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Abstract. The slip flow regime emerges as a consequence of the characteristic ketgttion in Micro
Electro-Mechanical Systems (MEMS) that work with fluids (e.g. medical $amesting devices, drug
delivery systems, micro heat exchangers and mixer, among others)oolimelary condition imposed
to account for slip flow when solving continuum based governing equatieiates the wall and fluid
velocity difference with the local shear rate projection in the tangentialtibreat the boundary. Several
works have evaluated slip boundary conditions with diverse methodspgmdbamations, in some cases
misusing expressions derived for planar infinite surfaces aligned wittdowte axis, to analyse curved
surfaces or corner flows. In this work, the creeping flow of a Newtofiiad under linear slip boundary
conditions is simulated applying the Boundary Element Method (BEM). RadisikBainctions (RBF)
are used to approximate the tangential shear rate projection in slip bouwatatifions. Two types of
interpolations schemes were implemented: a local interpolation and globalalatgop. The first one
evaluates the tangential shear rate from a finite set of points near thddrgurodes, while the second
interpolation approach employs all nodes in the fluid domain (boundary &whah nodes). Two fluid
flow problems are used to test the performance of the solution achievagett€and slit flow, both
having analytical solutions to which the results obtained are compared. Thisnirptation is also
tested using three different RBF's, where the numerical results shawhiaseneralized Thin Plate
Spline (GTPS) function combined with a global interpolation scheme has theskpsere norm error,
below 1%, for both fluid flow problems tested and less computational effort than a siyndacurate
local approximation.
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1 INTRODUCTION

Microsystems Technology (MST) devices are widely used@édciences and chemistry ap-
plications, and its potential uses extend to medical satepteng Gad-el Hak20060 and drug
delivery systemsKleinstreuer et aJ.2008; gas and liquid heat exchange&h(i et al, 2007
Giraldo et al, 2008 and chemical mixerdothe et al.2006 for enhancement of heat and mass
transfer rates; and fluid control and measuremahtafrado et al. 2009 devices. Micro heat
exchangers and mixers are currently used for steam gasmefpto produce alternative fuels
(Tonkovich et al.2004), nuclear resources exploitingi(et al., 2006, micro integrated circuits
cooling (Lee et al, 2004, micro fuel cells (Won Cha et a].2004, among others.

When geometry devices are scaled down, the surface-to-eotatio increases dramatically
so that the surface related phenomena become increasimgiyant, e.g. micro heat exchang-
ers and micro mixers present higher heat and mass trangésrtrean macro systems of equal
capacity Hu and Li 2007). Therefore, some new features emerges when mechanigetists
are sufficiently small, and it becomes important to undeibstae various types of interactions
that arises between the fluid flow constituents and the sofidces that contain it.

Different phenomena associated with surface-fluid intewvas can be expected when the
continuum assumption is close to being broken. For gasas,igportant effects appear: rar-
efaction, compressibility, viscous heating and thermaépr In liquids, phenomena like wet-
ting, adsorption and electrokinetics may be presiatiiiadakis et aJ.2005. However, in both
liquids and gases, a phenomenum known as the slip flow regimeeges as a consequence of
an insufficient number of molecules in the sampling regibimofmpson and Troigrl997), af-
fecting the momentum transport at solid-fluid interfacespared with no slip type flows (i.e.
macro scale flows).

So far, micro fluid flow behaviour has been studied under nontn Gad-el Hak20063 as
well molecular approacheBifd, 1994 Sadus1999, with the aim to characterize and optimize
the operation of MST systems. In order for a fluid to be mode#ls a continuum, all of its
properties (i.e. kinematic, transport and thermodynarproperties) must be continuous; for
that to be possible, enough molecules must be included caapathe length scale of the flow.
In the case of gases, this premise is satisfied when the lsngth based on transport properties
is greater than um (107% m); for liquids the length scale is based on transport propedind
must be larger tham0 nm (10~® m) (Nguyen and Wereley2006. Appropriate velocity slip
and temperature conditions at the wall surface must be wsethploy continuum models to
describe flow behaviour in microflow devices. Navier’s slgquhdary condition states that the
relative tangential fluid velocity,/, with relation to wall velocity[/*, is directly proportionally
to the local shear rate projection in the tangential dioexti,, as presented in equatiob) ( The
proportionally constant is called slip length, and represent the hypothetical distance at the
wall needed to satisfy the no-slip flow conditiadguyen and Wereley2006).

uf = U = Ly (1)
4, being the local shear rate projection in the tangentiakctive defined as:
87% an
Y, — sy 2
Yt <8$] + 8382) n]SZ ( )

wheren; ands; are respectively thé components of the normal and tangential vectors to a
boundary surface. The main difficulty present when applyirggprevious boundary condition
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Is related to evaluation of tangential shear rate at salid-thterface. Linear boundary slip con-
ditions have been applied to predict microflow behaviourlanp geometries with continuum
governing equations. Attempts to apply this type of boupdanditions for curved surfaces
have conducted to inappropriate microflow results due tore@sment of mathematical models
(see Barber et al.2004) for a compilation of those works).

Luo and Pozrikidig2008 study the motion of spherical particles in infinite fluid amehr a
plane wall subjected to slip boundary conditions. The bampéhtegral formulation presented
in this work takes advantage of the axial symmetry of the blauies with respect to the axis that
is normal to the wall and passes through the particle cergducing the solution to a system
of one-dimensional integral equations. The previous sygi€equations is valid for sphere
and the zero-thickness disk, since the axisymmetry is loshase particles tumble under the
influence of a shear flow. Results for torque and drag over sptew reduction associated
to slip condition at those scales demonstrated the valadityumerical values when compared
with analytical results.

Evaluation of slip fluid flow behaviour with boundary intebn@ethods can be done in differ-
ent forms: by solving a system of equations that couplesthotict boundary integral equations
for Stokes flow with boundary conditions for normal and tartge components for velocity and
surface tractions in global coordinatdsi€to et al, 20093; or by expressing tangential shear
rate present in the slip boundary conditidn in terms of tangential projection of surface trac-
tions at fluid-solid interface and then solving the normal tangential projection for boundary
integral equations\ieto et al, 2009h). In this paper, an alternative form of evaluating tangen
tial shear rate with Radial Basis Functions (RBF) to implemeatdiip boundary condition
in direct boundary integral equations is presented. Lordlglobal interpolations are used to
approach velocity gradients in shear rate expression mifpior the assessment of its accuracy
through comparison against velocity profiles for the fluigvflaroblems solved. Analytical so-
lutions for Couette and slit flow are used to test the numere=allts obtained when taking into
consideration different types of boundary conditions: fire¢ has only Robin boundary condi-
tions while the second is a mixed boundary condition prolleobin, Dirichlet and Neumann).

This paper is divided as follows. Governing equations fak8s flow are presented in sec-
tion 2. In section3 the boundary integral representation for governing equatare presented
as well as the Boundary Element Method applied for its satutié definition of the RBFs
Is presented in sectiof, along with the methodology used to evaluate velocity graidi by
means of RBF interpolation. The numerical results for Couettesdit flow are compared with
analytical results through evaluation of least square nenmr (L2 norm error) in sectiorb.
Finally, conclusions regarding physical and mathematioakiderations are given.

2 GOVERNING EQUATIONS

Fluid flow in micro scale devices usually happens at very lowrfieé&ls number due to their
small characteristic length scale. In these cases, the fl@am mmcompressible Newtonian vis-
cous fluid can be modelled by the Stokes system of equatidmshwtates a balance between
the pressure and the viscous-shear forces. The Stokesnsg$tequation can be written in
dimensionless form as:

8Ui 801‘]‘

Oxi =0 055]'

=0 3)
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where

8ul ou;

u being the velocityp the pressure, andl; the Kronecker delta. The characteristic terms for
velocity, length scale and pressure in the case of the Cofletere respectivelyr;, r; and
uw, Wherer; is the inner cylinder radii is the angular velocity and is the fluid viscosity. For
the slit flow the respective characteristic terms/afg/u, h and P,, whereh is the slit height
andP, the inner reference pressure.

Boundary conditions are defined depending to the problenghaing solved. In the case of
Couette flow (or the flow between concentric cylinders), themmal cylinder is stationary while
the internal one rotates at a constant angular dimensmswaédacity of valuel. For slit flow (or
fully developed flow between parallel plates), the supeaimt inferior surfaces are stationary,
while at the entrance and exit the perpendicular velocaresmade zero and the tractions are
given only by a pressure difference between them. For thescgi®own dimensionless pressure
difference between entrance and eXify equal tol is considered. Slip behaviour defined in
equation {) is considered by expressing local tangential shear raterims of vector surface
traction defined ing).

3 BOUNDARY INTEGRAL FORMULATION

The Stokes velocity field has the following direct integegresentation formulae for an arbi-
trary pointr in a closed domaif; with surfaces filled with a Newtonian fluid Power and Wrobel
1995:

/ (2, y) u; (y)dS, + /uf (z,y) fj (y)dS, =0 )
S

wheref is the vector surface tractiong;(y) = ;; (@, p) n;), ande (z) is a constant dependent
on the position of the source point. For internal points) = 1 and for point at a smooth
boundarye (z) = 1/2. The Stokeslet and the corresponding surface tractiorresSet for two
dimensions are given by:

wl(z,y) = _i {ln <1> 55+ (i — yz)rga:] — yj)] ©
p@.(x’y)::__%(xi—-yﬂ(ﬁy-—gﬁz(xk—-yk)nk(y) 7)

beingr the Euclidean distance between pairdndy, r = |z — y|.

The Boundary Element Method can be used to solve the bounatagral equations) based
on the discretization of the boundary surfaces. Discritimas performed in two stages: firstis
divided the surface of the problefinto N, smaller elements or segments, leading to write
integrals in equatiorg) as:

ns / (@) u; ()dS,, + 3 / Wl (2.9) f; W)AS,, =0 (8)

]15 jzls
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Then, integral densities along the element are approxohateising interpolation functions
on a given point along the element, call nodal points or notitethis way, equationd) can be
written in matrix form as:

Ne Ne
c(z) ui(r) — ZHijUj - Z Giifi=0 9)
j=1 =1
being H;; andG;, the matrix of influence coefficients, defined as follows:

f{ij = /Kij (l’,y) dSyj
S

(10)
Gij = / uf (x,y) dS,,
S
The left side of equatiorfj can be written as follows:
N N
j=1 j=1

beingu andf velocity and traction vectors at evaluation points, andhigiknto account that?; ;
is defined as:

Hi:{ i wheni (12)
H;; + ¢ when 1 = j

When the discretised integral equatidri) for each boundary element are put together the
final system of equations is written as:

HU = GF (13)
Boundary conditions are introduced by moving column#lcind G from one side to other
leading to:

AX =B (14)
being X the vector of unknowns andf at the boundary values amithe independent term
that carries the known values over the bondary.

3.1 Integral Equation Discretizacion

Geometry discretization for numerical integration willlbade with quadratic elements with
the aim to improve evaluation of velocity and surface ti@wdiat boundaries and to produce a
more reliable micro scale flow behaviour. The interpolasoheme for a functioX (<) is given

by:

X () = ah1 (e) X 4 4hy (6) X 4 4h3 () XB) (15)

Copyright © 2009 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



1584 C.NIETO, M. GIRALDO, H. POWER

where XM, X2 X6 are the values oX (¢) on the three nodes of the element, befntie
coordinates of the surface nodes when in equapn (€ (2 — ¢ € S. Then, the interpolation
functionsy are as follows:

1 =g5e(e—1); p=(1-e)(1+¢); Y3=3e(c+1) (16)

defined in terms of an intrinsic coordinate—1 < ¢ < 1. Standard Gaussian Quadrature is
used to evaluate the final set of integrals resulting fromyapg the interpolation functioni(s).
Telles’ TransformationTelles 1987 and Rigid Body Motion Brebbia and Dominguge4992

are used to avoid singularity present when integrating theesame element where the source
point is located.

4 EVALUTION OF TANGENTIAL SHEAR RATE BY RADIAL BASIS FUNCTIONS

Radial Basis Functions (RBFs) have been used together with the BE& non homo-
geneous terms are present in governing equations and domtegnals need to be evaluated
after Green’s second identity is uséddrez and PoweR001). The interpolation through RBF
allows the expansion of the non homogeneous term in the gmgeequations avoiding the do-
main meshing. In this way, a set of boundary integrals isinbthfor its solution through BEM
after transforming the domain integrals by the interpolafperformed with the RBFs. This ap-
proach has been successfully probed to evaluate severhfliwi problems concerning to non
linear terms that depends on the derivatives of the vel¢Gisaldo et al, 2008, (Giraldo et al,
2009.

Some features of the use of RBFs to approach the velocity fieldtarderivatives are re-
lated with the proficiency to compute interpolation fromuleg spaced or scattered data as well
as the noise reduction during the interpolation process |&bkt characteristic can guarantee
high accuracy of the evaluation of the first derivatives @& #stimated function by interpola-
tion evaluation functionKlérez and Power2001). In the present work, there is no presence
of non homogeneous terms in governing equations since thetdintegral formulae of Stokes
flow equations are solved. Despite this, the slip condittopased at the boundaries, requires
calculating the derivatives of velocity. In such a way, tlegihtives present in the tangential
projection for the shear rate in the slip boundary condi{@)ncan be evaluated by RBF inter-
polation after expressing the velocity field at a domain pairterms of a functionf (z, y™)
and :

p
w=  flzy™) (BF) (7)
m=1
or equivalently in matrix notation:

{ui} = [F1{5"} (18)

{B"} being the interpolation coefficients vector to be determhibg collocation ory™ (m =
1,2,3,...,p) points in the domain of interest where the derivative termo ise approximated.
Then the velocity derivatives can be readily obtained bylyapg a differential operator to
equation {7) in respect tar;:

o S T ™) () (19
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or in matrix notation

{8xj} = {a—%] {3"} (20)
Inverting equation18) and substituting the result int@Q) yields:
3ui B oF -1
{3%} B [3%‘] FI o )

thus relating the velocity derivatives to the values of th&gity on the collocation points. A
wide variety of interpolating functions are available ie fiterature, the Generalized Thin Plate
Spline (GTPS) being one of the most popular interpolatingfions used:

™ y™) = f (r(z,y™) =77 (@,y™) log (r (z,y™)) + Py (2) (22)

where P,_; (z) is an augmentation polynomial of ordér- 1. Following Flérez and Power
(200)) the parametet is chosen to be equal &y with the aim of avoid numerical difficulties
in the solution of the linear system of equations due to iasean the condition number of the
resulting matrix. This leads to an augmentation polynowifiarder/—1 = 1, P, (z), composed
by the functionse,, 3 and1. The GTPS is then expressed as:

(@, y™) = r* (x,y™) log (1 (z,y™)) + Pi (x) (23)

After expressing the velocity derivatives in terms of thioegy field through the implemen-
tation of RBF interpolation, the slip boundary condition ipkgd as follows. A first solution
to the direct integral equatio) is done under the no slip boundary condition. This solution
Is then used with both equatiof3) and 1) to evaluate the velocity derivatives at collocation
points. Two types of interpolation can be set: a local imk&afon and a global interpolation.
The first one is referred to a finite number of nodes limited bixed distance between the
points over the surface and the nodes in the domain. The dexqmproach refers to the use
of all nodes both in the domain and the boundaries to evaliaterelocity derivatives over
boundary nodes through . The detail of both approaches septed in the following sections.
The numerical results are compared with analytic resultsdtocity profiles of the fluid flow
problems solved to verify its accuracy. Additionally, twiffekrent RBFs ¢/r + 1, and,1 + r)
were tested and compared with the GTPS results to estaltigtinwterpolation function show
better results to approximate the velocity derivativestenldoundary.

4.1 Local interpolation approach

The local approach refers to the interpolation of velocigyivhtives by using just a few
nodes close to the evaluation point at the surfaces subjeztie slip condition (i.e. solid-fluid
interface). This is done in order to reduce the size of the RBffices, thus decreasing com-
putational load. The first step in this iterative approacfuness the evaluation of the velocity
field under the no slip boundary condition. Then, the veloddrivatives for the source nodes
in the direct boundary integral formula®) (are evaluated using equatia?2l. The amount of
nodes used in this approximation is established by the &gt distance between collation
points and the source point at the boundary. The linear siymfary condition) is then used
to evaluate the slip velocity at the solid-fluid interfacerbplacing the velocity derivatives ap-
proached through RBF interpolation. The velocity field andvecity derivatives (as well
as the slip velocity) are evaluated again under the new sslippf/elocities over the surface.
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The interpolation approach is performed individually ogach surface node subject to the slip
condition at each iteration. The process goes on until thecitg field stabilizes and the con-
vergence criteria is achieved by comparing velocity values actual iteration with previous
one.

4.2 Global interpolation approach

As in the local interpolation, initial values for the velocfield are set through the solution
of governing equations under the no slip boundary conditidavertheless, in the global ap-
proach all the domain nodes are used to relate both velp@ne derivatives. Moreover the
interpolation is performed over all the source points atghwdace boundary while for the lo-
cal approachV, iterations are required; beiny, the number of nodes in boundary under slip
condition. The velocity derivatives at boundary nodes aentapplied to solve the velocity
field under the slip boundary condition. The process finistiesn the convergence criteria is
reached. This approach presents as a simpler and more coenph@tion method compared to
the local interpolation since just one iteration over bangcdand domain is needed to calculate
velocity derivatives.

5 NUMERICAL RESULTS

In this section the test performed for the direct boundarggral formulation implemented
to predict slip behaviour for Couette and slit flow is presdntpplying both interpolation
approaches to the velocity derivatives in the shear rate tesevaluate the linear slip boundary
condition.

5.1 Slit flow

The analytic solution for the velocity profile under slip flaver the horizontal surfaces is
available inMatthews and Hil(2007):

Uy

h? AP 9\ 2 h AP
TR [1 (%) } Tu (e4)
whereL is the channel lengtlt, its height and\ P the imposed pressure difference. The second
term in the right side of equatio24) accounts the slip effect in the velocity profile. It redutes
no slip whenL; is dropped to zero as presenteddarrie (2003. The tested mesh consisted of
320 quadratic elements on the outer surface refined at athersand 1911 internal collocation
points.

For the local interpolation the velocity gradients are eat&d with information related to
a finite amount of nodes near to the boundary nodes. A vamiatithe approaching ratiaz,
means a variation on the amount of nodes available for viglgcadient evaluation and then in
the accuracy of this value (see Talile As can be seen in the results for L2 norm error using
the local approach, the interpolation performed with thePSTfunction presented the most
accurate results showing that its precision increase adig@nceR is augmented, meaning
that a greater quantity of nodes are used to calculate tlogityederivatives in the shear strain
expression. The other RBFs used present errorsi@Jemhile the approach through the GTPS
has errors below% through the different distances used. It is also possibleotae, that a
further increase in the approaching ratio to select the aibds a negative influence on results
achieved and showing that with a value equal to half the ha&ifjthe separations between the
plates ¢ = 0.12) the lowest L2 error is obtained.
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Figure 1: Velocity profiles for slip slit flow approaching stieate with local (A) (approaching ratiB8 = 0.12)
and global (B) interpolation approaching, = 0.5

In respect to the global interpolation, the results in Tdbpresent a similar behaviour that
those for the local interpolation, showing that the GTPSfiom tends to allow more accurate
results than the other two interpolation function testedigurel results for both approaches
using the three interpolation functions are plotted. Tisailte shown in that figure correspond
to a linear slip lengthL.,, equal ta).5 and an approaching rati® of 0.12 in the case of the local
interpolation. It is possible to observe that both apprasith GTPS can accurately predict the
velocity profiles in mixed boundary like the slit flow is.

Table 1: L2 norm error%) for slit flow under slip conditions

Local interpolation
RBF
R r2logr 1+r r+1
0.045| 1.01 3495 35.20
0.06 | 0.96 26.40 26.79  Globalinterpolation
0.08 | 0.92 24.08 24.53 RBF
0.1 0.93 2215 22.644 rilogr | 1+7r | Vr+1
0.12 | 0.91 19.80 20.37 1.045|10.19| 10.94
0.15 | 091 1845 19.06
0.2 091 1655 17.23
0.25 | 093 1536 16.11
0.5 094 1292 13.80
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Figure 2: Velocity profiles for slip Couette flow where sheateris approaching with GTPS (A) andt » (B)
global interpolation
5.2 Couette flow

An analytic solution for the tangential fluid velocity in Cdteeflow under linear slip bound-
ary conditions is given bBarber et al(2004:

w 1
where
A:%<1—2&>; B:%(l—i—QE) (26)
Te Te i T

and beingw, . andr;, the angular velocity for internal cylinder, external anternal radius,
respectively. Tangential velocity is given for any radius. The slip lengthl; variates between
zero (no slip condition) antl0 to account for momentum transport variation at both theinate
and external cylinders. Whef, is dropped to zero in equatio%), it reduces to Couette flow
for no slip conditions as is presentedGuirrie (2003.

For the simulation of Couette flow under liner slip boundarpditions three meshes were
used to check the effect of nodal densities over both bouesland interior domain on numer-
ical results. Mesh 1 and Mesh 2 have2208 uniformly distributed internal points argll and
48 quadratic elements on both boundary surfaces, respgctMelanwhile, thel/esh 3 has48
guadratic elements on both boundary surfacessafdiniformly distributed internal points.

The results for slip flow evaluated with global interpolatere in Table2. It can be observed
that the GTPS function presents the lowest L2 norm errorspeoed with the other two RBF
tested. Also, the effect of domain point densities could bgeoved as\/esh 1 and Mesh 2
present errors below, while for the Mesh 3 errores are up t8.8%. Meanwhile any further
increase in the elements over boundary surface does noy ianpignificant improvement in
the numerical results when error leves fdiesh 1 and Mesh 2 are compared. In the Figuge
the results for global interpolation using GTPS dnd r functions are ploted. It is possible to
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Figure 3: Velocity profiles for slip Couette flow where shegteris approaching by GTPS local interpolation with
Mesh 1 (A) and Mesh 3 (B)

Table 2: L2 norm error%) for Couette flow under slip conditions - Global interpodeti

Mesh 1
R rllogr 14+7r +r+1
Noslip | 0.001 0.001 0.001
L,=0.1] 0.64 1.99 1.52
L,=02] 1.13 2.61 2.66
Mesh 2
R rlogr 14+r r+1
Noslip | 0.002 0.002 0.002
L,=0.1] 0.65 151 1.55
L,=02] 1.13 2.66 2.71
Mesh 3
R rlogr 14+7r r+1
Noslip | 0.002 0.002 0.002
L,=01] 1.21 2.09 2.13
L,=02] 211 3.71 3.79
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Table 3: L2 norm error%) for Couette flow under slip conditions - Local interpolatio

R=15 \ R=25 \ R=35
Mesh 1

RBF | r’logr 1+7r r+1|7%logr 1+7r r+1|7r%ogr 1+r +r+1
No slip | 0.0015 0.0015 0.00150.0015 0.0015 0.00150.0015 0.0015 0.0015
L,=0.1 0.6 1.34 1.38 | 0.66 15 153 | 0.65 151 1.54
L,=02] 1.11 2.33 239 | 1.16 2.63 268 | 1.15 2.65 2.69
Mesh 2

RBF | r?logr  1+7 r+1]|7%logr 1+4+7r ~r+1|r%ogr 1+7r r+1
No slip | 0.0022 0.0022 0.00220.0022 0.0022 0.00220.0022 0.0022 0.0022
L,=0.1] 0.59 1.38 1.43 | 0.64 1.55 1.59 | 0.65 1.57 1.6
L,=0.2] 1.05 241 247 | 1.14 2.72 2.78 | 1.15 2.75 2.8
Mesh 3

RBF | r?logr  1+7 r+1]|7%logr 1471 ~r+1|r%ogr 1+7r r+1
No slip | 0.0022 0.0022 0.00220.0022 0.0022 0.00220.0022 0.0022 0.0022
L,=0.1] 1.09 1.85 197 | 1.24 2.08 211 | 1.26 2.09 2.12
L,=0.2] 1.93 3.27 3.35| 2.16 3.69 3.75 | 2.56 3.71 3.77

observe how thé+r fails to predict the velocity derivates at the boundariedanstiamiting the
velocity values respect to the analytic solution whilst@EPS function succedes in predicting
the velocty distribution for the no slip and tlie range evaluated.

The L2 norm error results for local interpolation are in &8I In a similar way like with
the slit flow the errors present a similar behaviour for the &tuflow when both interpolation
approaches are compared. The GTPS function, like in theabiakterpolation, presents the
more accurate results when local interpolation is used &uate the tangential projection of
the shear rate in the slip boundary condition. Additionathe use of dense domain meshes
(Mesh 1 and Mesh 2) allows more precise result but no significant differenaesabserved
when the boundary mesh is refined. Finally, the variatiorhedpproaching ratiak, do not
significantly affect the results in terms of error levels lgtdoing so in terms of computational
cost due to increase in the number of nodes to evaluate tbeityefradients at each source
node. Figure shows the results for Couette flow obtained by using the GTR&ifin with an
approaching ratid? = 2.5 for Mesh 1 and Mesh 3 in which is possible to observe the effect
of domain mesh on velocity profiles.

6 CONCLUSIONS

A direct boundary integral method was used to evaluate sdp Biehaviour for two tra-
ditional fluid flow problems. The linear slip boundary coimalit was used to link the velocity
discontinuity at solid-fluid interface. The tangential jgaiion of shear rate in the slip boundary
condition was evaluated by implementing local and globgdrpolation with RBFs. Accurate
results are obtained for both problems with both interpoteapproaches when compared with
analytic velocity profiles, being the more accurate reshibse obtained with the GTPS func-
tion. Additionally, the approach under both interpolat&mhemes allows to predict fluid flow
behaviour in mixed boundary problems (slit flow) and shete bwundary problems (Couette
flow).

Itis important to point out that, contrary to traditional BEdlutions, the internal nodes den-
sities affect the solution of the problem due to dependendpe velocity derivatives accuracy
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and the slip velocity evaluation on the amount of nodes usdgealomain in both types of inter-
polation. In this way, even though all integrals in the fotation remain boundary integrals, the
BEM partially lost its boundary-only nature and the depemédempon the amount of required
domain nodes to achieve accuracy results finally transiatashigher computational cost. In
two works recently presented by the authoksigfo et al, 20093 and (Nieto et al, 20091, the
consideration of the slip behaviour avoids the use of RBF feritlelusion of Navier's bound-
ary condition. In those works, the linear slip boundary abad was considered by expressing
equation {) as function of the vector surface tractigrin the integral formulae for Stokes flow
(5). The consideration of the slip flow in this way does not implglependency on domain
nodes to the evaluation of shear rates in the boundary ¢ondéllowing to more accurate re-
sults and less computational cost when compared with the RBfoaph. Further work in the
study of slip flow with the BEM will be held with the formulatigrdeveloped in the works cited
previously, despite the precision of the results obtairees®d on the RBF approach as presented
in the actual work.
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