still restrictive enough.
One way to increase the maximum number of CFL to each scheme is the use of relaxation
schemes, like Line Gauss-Seidel (LGS), which eliminates the error of the approximate
factorization. This is the proposal to the next work involving implicit schemes by this author.

10 CONCLUSIONS

In the present work, the Steger and Warming (1981) and the Van Leer (1982) schemes
are implemented, on a finite volume context and using a structured spatial discretization, to
solve the Euler equations in the three-dimensional space. The Steger and Warming (1981) and
the Van Leer (1982) schemes are flux vector splitting ones and in their original
implementation are first order accurate. A MUSCL approach is implemented in these schemes
aiming to obtain second order spatial accuracy. The Minmod non-linear limiter is employed to
guarantee such accuracy and TVD high resolution properties. Both schemes are implemented
following an implicit formulation. The flux vector splitting schemes employ approximate
factorizations in ADI form. Both schemes are first order accurate in time. The algorithms are
accelerated to the steady state solution using a spatially variable time step procedure, which
has demonstrated effective gains in terms of convergence rate (Maciel, 2005 and 2008). Both
schemes are applied to the solution of the physical problems of the supersonic flow along a
ramp and the “cold gas” hypersonic flow along a diffuser.

The results have demonstrated that the most accurate results were obtained with the
Steger and Warming (1981) TVD high resolution scheme. The Steger and Warming (1981)
TVD scheme using Minmod limiter has yielded the most severe pressure field in the ramp
problem, which indicates this one as a more conservative scheme to the prediction of
moderate design conditions. The pressure distribution along the ramp was well predicted by
both schemes. In the estimation of the angle of the oblique shock wave, both schemes
presented appropriate predictions (errors less than 1.0%), with the exception of the first order
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scheme of Van Leer (1982). In the diffuser problem, the most severe pressure field was
estimated by the Van Leer (1982) TVD scheme, which indicates this scheme to more severe
design conditions of aerospace vehicles. The lower wall pressure distribution was more
appropriately described by the Steger and Warming (1981) scheme. In the prediction of the
shock angles of the oblique shock waves at the lower and upper walls of the diffuser, the
Steger and Warming (1981) TVD scheme was the best. In terms of computational cost, the
Van Leer (1982) versions are cheaper than the Steger and Warming (1981) versions.

In terms of implicit numerical implementation, all schemes used CFL numbers in the
range from 1.3 to 3.6, which indicates that the error introduced by the approximate
factorization limits the rate of convergence of the schemes severely, although convergence in
less than 100 iterations were obtained. A suggestion to improve the rate of convergence and to
increase the range of CFL numbers consists in the use of relaxation schemes that eliminates
the error of the approximate factorization. This is the objective of future works to be
accomplished by this author, although other studies still with ADI schemes will be performed,
with others schemes, aiming better evaluate the potential of this tool.

As final conclusion, the present author recommends the Steger and Warming (1981) TVD
scheme to obtain more accurate solutions in the three-dimensional space. The Van Leer
(1982) TVD scheme, due to its confirmed robustness and more conservative properties, could
be used in the initial design phase of aerospace vehicles, where less refined results are
characteristics.
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