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Abstract. The slip flow regime emerges as a consequence of the characteristic length reduction in Micro
Electro-Mechanical Systems (MEMS) that work with fluids (e.g. medical sample testing devices, drug
delivery systems, micro heat exchangers and mixer, among others). Theboundary condition imposed
to account for slip flow when solving continuum based governing equations relates the wall and fluid
velocity difference with the local shear rate projection in the tangential direction at the boundary. Several
works have evaluated slip boundary conditions with diverse methods and approximations, in some cases
misusing expressions derived for planar infinite surfaces aligned with coordinate axis, to analyse curved
surfaces or corner flows. In this work, the creeping flow of a Newtonian fluid under linear slip boundary
conditions is simulated applying the Boundary Element Method (BEM). Radial Basis Functions (RBF)
are used to approximate the tangential shear rate projection in slip boundaryconditions. Two types of
interpolations schemes were implemented: a local interpolation and global interpolation. The first one
evaluates the tangential shear rate from a finite set of points near the boundary nodes, while the second
interpolation approach employs all nodes in the fluid domain (boundary and internal nodes). Two fluid
flow problems are used to test the performance of the solution achieved: Couette and slit flow, both
having analytical solutions to which the results obtained are compared. This implementation is also
tested using three different RBF’s, where the numerical results show that the Generalized Thin Plate
Spline (GTPS) function combined with a global interpolation scheme has the least square norm error,
below 1%, for both fluid flow problems tested and less computational effort than a similarly accurate
local approximation.
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1 INTRODUCTION

Microsystems Technology (MST) devices are widely used in life sciences and chemistry ap-
plications, and its potential uses extend to medical sampletesting (Gad-el Hak, 2006b) and drug
delivery systems (Kleinstreuer et al., 2008); gas and liquid heat exchangers (Shui et al., 2007;
Giraldo et al., 2008) and chemical mixers (Bothe et al., 2006) for enhancement of heat and mass
transfer rates; and fluid control and measurement (Alvarado et al., 2009) devices. Micro heat
exchangers and mixers are currently used for steam gas reforming to produce alternative fuels
(Tonkovich et al., 2004), nuclear resources exploiting (Li et al., 2006), micro integrated circuits
cooling (Lee et al., 2004), micro fuel cells (Won Cha et al., 2004), among others.

When geometry devices are scaled down, the surface-to-volume ratio increases dramatically
so that the surface related phenomena become increasingly dominant, e.g. micro heat exchang-
ers and micro mixers present higher heat and mass transfer rates than macro systems of equal
capacity (Hu and Li, 2007). Therefore, some new features emerges when mechanical structures
are sufficiently small, and it becomes important to understand the various types of interactions
that arises between the fluid flow constituents and the solid surfaces that contain it.

Different phenomena associated with surface-fluid interactions can be expected when the
continuum assumption is close to being broken. For gases, four important effects appear: rar-
efaction, compressibility, viscous heating and thermal creep. In liquids, phenomena like wet-
ting, adsorption and electrokinetics may be present (Karniadakis et al., 2005). However, in both
liquids and gases, a phenomenum known as the slip flow regime emerges as a consequence of
an insufficient number of molecules in the sampling region (Thompson and Troian, 1997), af-
fecting the momentum transport at solid-fluid interfaces compared with no slip type flows (i.e.
macro scale flows).

So far, micro fluid flow behaviour has been studied under continuum (Gad-el Hak, 2006a) as
well molecular approaches (Bird, 1994; Sadus, 1999), with the aim to characterize and optimize
the operation of MST systems. In order for a fluid to be modelled as a continuum, all of its
properties (i.e. kinematic, transport and thermodynamicsproperties) must be continuous; for
that to be possible, enough molecules must be included compared to the length scale of the flow.
In the case of gases, this premise is satisfied when the lengthscale based on transport properties
is greater than1 µm (10−6 m); for liquids the length scale is based on transport properties and
must be larger than10 nm (10−8 m) (Nguyen and Wereley, 2006). Appropriate velocity slip
and temperature conditions at the wall surface must be used to employ continuum models to
describe flow behaviour in microflow devices. Navier’s slip boundary condition states that the
relative tangential fluid velocity,uf

t , with relation to wall velocity,Uw
t , is directly proportionally

to the local shear rate projection in the tangential direction, γ̇t, as presented in equation (1). The
proportionally constant is called slip lengthLs, and represent the hypothetical distance at the
wall needed to satisfy the no-slip flow condition (Nguyen and Wereley, 2006).

uf
t − Uw

t = Lsγ̇t (1)

γ̇t being the local shear rate projection in the tangential direction defined as:

γ̇t =

(

∂ui

∂xj

+
∂uj

∂xi

)

njsi (2)

whereni andsi are respectively thei components of the normal and tangential vectors to a
boundary surface. The main difficulty present when applyingthe previous boundary condition
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is related to evaluation of tangential shear rate at solid-fluid interface. Linear boundary slip con-
ditions have been applied to predict microflow behaviour in plane geometries with continuum
governing equations. Attempts to apply this type of boundary conditions for curved surfaces
have conducted to inappropriate microflow results due to mistreatment of mathematical models
(see (Barber et al., 2004) for a compilation of those works).

Luo and Pozrikidis(2008) study the motion of spherical particles in infinite fluid andnear a
plane wall subjected to slip boundary conditions. The boundary integral formulation presented
in this work takes advantage of the axial symmetry of the boundaries with respect to the axis that
is normal to the wall and passes through the particle center,reducing the solution to a system
of one-dimensional integral equations. The previous system of equations is valid for sphere
and the zero-thickness disk, since the axisymmetry is lost as these particles tumble under the
influence of a shear flow. Results for torque and drag over sphere show reduction associated
to slip condition at those scales demonstrated the validityof numerical values when compared
with analytical results.

Evaluation of slip fluid flow behaviour with boundary integral methods can be done in differ-
ent forms: by solving a system of equations that couples bothdirect boundary integral equations
for Stokes flow with boundary conditions for normal and tangential components for velocity and
surface tractions in global coordinates (Nieto et al., 2009a); or by expressing tangential shear
rate present in the slip boundary condition (1) in terms of tangential projection of surface trac-
tions at fluid-solid interface and then solving the normal and tangential projection for boundary
integral equations (Nieto et al., 2009b). In this paper, an alternative form of evaluating tangen-
tial shear rate with Radial Basis Functions (RBF) to implement the slip boundary condition
in direct boundary integral equations is presented. Local and global interpolations are used to
approach velocity gradients in shear rate expression allowing for the assessment of its accuracy
through comparison against velocity profiles for the fluid flow problems solved. Analytical so-
lutions for Couette and slit flow are used to test the numericalresults obtained when taking into
consideration different types of boundary conditions: thefirst has only Robin boundary condi-
tions while the second is a mixed boundary condition problem(Robin, Dirichlet and Neumann).

This paper is divided as follows. Governing equations for Stokes flow are presented in sec-
tion 2. In section3 the boundary integral representation for governing equations are presented
as well as the Boundary Element Method applied for its solution. A definition of the RBFs
is presented in section4, along with the methodology used to evaluate velocity gradients by
means of RBF interpolation. The numerical results for Couette and slit flow are compared with
analytical results through evaluation of least square normerror (L2 norm error) in section5.
Finally, conclusions regarding physical and mathematicalconsiderations are given.

2 GOVERNING EQUATIONS

Fluid flow in micro scale devices usually happens at very low Reynolds number due to their
small characteristic length scale. In these cases, the flow of an incompressible Newtonian vis-
cous fluid can be modelled by the Stokes system of equations, which states a balance between
the pressure and the viscous-shear forces. The Stokes system of equation can be written in
dimensionless form as:

∂ui

∂xi

= 0
∂σij

∂xj

= 0 (3)
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where

σij = −pδij +

(

∂ui

∂xj

+
∂uj

∂xi

)

(4)

~u being the velocity,p the pressure, andδij the Kronecker delta. The characteristic terms for
velocity, length scale and pressure in the case of the Couetteflow are respectivelyωri, ri and
µω, whereri is the inner cylinder radii,ω is the angular velocity andµ is the fluid viscosity. For
the slit flow the respective characteristic terms arehPo/µ, h andPo, whereh is the slit height
andPo the inner reference pressure.

Boundary conditions are defined depending to the problem thatis being solved. In the case of
Couette flow (or the flow between concentric cylinders), the external cylinder is stationary while
the internal one rotates at a constant angular dimensionless velocity of value1. For slit flow (or
fully developed flow between parallel plates), the superiorand inferior surfaces are stationary,
while at the entrance and exit the perpendicular velocitiesare made zero and the tractions are
given only by a pressure difference between them. For the cases shown dimensionless pressure
difference between entrance and exit,∆p equal to1 is considered. Slip behaviour defined in
equation (1) is considered by expressing local tangential shear rate interms of vector surface
traction defined in (5).

3 BOUNDARY INTEGRAL FORMULATION

The Stokes velocity field has the following direct integral representation formulae for an arbi-
trary pointx in a closed domainΩi with surfaceS filled with a Newtonian fluid (Power and Wrobel,
1995):

c (x) ui (x) −
∫

S

Kij (x, y)uj (y)dSy +

∫

S

uj
i (x, y) fj (y)dSy = 0 (5)

wheref is the vector surface tractions (fj(y) = ~σij (~u, p)nj), andc (x) is a constant dependent
on the position of the source point. For internal pointsc (x) = 1 and for point at a smooth
boundaryc (x) = 1/2. The Stokeslet and the corresponding surface traction or Stresslet for two
dimensions are given by:

uj
i (x, y) = − 1

4π

[

ln

(

1

r

)

δij +
(xi − yi) (xj − yj)

r2

]

(6)

Kij (x, y) = − 1

π

(xi − yi) (xj − yj) (xk − yk)nk (y)

r4
(7)

beingr the Euclidean distance between pointx andy, r = |x− y|.
The Boundary Element Method can be used to solve the boundary integral equation (5) based

on the discretization of the boundary surfaces. Discretization is performed in two stages: first is
divided the surface of the problemS intoNe smaller elements or segments,Sj, leading to write
integrals in equation (5) as:

c (x) ui (x) −
Ne
∑

j=1

∫

S

Kij (x, y)uj (y)dSyj
+

Ne
∑

j=1

∫

S

uj
i (x, y) fj (y)dSyj

= 0 (8)
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Then, integral densities along the element are approximated by using interpolation functions
on a given point along the element, call nodal points or nodes. In this way, equation (8) can be
written in matrix form as:

c (x) ui (x) −
Ne
∑

j=1

Ĥijuj −
Ne
∑

j=1

Gijfj = 0 (9)

beingHij andGij, the matrix of influence coefficients, defined as follows:

Ĥij =

∫

S

Kij (x, y) dSyj

Gij =

∫

S

uj
i (x, y) dSyj

(10)

The left side of equation (9) can be written as follows:

N
∑

j=1

Hij u =
N

∑

j=1

Gij f (11)

beingu andf velocity and traction vectors at evaluation points, and taking into account thatHij

is defined as:

Hij =

{

Ĥij when i 6= j

Ĥij + ci when i = j
(12)

When the discretised integral equation (11) for each boundary element are put together the
final system of equations is written as:

HU = GF (13)

Boundary conditions are introduced by moving columns ofH andG from one side to other
leading to:

AX = B (14)

beingX the vector of unknownsu andf at the boundary values andB the independent term
that carries the known values over the bondary.

3.1 Integral Equation Discretizacion

Geometry discretization for numerical integration will bemade with quadratic elements with
the aim to improve evaluation of velocity and surface tractions at boundaries and to produce a
more reliable micro scale flow behaviour. The interpolationscheme for a functionX(ε) is given
by:

X (ε) = ψ1 (ε)X(1) + ψ2 (ε)X(2) + ψ3 (ε)X(3) (15)

Mecánica Computacional Vol XXVIII, págs. 1579-1592 (2009) 1583

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



whereX(1), X(2), X(3) are the values ofX(ξ) on the three nodes of the element, beingξ the
coordinates of the surface nodes when in equation (5) x ∈ Ω → ξ ∈ S. Then, the interpolation
functions~ψ are as follows:

ψ1 = 1
2
ε (ε− 1) ; ψ2 = (1 − ε) (1 + ε) ; ψ3 = 1

2
ε (ε+ 1) (16)

defined in terms of an intrinsic coordinateε, −1 ≤ ε ≤ 1. Standard Gaussian Quadrature is
used to evaluate the final set of integrals resulting from applying the interpolation function (15).
Telles’ Transformation (Telles, 1987) and Rigid Body Motion (Brebbia and Dominguez, 1992)
are used to avoid singularity present when integrating overthe same element where the source
point is located.

4 EVALUTION OF TANGENTIAL SHEAR RATE BY RADIAL BASIS FUNCTIONS

Radial Basis Functions (RBFs) have been used together with the BEMwhen non homo-
geneous terms are present in governing equations and domainintegrals need to be evaluated
after Green’s second identity is used (Flórez and Power, 2001). The interpolation through RBF
allows the expansion of the non homogeneous term in the governing equations avoiding the do-
main meshing. In this way, a set of boundary integrals is obtained for its solution through BEM
after transforming the domain integrals by the interpolation performed with the RBFs. This ap-
proach has been successfully probed to evaluate several fluid flow problems concerning to non
linear terms that depends on the derivatives of the velocity(Giraldo et al., 2008), (Giraldo et al.,
2009).

Some features of the use of RBFs to approach the velocity field and its derivatives are re-
lated with the proficiency to compute interpolation from regular spaced or scattered data as well
as the noise reduction during the interpolation process. The last characteristic can guarantee
high accuracy of the evaluation of the first derivatives of the estimated function by interpola-
tion evaluation function (Flórez and Power, 2001). In the present work, there is no presence
of non homogeneous terms in governing equations since the direct integral formulae of Stokes
flow equations are solved. Despite this, the slip condition imposed at the boundaries, requires
calculating the derivatives of velocity. In such a way, the derivatives present in the tangential
projection for the shear rate in the slip boundary condition(2), can be evaluated by RBF inter-
polation after expressing the velocity field at a domain point in terms of a functionf (x, ym)
and :

ui =

p
∑

m=1

f (x, ym) (βm
i ) (17)

or equivalently in matrix notation:

{ui} = [F ] {βm
i } (18)

{βm
i } being the interpolation coefficients vector to be determined by collocation onym (m =

1, 2, 3, . . . , p) points in the domain of interest where the derivative term isto be approximated.
Then the velocity derivatives can be readily obtained by applying a differential operator to
equation (17) in respect toxj:

∂ui

∂xj

=

p
∑

m=1

∂

∂xj

f (x, ym) (βm
i ) (19)
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or in matrix notation
{

∂ui

∂xj

}

=

[

∂F

∂xj

]

{βm
i } (20)

Inverting equation (18) and substituting the result into (20) yields:
{

∂ui

∂xj

}

=

[

∂F

∂xj

]

[F ]−1 {ui} (21)

thus relating the velocity derivatives to the values of the velocity on the collocation points. A
wide variety of interpolating functions are available in the literature, the Generalized Thin Plate
Spline (GTPS) being one of the most popular interpolating functions used:

fm (x, ym) = f (r (x, ym)) = r2l−2 (x, ym) log (r (x, ym)) + Pl−1 (x) (22)

wherePl−1 (x) is an augmentation polynomial of orderl − 1. Following Flórez and Power
(2001) the parameterl is chosen to be equal to2, with the aim of avoid numerical difficulties
in the solution of the linear system of equations due to increase in the condition number of the
resulting matrix. This leads to an augmentation polynomialof orderl−1 = 1,P1 (x), composed
by the functionsx1, x2 and1. The GTPS is then expressed as:

fm (x, ym) = r2 (x, ym) log (r (x, ym)) + P1 (x) (23)

After expressing the velocity derivatives in terms of the velocity field through the implemen-
tation of RBF interpolation, the slip boundary condition is applied as follows. A first solution
to the direct integral equation (5) is done under the no slip boundary condition. This solution
is then used with both equation (23) and (21) to evaluate the velocity derivatives at collocation
points. Two types of interpolation can be set: a local interpolation and a global interpolation.
The first one is referred to a finite number of nodes limited by afixed distance between the
points over the surface and the nodes in the domain. The second approach refers to the use
of all nodes both in the domain and the boundaries to evaluatethe velocity derivatives over
boundary nodes through . The detail of both approaches is presented in the following sections.
The numerical results are compared with analytic results for velocity profiles of the fluid flow
problems solved to verify its accuracy. Additionally, two different RBFs (

√
r + 1, and,1 + r)

were tested and compared with the GTPS results to establish which interpolation function show
better results to approximate the velocity derivatives on the boundary.

4.1 Local interpolation approach

The local approach refers to the interpolation of velocity derivatives by using just a few
nodes close to the evaluation point at the surfaces subjected to the slip condition (i.e. solid-fluid
interface). This is done in order to reduce the size of the RBF matrices, thus decreasing com-
putational load. The first step in this iterative approach requires the evaluation of the velocity
field under the no slip boundary condition. Then, the velocity derivatives for the source nodes
in the direct boundary integral formulae (9) are evaluated using equation (21). The amount of
nodes used in this approximation is established by the Euclidean distancer between collation
points and the source point at the boundary. The linear slip boundary condition (1) is then used
to evaluate the slip velocity at the solid-fluid interface byreplacing the velocity derivatives ap-
proached through RBF interpolation. The velocity field and thevelocity derivatives (as well
as the slip velocity) are evaluated again under the new set ofslip velocities over the surface.
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The interpolation approach is performed individually overeach surface node subject to the slip
condition at each iteration. The process goes on until the velocity field stabilizes and the con-
vergence criteria is achieved by comparing velocity valuesfrom actual iteration with previous
one.

4.2 Global interpolation approach

As in the local interpolation, initial values for the velocity field are set through the solution
of governing equations under the no slip boundary condition. Nevertheless, in the global ap-
proach all the domain nodes are used to relate both velocities and derivatives. Moreover the
interpolation is performed over all the source points at thesurface boundary while for the lo-
cal approachNb iterations are required; beingNb the number of nodes in boundary under slip
condition. The velocity derivatives at boundary nodes are then applied to solve the velocity
field under the slip boundary condition. The process finisheswhen the convergence criteria is
reached. This approach presents as a simpler and more compact evaluation method compared to
the local interpolation since just one iteration over boundary and domain is needed to calculate
velocity derivatives.

5 NUMERICAL RESULTS

In this section the test performed for the direct boundary integral formulation implemented
to predict slip behaviour for Couette and slit flow is presented, applying both interpolation
approaches to the velocity derivatives in the shear rate used to evaluate the linear slip boundary
condition.

5.1 Slit flow

The analytic solution for the velocity profile under slip flowover the horizontal surfaces is
available inMatthews and Hill(2007):

u1 =
h2

2µ

∆P

L

[

1 −
(x2

h

)2
]

+
h

µ

∆P

L
Ls (24)

whereL is the channel length,h its height and∆P the imposed pressure difference. The second
term in the right side of equation (24) accounts the slip effect in the velocity profile. It reducesto
no slip whenLs is dropped to zero as presented inCurrie(2003). The tested mesh consisted of
320 quadratic elements on the outer surface refined at a the corners and 1911 internal collocation
points.

For the local interpolation the velocity gradients are evaluated with information related to
a finite amount of nodes near to the boundary nodes. A variation in the approaching ratio,R,
means a variation on the amount of nodes available for velocity gradient evaluation and then in
the accuracy of this value (see Table1). As can be seen in the results for L2 norm error using
the local approach, the interpolation performed with the GTPS function presented the most
accurate results showing that its precision increase as thedistanceR is augmented, meaning
that a greater quantity of nodes are used to calculate the velocity derivatives in the shear strain
expression. The other RBFs used present errors over12% while the approach through the GTPS
has errors below1% through the different distances used. It is also possible tonotice, that a
further increase in the approaching ratio to select the nodes has a negative influence on results
achieved and showing that with a value equal to half the height of the separations between the
plates (R = 0.12) the lowest L2 error is obtained.
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Figure 1: Velocity profiles for slip slit flow approaching shear rate with local (A) (approaching ratioR = 0.12)
and global (B) interpolation approaching.Ls = 0.5

In respect to the global interpolation, the results in Table1 present a similar behaviour that
those for the local interpolation, showing that the GTPS function tends to allow more accurate
results than the other two interpolation function tested. In Figure1 results for both approaches
using the three interpolation functions are plotted. The results shown in that figure correspond
to a linear slip length,Ls, equal to0.5 and an approaching ratioR of 0.12 in the case of the local
interpolation. It is possible to observe that both approachwith GTPS can accurately predict the
velocity profiles in mixed boundary like the slit flow is.

Table 1: L2 norm error (%) for slit flow under slip conditions

Local interpolation
RBF

R r2logr 1 + r
√
r + 1

0.045 1.01 34.95 35.20
0.06 0.96 26.40 26.79
0.08 0.92 24.08 24.53
0.1 0.93 22.15 22.644
0.12 0.91 19.80 20.37
0.15 0.91 18.45 19.06
0.2 0.91 16.55 17.23
0.25 0.93 15.36 16.11
0.5 0.94 12.92 13.80

Global interpolation
RBF

r2logr 1 + r
√
r + 1

1.045 10.19 10.94
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Figure 2: Velocity profiles for slip Couette flow where shear rate is approaching with GTPS (A) and1 + r (B)
global interpolation

5.2 Couette flow

An analytic solution for the tangential fluid velocity in Couette flow under linear slip bound-
ary conditions is given byBarber et al.(2004):

ut =
ω

A−B

(

Ar − 1

r

)

(25)

where

A =
1

r2
e

(

1 − 2
Ls

re

)

; B =
1

r2
i

(

1 + 2
Ls

ri

)

(26)

and beingω, re andri, the angular velocity for internal cylinder, external and internal radius,
respectively. Tangential velocityut is given for any radiusr. The slip lengthLs variates between
zero (no slip condition) and1.0 to account for momentum transport variation at both the internal
and external cylinders. WhenLs is dropped to zero in equation (25), it reduces to Couette flow
for no slip conditions as is presented inCurrie(2003).

For the simulation of Couette flow under liner slip boundary conditions three meshes were
used to check the effect of nodal densities over both boundaries and interior domain on numer-
ical results.Mesh 1 andMesh 2 have2208 uniformly distributed internal points and64 and
48 quadratic elements on both boundary surfaces, respectively. Meanwhile, theMesh 3 has48
quadratic elements on both boundary surfaces and528 uniformly distributed internal points.

The results for slip flow evaluated with global interpolation are in Table2. It can be observed
that the GTPS function presents the lowest L2 norm errors compared with the other two RBF
tested. Also, the effect of domain point densities could be observed asMesh 1 andMesh 2
present errors below1%, while for theMesh 3 errores are up to3.8%. Meanwhile any further
increase in the elements over boundary surface does not imply a significant improvement in
the numerical results when error leves forMesh 1 andMesh 2 are compared. In the Figure2
the results for global interpolation using GTPS and1 + r functions are ploted. It is possible to
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Figure 3: Velocity profiles for slip Couette flow where shear rate is approaching by GTPS local interpolation with
Mesh 1 (A) andMesh 3 (B)

Table 2: L2 norm error (%) for Couette flow under slip conditions - Global interpolation

Mesh 1

R r2logr 1 + r
√
r + 1

No slip 0.001 0.001 0.001
Ls = 0.1 0.64 1.99 1.52
Ls = 0.2 1.13 2.61 2.66

Mesh 2

R r2logr 1 + r
√
r + 1

No slip 0.002 0.002 0.002
Ls = 0.1 0.65 1.51 1.55
Ls = 0.2 1.13 2.66 2.71

Mesh 3

R r2logr 1 + r
√
r + 1

No slip 0.002 0.002 0.002
Ls = 0.1 1.21 2.09 2.13
Ls = 0.2 2.11 3.71 3.79
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Table 3: L2 norm error (%) for Couette flow under slip conditions - Local interpolation

R = 1.5 R = 2.5 R = 3.5
Mesh 1

RBF r2logr 1 + r
√
r + 1 r2logr 1 + r

√
r + 1 r2logr 1 + r

√
r + 1

No slip 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
Ls = 0.1 0.6 1.34 1.38 0.66 1.5 1.53 0.65 1.51 1.54
Ls = 0.2 1.11 2.33 2.39 1.16 2.63 2.68 1.15 2.65 2.69

Mesh 2

RBF r2logr 1 + r
√
r + 1 r2logr 1 + r

√
r + 1 r2logr 1 + r

√
r + 1

No slip 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022
Ls = 0.1 0.59 1.38 1.43 0.64 1.55 1.59 0.65 1.57 1.6
Ls = 0.2 1.05 2.41 2.47 1.14 2.72 2.78 1.15 2.75 2.8

Mesh 3

RBF r2logr 1 + r
√
r + 1 r2logr 1 + r

√
r + 1 r2logr 1 + r

√
r + 1

No slip 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022
Ls = 0.1 1.09 1.85 1.97 1.24 2.08 2.11 1.26 2.09 2.12
Ls = 0.2 1.93 3.27 3.35 2.16 3.69 3.75 2.56 3.71 3.77

observe how the1+r fails to predict the velocity derivates at the boundaries understiamiting the
velocity values respect to the analytic solution whilst theGTPS function succedes in predicting
the velocty distribution for the no slip and theLs range evaluated.

The L2 norm error results for local interpolation are in Table 3. In a similar way like with
the slit flow the errors present a similar behaviour for the Couette flow when both interpolation
approaches are compared. The GTPS function, like in the global interpolation, presents the
more accurate results when local interpolation is used to evaluate the tangential projection of
the shear rate in the slip boundary condition. Additionally, the use of dense domain meshes
(Mesh 1 andMesh 2) allows more precise result but no significant differences are observed
when the boundary mesh is refined. Finally, the variation in the approaching ratio,R, do not
significantly affect the results in terms of error levels while doing so in terms of computational
cost due to increase in the number of nodes to evaluate the velocity gradients at each source
node. Figure3 shows the results for Couette flow obtained by using the GTPS function with an
approaching ratioR = 2.5 for Mesh 1 andMesh 3 in which is possible to observe the effect
of domain mesh on velocity profiles.

6 CONCLUSIONS

A direct boundary integral method was used to evaluate slip flow behaviour for two tra-
ditional fluid flow problems. The linear slip boundary condition was used to link the velocity
discontinuity at solid-fluid interface. The tangential projection of shear rate in the slip boundary
condition was evaluated by implementing local and global interpolation with RBFs. Accurate
results are obtained for both problems with both interpolation approaches when compared with
analytic velocity profiles, being the more accurate resultsthose obtained with the GTPS func-
tion. Additionally, the approach under both interpolationschemes allows to predict fluid flow
behaviour in mixed boundary problems (slit flow) and shear rate boundary problems (Couette
flow).

It is important to point out that, contrary to traditional BEMsolutions, the internal nodes den-
sities affect the solution of the problem due to dependency on the velocity derivatives accuracy
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and the slip velocity evaluation on the amount of nodes used at the domain in both types of inter-
polation. In this way, even though all integrals in the formulation remain boundary integrals, the
BEM partially lost its boundary-only nature and the dependence upon the amount of required
domain nodes to achieve accuracy results finally translatesin a higher computational cost. In
two works recently presented by the authors, (Nieto et al., 2009a) and (Nieto et al., 2009b), the
consideration of the slip behaviour avoids the use of RBF for the inclusion of Navier’s bound-
ary condition. In those works, the linear slip boundary condition was considered by expressing
equation (1) as function of the vector surface traction~f in the integral formulae for Stokes flow
(5). The consideration of the slip flow in this way does not implya dependency on domain
nodes to the evaluation of shear rates in the boundary condition, allowing to more accurate re-
sults and less computational cost when compared with the RBF approach. Further work in the
study of slip flow with the BEM will be held with the formulations developed in the works cited
previously, despite the precision of the results obtained based on the RBF approach as presented
in the actual work.
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