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Abstract. In the present work, the Steger and Warming and the Van Leer schemes are implemented, 
on a finite volume context and using a structured spatial discretization, to solve the Euler equations in 
the three-dimensional space. The Steger and Warming and the Van Leer schemes are flux vector 
splitting ones and in their original implementation are first order accurate. A MUSCL approach is 
implemented in these schemes aiming to obtain second order spatial accuracy. The Minmod non-linear 
limiter is employed to guarantee such accuracy and TVD high resolution properties. Both schemes are 
implemented following an implicit formulation. The flux vector splitting schemes employ approximate 
factorizations in ADI form. Both schemes are first order accurate in time. The algorithms are 
accelerated to the steady state solution using a spatially variable time step procedure, which has 
demonstrated effective gains in terms of convergence rate, as shown in Maciel. Both schemes are 
applied to the solution of the physical problems of the supersonic flow along a ramp and the “cold 
gas” hypersonic flow along a diffuser. The results have demonstrated that the most accurate results are 
obtained with the Steger and Warming TVD high resolution scheme. 
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1. INTRODUCTION 
 
 Conventional non-upwind algorithms have been used extensively to solve a wide variety 
of problems (Kutler, 1975, and Steger, 1978). Conventional algorithms are somewhat 
unreliable in the sense that for every different problem (and sometimes, every different case in 
the same class of problems) artificial dissipation terms must be specially tuned and judicially 
chosen for convergence. Also, complex problems with shocks and steep compression and 
expansion gradients may defy solution altogether. 
 Upwind schemes are in general more robust but are also more involved in their derivation 
and application. Some upwind schemes that have been applied to the Euler equations are: Roe 
(1981), Steger and Warming (1981) and Van Leer (1982). Some comments about these 
methods are reported below: 
 Roe (1981) presented a work that emphasized that several numerical schemes to the 
solution of the hyperbolic conservation equations were based on exploring the information 
obtained in the solution of a sequence of Riemann problems. It was verified that in the 
existent schemes the major part of these information was degraded and that only certain 
solution aspects were solved. It was demonstrated that the information could be preserved by 
the construction of a matrix with a certain “U property”. After the construction of this matrix, 
its eigenvalues could be considered as wave velocities of the Riemann problem and the UL-UR 
projections over the matrix’s eigenvectors would be the jumps which occur between 
intermediate stages. 
 Steger and Warming (1981) developed a method that used the remarkable property that 
the non-linear flux vectors of the inviscid gasdynamic equations in conservation law form 
were homogeneous functions of degree one of the vector of conserved variables. This 
property readily permitted the splitting of the flux vectors into subvectors by similarity 
transformations so that each subvector had associated with it a specified eigenvalue spectrum. 
As a consequence of flux vector splitting, new explicit and implicit dissipative finite-
difference schemes were developed for first-order hyperbolic systems of equations. 
 Van Leer (1982) suggested an upwind scheme based on the flux vector splitting concept. 
This scheme considered the fact that the convective flux vector components could be written 
as flow Mach number polynomial functions, as main characteristic. Such polynomials 
presented the particularity of having the minor possible degree and the scheme had to satisfy 
seven basic properties to form such polynomials. This scheme was presented to the Euler 
equations in Cartesian coordinates and three-dimensions. 
 Second order spatial accuracy can be achieved by introducing more upwind points or 
cells in the schemes. It has been noted that the projection stage, whereby the solution is 
projected in each cell face (i-½,i+½) on piecewise constant states, is the cause of the first 
order space accuracy of the Godunov schemes (Hirsch, 1990). Hence, it is sufficient to 
modify the first projection stage without modifying the Riemann solver, in order to generate 
higher spatial approximations. The state variables at the interfaces are thereby obtained from 
an extrapolation between neighboring cell averages. This method for the generation of second 
order upwind schemes based on variable extrapolation is often referred to in the literature as 
the MUSCL (“Monotone Upstream-centered Schemes for Conservation Laws”) approach. 
The use of non-linear limiters in such procedure, with the intention of restricting the 
amplitude of the gradients appearing in the solution, avoiding thus the formation of new 
extrema, allows that first order upwind schemes be transformed in TVD high resolution 
schemes with the appropriate definition of such non-linear limiters, assuring monotone 
preserving and total variation diminishing methods. 
 Traditionally, implicit numerical methods have been praised for their improved stability 
and condemned for their large arithmetic operation counts (Beam and Warming, 1978). On 
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the one hand, the slow convergence rate of explicit methods become they so unattractive to 
the solution of steady state problems due to the large number of iterations required to 
convergence, in spite of the reduced number of operation counts per time step in comparison 
with their implicit counterparts. Such problem is resulting from the limited stability region 
which such methods are subjected (the Courant condition). On the other hand, implicit 
schemes guarantee a larger stability region, which allows the use of CFL numbers above 1.0, 
and fast convergence to steady state conditions. Undoubtedly, the most significant efficiency 
achievement for multidimensional implicit methods was the introduction of the Alternating 
Direction Implicit (ADI) algorithms by Douglas (1955), Peaceman and Rachford (1955), and 
Douglas and Gunn (1964), and fractional step algorithms by Yanenko (1971). ADI 
approximate factorization methods consist in approximating the Left Hand Side (LHS) of the 
numerical scheme by the product of one-dimensional parcels, each one associated with a 
different spatial coordinate direction, which retract nearly the original implicit operator. These 
methods have been largely applied in the CFD community and, despite the fact of the error of 
the approximate factorization, it allows the use of large time steps, which results in significant 
gains in terms of convergence rate in relation to explicit methods. 
 In the present work, the Steger and Warming (1981) and the Van Leer (1982) schemes 
are implemented, on a finite volume context and using a structured spatial discretization, to 
solve the Euler equations in the three-dimensional space. The Steger and Warming (1981) and 
the Van Leer (1982) schemes are flux vector splitting ones and in their original 
implementation are first order accurate. A MUSCL approach is implemented in these schemes 
aiming to obtain second order spatial accuracy. The Minmod non-linear limiter is employed to 
guarantee such accuracy and TVD high resolution properties. Both schemes are implemented 
following an implicit formulation. The flux vector splitting schemes employ approximate 
factorizations in ADI form. Both schemes are first order accurate in time. The algorithms are 
accelerated to the steady state solution using a spatially variable time step, which has 
demonstrated effective gains in terms of convergence rate (Maciel, 2005 and 2008). Both 
schemes are applied to the solution of the physical problems of the supersonic flow along a 
ramp and the “cold gas” hypersonic flow along a diffuser. The results have demonstrated that 
the most accurate results are obtained with the Steger and Warming (1981) TVD high 
resolution scheme. 
 
2. EULER EQUATIONS 
 
 The fluid movement is described by the Euler equations, which express the conservation 
of mass, of linear momentum and of energy to an inviscid, heat non-conductor and 
compressible mean, in the absence of external forces. In the integral and conservative forms, 
employing a finite volume formulation and using a structured spatial discretization, to three-
dimensional simulations, these equations can be represented by: 
 

                                      0  S zeyexeV
dSnGnFnEQdVt ,                                      (1) 

 
where Q is written to a Cartesian system, V is a cell volume, which corresponds to an 
hexahedron in the three-dimensional space, nx, ny and nz are the components of the normal 
unity vector pointing outward to the flux face, S is the surface area and Ee, Fe and Ge represent 
the components of the convective flux vector. Q, Ee, Fe and Ge are represented by: 
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The quantities that appear above are described as follows:  is the fluid density, u, v and w are 
the Cartesian components of the flow velocity vector in the x, y and z directions, respectively; 
e is the total energy per unity volume of the fluid; and p is the fluid static pressure. 
 The Euler equations were nondimensionalized in relation to the freestream density, , 
and the freestream speed of sound, a, for the studied problems. To allow the solution of the 
matrix system of five equations to five unknowns described by Eq. (1), it is employed the 
state equation of perfect gases presented below: 
 
                                                  )wvu(.e)(p 222501  ,                                       (3) 
 
where  is the ratio of specific heats at constant pressure and volume, respectively, which 
assumed a value 1.4 to the atmospheric air. The total enthalpy is determined by: 
 
                                                                     peH .                                                        (4) 
 
3. GEOMETRICAL CHARACTERISTICS OF THE SPATIAL DISCRETIZATION  
 
 Adopting in Equation (1) Q as a constant on a computational cell and using a structured 
mesh notation to the fluid and flow quantities, it is possible to write: 
 

                                    
k,j,iS k,j,ik,j,izeyexek,j,ik,j,i dS)nGnFnE(VtQ 1                      (5) 

 
 A given computational cell in this notation is composed by the following nodes: (i,j,k), 
(i+1,j,k), (i+1,j+1,k), (i,j+1,k), (i,j,k+1), (i+1,j,k+1), (i+1,j+1,k+1) and (i,j+1,k+1). Figure 1 
shows a representation of the computational cell, which is a hexahedron in three-dimensions. 
 

 
Figure 1: Computational cell to structured discretization. 
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 The calculation of the volume of the computational cells is based, in the more general 
case, in the determination of the volume of a deformed hexahedron in the three-dimensional 
space.  This volume is determined by the summation of the volumes of the six tetrahedrons 
which composes the given hexahedron. Figure 2 exhibits the division of a hexahedron in its 
six tetrahedral components, as well the nodes of the vertices which define each tetrahedron. 
 

 
Figure 2: Definition of a hexahedron and its six tetrahedral components. 

 
 The volume of a tetrahedron is given by the calculation of the following determinant: 
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V  ,                                                                                           (6) 

 
where xP, yP, zP, xA, yA, zA, xB, yB, zB, xC, yC and zC are Cartesian coordinates of the nodes 
which define the tetrahedron represented in Fig. 3.  
 

  
                   Figure 3: Reference tetrahedron.                                      Figure 4: Flux area (hexahedron). 
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 The flux area of the hexahedron is calculated by the sum of half areas defined by the 

vector external products bxa


 and dxc


, where a


, b


, c


 and d


 are vectors formed by the 

nodes which define a given flux surface, conform exhibited in Fig. 4. The physical quantity 

 dxcbxa.


50  determines the flux area of each face, which is nothing more than the 

area of a deformed rectangle. 
 The normal unity vector pointing outward at each flux face is calculated taking into 

account the vector external product bxabxan


 , as shown in Fig. 5. An additional test is 

necessary to verify if this unity vector in point inward or outward of the hexahedron. This test 

is based on the following vector mixed product   fbxa)bxa(


 , where f


 is the vector 

formed by one of the nodes of the flux face under study and one node of the hexahedron that 
be contained at the face immediately opposed, and “” represents the vector inner product. 
The positive signal indicates that the normal vector is pointing inward the hexahedron, what 
imposes that it should be changed by their opposed vector. 
 

 
Figure 5: Normal unity vector (hexahedron). 

 
4. NUMERICAL SCHEME OF STEGER AND WARMING (1981) 
  
4.1 Theory for the one-dimensional case 
 
 If the homogeneous Euler equations are put in characteristic form 

 
                                                            0 xWtW ,                                                 (7) 
 
where W is the vector of characteristic variables (defined in Hirsch, 1990) and  is the 
diagonal matrix of eigenvalues, the upwind scheme: 
 
                                         n

i
n
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n
i uuâuuâxtuu  
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
11

1 ,                              (8) 

 
where u is a scalar property,  ââ.â  50  and  ââ.â  50 , can be applied to each of 

the three characteristic variables separately, with the definitions 
 
                                           lll .  50    and    lll .  50                                   (9) 
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for each of the eigenvalues of  
 

                                              .                                (10) 
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This defines two diagonal matrices : 
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where + has only positive eigenvalues, - only negative eigenvalues, and such that 
 
                and          or      and     lll

  lll .            (12) 

 
 The quasi-linear coupled equations are obtained from the characteristic form by the 
transformation matrix P (defined in Hirsch, 1990), with the Jacobian A satisfying 
 
                                     1 PPA , resulting in 0 xQAtQ .                               (13) 
 
Hence an upwind formulation can be obtained with the Jacobians 
 
               1  PPA    and   1  PPA , with:   AAA  and   AAA .        (14) 

 
 The fluxes associated with these split Jacobians are obtained from the remarkable 
property of homogeneity of the flux vector f(Q). f(Q) is a homogeneous function of degree 
one of Q. Hence, f = AQ and the following flux splitting can be defined: 
 
                                   and   , with: .                              (15) QAf   QAf     fff
 
This flux vector splitting, based on Eq. (9), has been introduced by Steger and Warming 
(1981). The split fluxes  and  are also homogeneous functions of degree one in Q. f f
 
4.2 Arbitrary meshes 
 
 In practical computations one deal mostly with arbitrary meshes, considering either in a 
finite volume approach or in a curvilinear coordinate system. 
 In both cases, the upwind characterization is based on the signs of the eigenvalues of the 
matrix 
 

                                                      zyx
)n( CnBnAnnAK 


,                                    (16) 

 
where A, B and C are the Jacobian matrices written to the Cartesian system. 
 The fluxes will be decomposed by their components 
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and separated into positive and negative parts according to the sign of the eigenvalues of K(n) 
as described above, considering the normal direction as a local coordinate direction. 
 For a general eigenvalue splitting, as Eq. (9), the normal flux projection, Eq. (17), is 
decomposed by a Steger and Warming (1981) flux splitting as 
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where the eigenvalues of the matrix K are defined as 
 
                                       nvnv 


1 , anv 


2    and   anv 


3 ,                    (19) 

 
with  being the flow velocity vector, and  sign indicates the positive or negative parts 
respectively. The parameter  is defined as 

v


 
                                                                      32112 .                                      (20) 

 
4.3 Definition of the RHS 
 
 The numerical scheme of Steger and Warming (1981) implemented in this work is based 
on a finite volume formulation, where the fluxes at interface are calculated as 
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 S is the flux area calculated at each interface according to the procedure described in 
ection 3. 

on of the implicit scheme, is defined by: 
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 The Right-Hand-Side (RHS) of the Steger and Warming (1981) scheme, necessaries to 
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he terms in brackets at the RHS are a sum of normal fluxes because the correct signal of 
ese fluxes is considered in Eqs. (21) to (23) by the signal of the normal unity vector 

 in space. The second order version, with TVD properties, is implemented via a 

 
T
th
components. 
 This version of the flux vector splitting algorithm of Steger and Warming (1981) is first 
order accurate
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MUSCL procedure (details in Hirsch, 1990). In this work, the non-linear limiter employed in 
the numerical simulations was the Minmod. 
 
5 NUMERICAL SCHEME OF VAN LEER (1982) 

 hexahedron finite volume yields an 
dinary differential equation system with respect to time: 

  
 The approximation to the integral Equation (1) to a
or
 
                                                           k,j,ik,j,ik,j,i RdtdQV  ,                                              (25) 

x (residual) of the 
omentum and of energy in the Vi,j,k volume. The residual is calculated as: 
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 The discrete convective flux calculated by the AUSM scheme (“Advection Upstream 
Splitting Method”) can be interpreted as a sum involving the arithmetical average betw
right (R) and the left (L) states of the (i+½,j,k) cell face, related to cells (i,j,k) and (i+1,j,k), 
respectively, multiplied by the interface Mach number, and a scalar dissipative term, as shown 
in Liou and Steffen Jr. (1993). Hence, 
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(27) 

           

where  defines the normal area vector to the (i+½,j,k) sur T
k,j,/izyxk,j,/i SSSS

2121  

antity represents the speed

face. 

The “a” qu  of sound, calculated as  pa . Mi+½,j,k defines the 

to Liou and Steffen Jr. (1993) as: 
 
                                                       

advective Mach number at the (i+½,j,k) face of the cell (i,j,k), which is calculated according 

    ,                                               (28) 

       

 
  RLk,j,/i MMM 21

 
where the M+/- separated Mach numbers are defined by Van Leer (1982) as: 
 

     ;

;Mif,

Mif,M.

;Mif,M 1 
  ;

.Mif,M

Mif,M.

;Mif,0
M 1

10

1250 2 




 
    and   M 1

1

1250

1
2 





 



   (29) 

ML and MR represent the Mach numbers associated to the left and right states, respectively. 
he advection Mach number is defined as: 

 

T
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                                                             SawSvSuSM zyx  .                                     (30) 

 
 The pressure at the (i+½,j,k) fac d from a similar way: e of the (i,j,k) cell is calculate

  (31) 

on defined accordi

       

 
                                                                   

  RLk,j,/i ppp 21 ,                                           

 
with p+/- representing the pressure separati ng to Van Leer (1982): 
 

      






  ;Mif,p 1

   






 Mif,0




;Mif,

Mif,MMp.p

10

121250 2 ;  and  




.Mif,p

Mif,MMp.

;

p

1

121250

1
2 ;  (32) 

 The definition of the  dissipation term determines the particular formulation to the 
onvective fluxes. The following choice corresponds to the Van Leer (1982) scheme, 

 

c
according to Radespiel and Kroll (1995): 
 

 
 







 ,M k,j,/i 21

          

















.Mif,M.M

;Mif,M.M

;Mif

k,j,/iLk,j,/i

k,j,/iRk,j,/i

k,j,/i

VL
k,j,/ik,j,/i

01150

10150

1

21
2

21

21
2

21

21

2121       (33) 

 
The right-hand-side of the Van Leer (1982) scheme, necessaries to the implicit resolution of 

is algorithm, is defined as: th
 
  n

/k,j,i
n

/k,j,i
n

k,/j,i
n

k,/j,i
n

k,j,/i
n

k,j,/i RRRRRR 212121212121   . (34) 

he terms in brackets at the RHS are a sum of differences of normal fluxes because the 
orrect signal of these fluxes is not completely considered in Eq. (27), requiring that the 

mented via a MUSCL procedure (details in 
irs

T FORMULATION 

nted in this work used backward Euler in time and ADI 
pproximate factorization to solve a three-diagonal system in each direction. 

sociated with a 

k,j,ik,j,i
n

k,j,i Vt)VL(RHS 
 
T
c
correct signal should be considered explicitly.  
 This version of the Van Leer (1982) scheme is first order accurate in space. The second 
order version, with TVD properties, is imple
H ch, 1990). In this work, the non-linear limiter employed in the numerical simulations was 
the Minmod. 
 
6 IMPLICI
 
 Both implicit schemes impleme
a
 The ADI approximate factorization form to the implicit schemes of Steger and Warming 
(1981) and of Van Leer (1982) is presented in three stages, each one as
different coordinate direction: 
  
                               k,j,i

*
k,j,ik,j,/ik,j,ik,j,/i RHSQAtA  






 2121k,j,itI  

 ;                      (35) 

  *
k,j,i

**
k,j,ik,/j,ik,j,ik,/j,ik,j,i QQBtBtI  









 2121                             ;                         (36) 

                               **
k,j,i

n
k,j,ik,/j,ik,j,ik,/j,ik,j,i QQCtCtI  











1
2121 ,                        (37) 
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where: RHSi,j,k is d  Warming (1981) or efined by Eqs. (24) or (34), depending if the Steger and
e Van Leer (1982) scheme is being solved, respectively; the difference operators are defined th

as: 
 
                                      ;            (38) k,j,ik,j,i   1 , k,j,ik,j,i 1  , k,j,ik,j,i   1

                          k,j,ik,j,i 1

  ,       k,j,ik,j,i  


 1 ,       1


  k,j,ik,j,i .            (39) 

te of the conserved variable vector is proceeded as follows: 

                           (40) 

al linear equations i
nd the Thomas algorithm applied to systems of block matrices. 

+ - + - + -

;       (41) 

                                                               ,                                                     (42) 

 and its invers

 
and the upda
 
                                                              11   n

k,j,i
n

k,j,i
n

k,j,i QQQ .                   

 
This system of 5x5 block three-diagon s solved using LU decomposition 
a
 The splitting matrices A , A , B , B , C  and C  are defined as: 
 

1  1            TTA , 1



 TTA , 

 TTB ,  TTB 1 , 1





  TTC

 1





  TTC  

 
where the similar transformation matrix T e specified by: 
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with the general parameters defined according to: 
 

   intint a2 ,  intint a 21 ,   2222 0.                     15 intintint wvu              (45) 

 
and the specific parameter defined by: 
 

                                                     int
'
zint

'
yint

'
x whvhuh

~   ,                                              (46) 

ith the metric terms to this generalized coordinate system defined as: 

                  

 
w
 

 intint_xx VSh  , intint_yy VSh  , intint_zz VSh     and   intn VSh  ,     (47) 

here , 
 

 SnS xint_x  SnS yint_y  , SnS zint_z   w are de Cartesian components of the flux area 

 as described in section
rithmetical average between the volumes which shares the flux interface. The normalized 

                 

and S is the flux area, calculated  3. The Vint is calculated as the 
a
metric terms are given by: 
 

 nxx hhh ' ,                       nyy hhh '    and   nz h .                                  (48) '
z hh 

erface value are obtained y arithmetic

  and 

             and   ;     (50) 

             and   ,     (51) 

 
with the eigenvalues of the Euler equations in the ,  and  directions, normal to the 
respective cell faces, evaluated by: 
 

 
The int s  b al average between right and left states of the 
interface flux face. Finally, the diagonal matrices of eigenvalues are determined by: 
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where the eigenvalue splitting defined according to Steger and Warming (1981), Eq. (9). This 
implicit formulation to the Left-Hand-Side (LHS) of the Steger and Warming (1981) and of 
the Van Leer (1982) schemes is first order accurate in time and space. As the steady state 

on is the desirable solution, the sp lution accuracy is determined by the RHS 
accuracy, which is second order with the MUSCL implementation on both schemes, since the 
LHS tends to zero in the steady condition. 

 time step consists in keeping constant a CFL number in 
e calculation domain and to guarantee time steps appropriated to each mesh region during 
e convergence process. T  spatia  variable time step can be defined by: 

conditi atial so

 
7 SPATIALLY VARIABLE TIME STEP 
 
 The idea of a spatially variable
th
th he lly
 

                                                              
 

 
k,j,i

k,j,i
k,j,i aq

sCFL
t




 ,                                               (53) 

 
where CFL is the Courant-Friedrichs-Lewis number to method stability;   k,j,is  is a 

characteristic length of information transport; and  
k,j,i

aq   is the maximum tic 

 speed of sound. 

 characteris

The characteristic length of speed of information transport, where a is the
formation transport,   , can be determined by: k,j,isin

 
                                                             k,j,iMINMINk,j,i C,lMINs  ,                                     (54) 

 
where lMIN is the minimum side length which forms a computational cell and CMIN is the 

ong the computational cell and its neighbors. The 
maximum characteristic speed of information transport is defined by 
minimum distance of baricenters am

 
k,j,i

aq  , with 

222 wvuq  . 
 
8 INITIAL AND BOUNDARY CONDITIONS 
 
8.1 Initial condition 
 
 The initial condition adopted f  flow in all calculation 
domain (Jameson and Mavriplis, 19 ector of conserved variables 

or the problems is the freestream
86, and Maciel, 2002). The v

 expressed as follows: is
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here M  represents the freestream Mach number,  is the flow incidence angle downstream 

e configuration longitudinal plane. 

ons 

w 

the configuration under study and  is the angle in th
 
8.2 Boundary conditi
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 The different types of implemented boundary conditions are described as follows. They 
are implemented in special cells named “ghost cells”, as referred in the Computational Fluid 
Dynamics (CFD) community. 
)  Wall - The Euler case requires the flux tangency condition. On the context of finite 

volumes, this imposition is done considering that the tangent flow velocity component to the 
the ghost cell be equal to the tangent flow velocity component to the wall of the 

neighbor real cell. At the same time, the normal flow velocity component to the wall of the 
host cell should be equal to the negative of the normal flow velocity component to the wall 

a

wall of 

g
of the neighbor real cell. Batina (1993) suggests that these procedures lead to the following 
expressions to the velocity components u, v and w of the ghost cells: 
 
                              gu realzxrealyxrealxx wnnvnnunn )2()2()21(   ;                             (56) 

                            w)nn(v)nn(u)nn(v 2212 ;                           (57)   realzyrealyyrealxyg 

                              realzzrealyzrealxzg w)nn(v)nn(u)nn(w 2122  .                           (58) 

 
 The fluid pressure gradient in the direction normal to the wall is equal to zero for the 
inviscid case. The temperature gradient is equal to zero along the whole wall, according to the 
condition of adiabatic wall. With these two conditions, a zero order extrapolation is performed 
to the fluid pressure and to the temperature. It is possible to conclude that the fluid density 
will also be obtained by zero order extrapolation. The energy conserved variable is obtained 
from the state equation to a perfect gas, Eq. (3). 
 
b) Far field - In the implementation of the boundary conditions in the mesh limit external 

 (external flow), it is necessary to identify 
nic flow, entrance with supersonic flow, exit with s

w. These situations are described below. 
subsonic flow – Considering the one-dimensional 

oncept in the normal direction of flow penetration, the entrance with subsonic flow presents 
ur

sports information from inside to outside of 
e calculation domain, cannot be specified and will have to be determined by interior 

region to the ramp problem four possible situations: 
entrance with subso ubsonic flow and exit 
with supersonic flo
b.1) Entrance with characteristic relation 
c
fo  characteristic velocities of information propagation which have direction and orientation 
point inward the calculation domain, which implies that the variables associated with these 
waves cannot be extrapolated (Maciel, 2002). It is necessary to specify four conditions to 
these four information. Jameson and Mavriplis (1986) indicate as appropriated quantities to be 
specified the freestream density and the freestream Cartesian velocity components u, v and w. 
Just the last characteristics, “(qn-a)”, which tran
th
information of the calculation domain. In this work, a zero order extrapolation to the pressure 
is performed, being the total energy defined by the state equation of a perfect gas. 
b.2) Entrance with supersonic flow - All variables are specified at the entrance boundary, 
adopting freestream values. 
b.3) Exit with subsonic flow - Four characteristics which govern the Euler equations proceed 
from the internal region of the calculation domain. So, the density and the Cartesian velocity 
components are extrapolated from the interior domain (Maciel, 2002). One condition should 
be specified to the boundary. In this case, the pressure is fixed in the calculation domain exit, 
keeping its respective value of freestream flow. Total energy is specified by the equation of 
state to a perfect gas. 
b.4) Exit with supersonic flow - The five characteristics which govern the Euler equations 
proceed from the internal region of the calculation domain. It is not possible to specify 
variable values at the exit. The zero order extrapolation is applied to density, Cartesian 
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velocity components and pressure. Total energy is specified by the equation of state to a 
perfect gas. 
 
c) Entrance and exit – The entrance and exit boundaries are applied to the ramp and diffuser 

ine a criterion which guarantees that such condition was reached. The criterion 
dopted in this work was to consider a reduction of 3 orders in the magnitude of the 

x

tion longitudinal 
lane angles were set equal to 0.0. 

l problems to be studied are the supersonic flow along a ramp with 20 of 
clination and the “cold gas” hypersonic flow along a diffuser also with 20 of inclination at 

problems. Boundary conditions which involve flow entrance in the calculation domain had 
the flow properties fixed with freestream values. Boundary conditions which involve flow 
exit of the computational domain used simply the zero order extrapolation to the 
determination of properties in this boundary. This procedure is correct because the entrance 
flow and the exit flow are no minimal supersonic to both studied examples. 
 
9 RESULTS 
 
 Tests were performed in a microcomputer with processor AMD SEMPRON (tm) 2600+, 
1.83GHz, and 512 Mbytes of RAM. As the interest of this work is steady state problems, one 
needs to def
a
ma imum residual in the domain, a typical criterion in the CFD community. The residual to 
each cell was defined as the numerical value obtained from the discretized conservation 
equations. As there are five conservation equations to each cell, the maximum value obtained 
from these equations is defined as the residual of this cell. Thus, this residual is compared 
with the residual of the others cells, calculated of the same way, to define the maximum 
residual in the domain. The configuration downstream and the configura
p
 The physica
in
the contraction region. The ramp and diffuser configurations in the xy plane are described in 
Figs. 6 and 7. The ramp spanwise length is 0.25m, while the diffuser spanwise length is 
0.10m. 
 

 
 

 

 

        Figure 6: Ramp configuration in the xy plane.               Figure 7: Diffuser configuration in the xy plane. 
 

Ramp Diffuser 
Finite difference representation 61()x60()x10() 61()x51()x10() 

Cells (Finite Volumes) 31,860 27,000 
Nodes (Finite volumes) 36,600 31,110 

 

Table 1: Computational data of the ramp and diffuser meshes. 
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 In the ramp problem, an oblique shock wave and an expansion fan are formed, at the 
ramp and after the ramp, respectively. In the diffuser problem, the two oblique shock waves 
originated by the convergent walls suffer interference after the throat and expansions waves 
are formed after the contraction region in both upper and lower walls. 
 The computational data of the generated meshes to both problems are presented in Tab. 1. 
 
9.1 Ramp physical problem 
 
 The freestream Mach number adopted as initial condition to this simulation was 3.0, 
characterizing a supersonic flow regime. 
 Figures 8 to 11 show the density contours obtained by the Steger and Warming (1981) 
first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming (1981) 
high resolution TVD scheme using Minm  limiter and the Van Leer (1982) high resolution 

lity 
haracteristics with the shock being well captured by all schemes. The Van Leer (1982) TVD 

scheme using Minm e den ld in compa h the others 
schemes. 

od
TVD scheme using Minmod limiter, respectively. All solutions present good qua
c

od limiter presents th sest fie rison wit

  
               Figure 8: Density contours (SW-1a).                                Figure 9: Density contours (VL-1a). 

  
          Figure 10: Density contours (SW-2a-MIN).                   Figure 11: Density contours (VL-2a-MIN). 
 
 Figures 12 to 15 exhibit the pressure contours obtained by the Steger and Warming 
(1981) first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming 
(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using 
Minmod limiter, respectively. The most severe pressure field was obtained by the Steger and 
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Warming (1981) TVD scheme using Minmod limiter. Good qualitative characteristics are 
observed in all solutions with the oblique shock wave appropriately captured. 
 

  
             Figure 12: Pressure contours (SW-1a).                             Figure 13: Pressure contours (VL-1a). 

  
          Figure 14: Pressure contours (SW-2a-MIN).                     Figure 15: Pressure contours (VL-2a-MIN). 

  
                  Figure 16: Mach contours (SW-1a).                               Figure 17: Mach contours (VL-1a). 
 
 Figures 16 to 19 show the Mach number contours obtained by the Steger and Warming 
(1981) first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming 
(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using 

lim
presents the most intense Mach number field in comparison with the others schemes. 
Minmod limiter, respectively. The Van Leer (1982) TVD scheme using Minmod iter 
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              Figure 18: Mach contours (SW-2a-MIN).                       Figure 19: Mach contours (VL-2a-MIN). 
 
 Figure 20 presents the wall pressure distributions obtained with the Steger and Warming 
(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using 
Minmod limiter, evaluated at the computational plane k = kmax/2, where “kmax” is the 
maximum number of points at the z direction. They are compared with exact solutions of the 
oblique shock wave and the Prandtl-Meyer expansion theories. Both schemes represent 
accurately the pressure plateau at the ramp, agreeing with the oblique shock wave theory. 
However, the best width of the pressure plateau is determined by the Steger and Warming 
(1981) TVD scheme using Minmod limiter. Both schemes detect appropriately the pressure at 
the end of the expansion fan, after the ramp. 

 
Figure 20: Wall pressure distributions. 

 
 Figure 21 exhibits the wall pressure distributions obtained only with the Steger and 
Warming (1981) versions, first order and TVD variant. They are again compared with exact 
solutions of the oblique shock wave and the Prandtl-Meyer expansion theories. As expected, 
the TVD variant presents better pressure width at the pressure plateau, appropriately 
estimation of the pressure at the ramp and better pressure at the end of the expansion fan. 
Figure 22 shows the wall pressure distributions obtained only with the Van Leer (1982) 

r and 
a

versions, first order and TVD variant. Opposed to the behavior observed with the Stege
W rming (1981) TVD scheme, the first order Van Leer (1982) scheme presents the best 
pressure width at the pressure plateau. However, the pressure at the ramp and the pressure at 
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the end of the expansion fan are better estimated by the TVD variant of the Van Leer (1982) 
scheme. 

 
       Figure 21: Wall pressure distributions (SW).                  Figure 22: Wall pressure distributions (VL). 
 
 One way to quantitatively verify if the solutions generated by each scheme are 
satisfactory consists in determining the shock angle of the oblique shock wave, , measured in 
relation to the initial direction of the flow field. Anderson Jr. (1984) (pages 352 and 353) 
presents a diagram with values of the shock angle, , to oblique shock waves. The value of 
this angle is determined as function of the freestream Mach number and of the deflection 
angle of the flow after the sh tion angle) and to a 

eestream Mach number equals to 3.0, it is possible to obtain from this diagram a value to  
ock wave, . To  = 20º (ramp inclina

fr
equals to 37.7º. Using a transfer in Figures 12 to 15, considering the xy plane, it is possible to 
obtain the values of  to each scheme, as well the respective errors shown in Tab. 2. Basically, 
all schemes predicted accurately the shock angle of the oblique shock wave, with errors less 
than 1%. The exception is the first order scheme of Van Leer (1982). 

 
Algorithm:  () Error (%) 

Steger and Warming (1981) – 1a 38.0 0.796 
Steger and Warming (1981) – 2a – Minmod 38.0 0.796 

Van Leer (1982) – 1a 38.5 2.122 
Van Leer (1982) – 2a – Minmod 37.4 0.796 

 

Table 2: Shock angle of the oblique shock wave at the ramp and percentage error to each scheme. 
 
9.2 Diffuser physical problem 
 
 The freestream Mach number adopted as initial condition to this simulation was 7.0, 
characterizing a “cold gas” hypersonic flow regime. Results with the Steger and Warming 
(1981) scheme, in its first order and second order versions, and the Van Leer (1982) scheme, 
also in its first order and second order versions, are presented. 
 Figures 23 to 26 show the density contours obtained by the Steger and Warming (1981) 
first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming (1981) 
TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using Minmod 
limiter, respectively. All solutions present good quality characteristics with the shock 
interference being well captured by all schemes. The Van Leer (1982) TVD scheme using 

Figures 27 to 30 exhibit the pressure contours obtained by the Steger and Warming 
(1981) first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming 

M
 

inmod limiter presents the densest field in comparison with the others schemes. 
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(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using 
Minmod limiter, respectively. The Van Leer (1982) TVD scheme using Minmod limiter 
presents the most severe pressure field in comparison with the others schemes. 

  

                Figure 23: De      Figure ty c VL-1a). nsity             contours (SW-1a).              24: Densi ontours (

  
           Figure 25: Density contours (SW-2a-MIN).                      Figure 26: Density contours (VL-2a-MIN). 

  
                Figure 27: Pressure contours (SW-1a).                              Figure 28: Pressure contours (VL-1a). 
 
 Figures 31 to 34 show the Mach number contours obtained by the Steger and Warming 
(1981) first order scheme, the Van Leer (1982) first order scheme, the Steger and Warming 
(1981) TVD scheme using Minmod limiter and the Van Leer (1982) TVD scheme using 
Minmod limiter, respectively. The first order scheme of Steger and Warming (1981) presents 
the most intense Mach number field. 
 Figure 35 exhibits the lower wall pressure distributions obtained only with the Steger and 
Warming (1981) versions, first order and TVD variant. They are again compared with exact 

ec d, solutions of the oblique shock wave and the Prandtl-Meyer expansion theories. As exp te
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the TVD variant present better pressure width at the pressure plateau, underprediction of the 
pressure at the ramp (convergent region of the diffuser), also observed in the first order 
version, and better pressure at the end of the expansion fan. Figure 36 shows the lower wall 
pressure distributions obtained only with the Van Leer (1982) versions, first order and TVD 
variant. Again, opposed to the behavior observed with the Steger and Warming (1981) TVD 
scheme, the first order Van Leer (1982) scheme presents the best pressure width at the 
pressure plateau. The pressure at the ramp is underpredicted by all versions of the Van Leer 
(1982) scheme and the pressure at the end of the expansion fan is better estimated by the first 
order version of the Van Leer (1982) scheme. 

  
          Figure 29: Pressure contours (SW-2a-MIN).                      Figure 30: Pressure contours (VL-2a-MIN). 

 
 

                  Figure 31: Mach contours (SW-1a).                                Figure 32: Mach contours (VL-1a). 

  
             Figure 33: Mach contours (SW-2a-MIN).                        Figure 34: Mach contours (VL-2a-MIN). 
 
 Figure 37 exhibits the lower wall pressure distributions involving the Steger and 
Warming (1981) and the Van Leer (1982) schemes, in all their versions. The best compromise 
involving qualitative and quantitative features are observed with the Steger and Warming 
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(1981) TVD variant, with close pressure in comparison with the pressure plateau and 
appropriately pressure width at the ramp region (convergent region of the diffuser). 

 
      Figure 35: Wall pressure distributions (SW).                   Figure 36: Wall pressure distributions (VL). 

Figure 37: Wall pressure distributions involving SW and VL schemes. 
 

Lower wall Upper wall 
Algorithm  () Error (%)  () Error (%) 

Steger and Warming (1981) – 1a 28.0 1.818 28.6 4.000 
Steger and Warming (1981) – 2a - MIN 27.2 1.091 27.7 0.727 

Van Leer (1982) – 1a 28.0 1.818 28.9 5.091 
Van Leer (1982) – 2a - MIN 27.0 1.818 28.2 2.545 

 

Table 3: Shock angles of the oblique shock waves at lower and upper walls of the diffuser and 
percentage errors to each scheme. 

 
 Another way to check the accuracy of the Steger and Warming (1981) scheme and the 
Van Leer (1982) scheme in their two variants to this problem consists in determining the 
shock angle  of the oblique shock waves at the lower and upper walls of the diffuser. 
Following the same analysis described in the ramp problem, to  = 20, angle of inclination of 
the convergent region of the diffuser and of the deflection of the flow after the shock wave, 
and to a freestream Mach number equals to 7.0, it is possible to find from Anderson Jr. (1984) 
the value  = 27.5. Using a transfer in Figures 27 to 30, in the xy plane, it is possible to 
obtain the values of the oblique shock wave angles at the upper and lower walls and 
respective percentage errors shown in Tab. 3. 

E.S. GOES MACIEL1538

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 As can be observed from Table 3, the TVD version of the Steger and Warming (1981) 
scheme presents the best values to the shock angles of the oblique shock waves at the lower 
and upper wall of the diffuser in comparison with the others schemes, resulting in the best 
choice to this problem. 
 
9.3 Numerical data of the simulations 
 
 Table 4 shows the numerical data of the simulations: maximum CFL number, number of 
iterations to convergence and computational cost of each scheme analyzed in this work. 
 

Ramp Diffuser 
Algorithm CFL Iterations CFL iterations Cost(1) 

Steger and Warming (1981) – 1a 3.0 98 3.6 99 0.0000711 
Steger and Warming (1981) - MIN 2.6 242 1.3 365 0.0000931 

Van Leer (1982) – 1a 2.4 121 3.1 113 0.0000703 
Van Leer (1982) – MIN 1.9 182 1.5 357 0.0000742 

   (1) Measured in seconds/per cell/per iteration. 
 

Table 4: Numerical data of the simulations. 
 
 As can be observed from Table 4, the first order scheme of Van Leer (1982) is the 
cheapest, while the Steger and Warming (1981) TVD scheme using Minmod limiter is the 
most expensive. It is approximately 32.43% more expensive than the first order Van Leer 
(1982) scheme. It is possible to note that CFL numbers above 1.0 could be used, however, the 
maximum CFL number employed by all schemes was 3.6, which is still restrictive enough. 
One way to increase the maximum number of CFL to each scheme is the use of relaxation 
schemes, like Line Gauss-Seidel (LGS), which eliminates the error of the approximate 
factorization. Thi
 
10 CONCLUSIONS 
 
 In the present work, the Steger and Warm 981) e Va  (19 emes 
are  a ng a red spatial disc on, to 
solve the Eul e-dimension ce. T er an rming (1981) and 
the Van flux v
mplementation are f es 

aiming yed to 
uarantee such accuracy and TVD high reso  Both schemes are implemented 
llo

presented appropriate predictions (errors less than 1.0%), with the exception of the first order 

s is the proposal to the next work involving implicit schemes by this author. 

ing (1  and th n Leer 82) sch
implemented, on a finite volume context nd usi structu retizati

er equations in the thre al spa he Steg d Wa
Leer (1982) schemes are ector splitting ones and in their original 

i irst order accurate. A MUSCL approach is implemented in these schem
to obtain second order spa on-linear limiter is emplotial accuracy. The Minmod n

lution properties.g
fo wing an implicit formulation. The flux vector splitting schemes employ approximate 
factorizations in ADI form. Both schemes are first order accurate in time. The algorithms are 
accelerated to the steady state solution using a spatially variable time step procedure, which 
has demonstrated effective gains in terms of convergence rate (Maciel, 2005 and 2008). Both 
schemes are applied to the solution of the physical problems of the supersonic flow along a 
ramp and the “cold gas” hypersonic flow along a diffuser. 
 The results have demonstrated that the most accurate results were obtained with the 
Steger and Warming (1981) TVD high resolution scheme. The Steger and Warming (1981) 
TVD scheme using Minmod limiter has yielded the most severe pressure field in the ramp 
problem, which indicates this one as a more conservative scheme to the prediction of 
moderate design conditions. The pressure distribution along the ramp was well predicted by 
both schemes. In the estimation of the angle of the oblique shock wave, both schemes 
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scheme of Van Leer (1982). In the diffuser problem, the most severe pressure field was 
estimated by the Van Leer (1982) TVD scheme, which indicates this scheme to more severe 
esign conditions of aerospace vehicles. The lower wall pressure distribution was more 

d Warming (1981) scheme. In the prediction of the 
hock angles of the oblique shock waves at the lower and upper walls of the diffuser, the 

In terms of implicit numerical implementation, all schemes used CFL numbers in the 
range from 1.3 to 3.6, which indicates th error int y the approximate 
factorization lim  of convergen t s l  co ce in 
less than 100 iterations were obtained. A suggestion to improve the rate of convergence and to 
inc ns n the of relaxation es tes 
the error actorizat This is the o tive tur be 
accompl ugh other studies still with I sch  wil ed, 

ate the potential of this tool. 
As final conclusion, the present author recommends the Steger and Warming (1981) TVD 

cheme to obtain more acc onal space. The Van Leer 

d
appropriately described by the Steger an
s
Steger and Warming (1981) TVD scheme was the best. In terms of computational cost, the 
Van Leer (1982) versions are cheaper than the Steger and Warming (1981) versions. 
 

at the roduced b
its the rate ce of he scheme severe y, although nvergen

rease the range of CFL numbers co ists i  use schem  that elimina
 of the approximate f ion. bjec of fu e works to 

ished by this author, altho  AD emes l be perform
with others schemes, aiming better evalu
 
s urate solutions in the three-dimensi
(1982) TVD scheme, due to its confirmed robustness and more conservative properties, could 
be used in the initial design phase of aerospace vehicles, where less refined results are 
characteristics. 
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