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Abstract. The ball screw drives are among the most commonly mechanisms used to provide motion in 
high speed machine tools. The most important factor that affects high speed positioning accuracy is 
the closed loop bandwidth, which in turn is affected by the structural vibration modes. In recent years, 
newer strategies have emerged achieving higher control bandwidth, but requiring higher order plant 
models as well as a better understanding of the system dynamics. 
This work presents a dynamic model of a lead screw drive accounting for high frequency modes. The 
analytical formulation follows a comprehensive approach, where the screw was modeled as a 
continuous subsystem. The axial and angular displacement fields for this continuous screw were 
approximated by Ritz series to obtain an approximate N-degree-of-freedom model. Furthermore, it is 
discussed how to decouple the damping matrix to transform an N-degree-of-freedom system into N 
one-degree-of-freedom systems, because the advantages that this implies when numerical solution is 
required. 
Then, expressions for the displacement fields in terms of modal coordinates are found and a procedure 
to compute the axial and angular components of the mode functions is discussed, as well as a 
numerical procedure to compute the system deformation. 
In order to obtain conclusions about the system behavior in the first modes, the axial an angular 
components of the mode functions are plotted. Then, an analysis based on a comparison with results 
from others works is presented. 
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1 INTRODUCTION 

Traditionally, the dynamics of each axis in a machine tool is represented as a second order 
system for which well-known control techniques are applied. In these cases, the rigid body 
mode is the only mode that must be included into the control system model. However, when 
designing wider bandwidth positioning systems it becomes necessary to consider additional 
structural modes. An example is High Speed Machining (HSM), where the feed between the 
cutting tool and the workpiece increases proportionally to the increased spindle speed (Smith, 
1999). This represents a problem, particularly in machining parts that require short and 
repetitive movements demanding high accelerations profiles. High accelerations profiles 
excite the machine structure up to high frequencies, thereby exciting the structure vibration 
modes. Therefore, for HSM, the traditional models must be augmented with higher order 
dynamics, up to 150 Hz, to assist the controller design, (Hecker and Flores, 2005).  

On the other hand, the mechatronical design of industrial servosystems requires, in 
increasing way, advanced modeling and simulation techniques able to predict the machine 
dynamics, which may interact in a non-intuitive way with the control actions. 

Smith (1999) used finite elements modeling to analyze a ball-screw positioning system of a 
high-speed milling machine. From the model the author predicts the natural frequencies and 
the shapes of the first vibration modes. In a similar way, Erkorkmaz and Kamalazadeh (2006) 
used a finite element model to study the torsional dynamics of the ball screw mechanism, 
from which it was predicted the natural frequencies and shapes of the first torsional modes. 

A more comprehensive model was presented by Varanasi (2002), Varanasi and Nayfeh 
(2001, 2004), where an accurate model for the first axial mode was obtained. The author 
considered the screw as a distributed parameter system and assumed that the axial and 
torsional displacement fields vary linearly with the axial coordinate of the screw. Although 
the model follows a general formulation, only the frequency of the first mode was predicted 
due to the assumptions considered in the solution. 

Vicente et al. (2007) presented a dynamic model of a feed drive servomechanism 
accounting for high frequency modes. The formulation follows a comprehensive approach 
with the screw modeled as a continuous subsystem, where the axial and torsional dynamics 
are characterized by continuous functions denominated displacement fields. The displacement 
field for the screw was approximated by Ritz series to find a finite dimensional model.  

The aim of this work is to propose a way to evaluate the system dynamics of a ball-screw-
drive servosystem based on the model presented by Vicente et al. (2007). First, the model is 
constructed using power balance method and using Ritz series to represent the axial and 
angular displacement fields. After that, expressions for the displacement fields in terms of 
modal coordinates are found from the model solutions. A general procedure to evaluate 
numerically the displacement field is discussed as well as a procedure to compute the axial 
and angular components of the mode functions. Finally, the mode functions of the first modes 
are plotted and analyzed. 

2 SERVOMECHANISM MODEL 

A typical feed drive servomechanism for precision positioning, such those found in 
machine tools, is shown in Figure 1. It consists of a ball-screw assembled to the machine base 
by rotary bearings, which is driven by an electric-servomotor through a flexible coupling. The 
ball-nut is attached to the carriage that is constrained to move axially on linear bearings and 
guideways.  

The schematic model considered here is presented in Figure 2, in which the screw is solely 
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a continuous system, whereas the remaining elements are assumed in the lumped form. In 
these conditions, the screw can be considered as a straight bar with three fundamental types of 
deformations: axial deformation, by traction or compression, angular deformation, by torsion, 
and flexural deformation. Flexure is discarded, assuming the screw is suitably mounted in the 
servomechanism and then minimizing buckling due to non-concentric forces produced by 
misalignments. 

carriage
guideways

ball-nut screwrigid bearing

couplingmotor

 
Figure 1: Ball-screw feed system 

In this way, the continuous deformation can be represented by an axial displacement using 
a field function u(x,t) and by an angular displacement using θ(x,t). This continuous portion is 
characterized by mass-density ρ, cross-section A, moment of inertia Jt, length L, Young’s 
modulus E, Poisson’s modulus G, and screw lead l (also cited as transmission ratio). 

The elements assumed in the lumped form are the rotor of the electric motor with moment 
of inertia Jm, the flexible coupling with moment of inertia Ja and stiffness ka, the rigid bearing 
with stiffness kb, and the carriage with mass mc. 
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Figure 2: Schematic of the ball-screw feed system. (a) Axial. (b) Angular. 

As Figure 2 shows, in addition to the generalized coordinates from the continuous portion, 
there are two additional generalized coordinates, one to describe the carriage position uc(t) 
and another to describe the rotor angular position θm(t). 

2.1 Power balance fromulation 

A convenient approach to obtain motion equations in this kind of systems is the power 
balance method based on energy and work formulation, (Ginsberg, 2001).  

The general formulation of the power balance law for a vibratory system is 

 in disT V P P+ = +� �  (1) 

where T and V are the kinetic and potential energy of the system, whereas Pin and Pdis are the 
power input and the power dissipation in the system. 

Using the defined variables, the kinetic energy can be computed as follows 
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where the first and the second terms represent the contributions from the mass of the carriage 
and the inertia of the rotor respectively. The third term is the energy from the flexible 
coupling, for which an average speed between the angular velocity of the rotor and the 
angular velocity of the screw in x = 0 was considered. The fourth and the fifth terms represent 
the kinetic energy from the distributed rotary inertia and the distributed linear inertia of the 
screw respectively. 

The potential energy stored in the elastic parts of the system can be computed according to 
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where the first and second terms correspond to the potential energy in the rigid bearing and 
flexible coupling respectively. Similarly, the third term corresponds to the potential energy 
stored in the ball-nut, where kn is the nut’s stiffness coefficient and δn is the axial deformation 
in the nut. Although the elastic deformations produced by the normal contact forces have 
axial and radial components (Wei and Lin, 2003), only the axial component influences the 
axial displacement field.  

Therefore, the interface axial deformation can be expressed as 

 ( ) ( ) ( )( ), ,n c c cu t u x t x t lδ θ= − +  (4) 

that denotes the difference between the absolute position of the carriage, uc(t), and the 
absolute position of the screw at the interface-point coordinate xc. It is important to notice that 
Eq. (4) involves axial and torsional displacements together, producing a coupling of both 
displacements, a fact that forbids each field to be treated separately. Alternatively, the fourth 
and the fifth terms of Eq. (3) represent the potential energy stored in the continuous portion of 
the system, the screw, by torsional and axial displacements. 

The power input to the system results in 

 ( ) ( ) ( ),in m m f c c cP t x t f u tτ θ τ θ= − −� � �  (5) 

where the first term is the power input from the motor, the second term is the coulomb friction 
dissipation in the ball-nut due to the friction torque τf, and the third term represents the power 
required to move the carriage at the velocity cu�  against a disturbance force fc. Note that fc is a 
general variable to account for external forces actuating on the carriage, which can include 
machining forces and coulomb friction forces in guideways. 

Alternatively, the power dissipation in the system due to viscous friction can be expressed 
as follows 
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The first two terms represent the power dissipation due to the viscoelastic behavior of the 
continuous portion. The other four terms represent the power dissipation in rotor bearings, 
rigid bearing, ball-nut, and guideways, respectively. Therefore, the coefficients cm, cb, cn and 
cc are the viscous friction coefficients of these elements. 

All the above equations depend on the displacement fields u(x,t) and θ(x,t) that must be 
formulated. A rigorous treatment of vibrations of continua requires the solution of exact field 
equations, that is to say, equations governing deformations that depend on time and spatial 
coordinates. An alternative and convenient method is the approximation of these equations by 
a Ritz series as is described in the next section. 

2.2 Basis functions selection and close loop form system representation 

The deformation in a continuous general system can be represented by a displacement field 
u(x,t) that is a function of the time and the spatial coordinates. The Ritz series method, 
(Ginsberg, 2001), also known as method of assumed modes, uses a series expansion to 
approach the displacement field as follows  

 ( ) ( ) ( )
1

N

j j
j

u x,t x q tψ
=

= ∑  (7) 

where the basis functions ψj(x) represent the displacement field as a function of the x 
coordinate and the coefficients qj(t) represent the instant contribution of ψj(x) over the 
displacement field. 

From a mathematical perspective, Eq. (7) maps a continuous function over an N-
dimensional space whose directions are the functions ψj, so these functions are called basis 
functions. The coefficients qj represent projections of u in the direction of each basis 
functions. The approach using the Ritz series will be a discrete model with N degree of 
freedom that approximates the behavior of a system with infinites degrees of freedom. 

The basis functions must fulfill certain conditions to obtain a valid formulation of the Ritz 
series. All basis functions must be continuous, linearly independent and must satisfy the 
geometric boundary conditions (Ginsberg, 2001). In this way a suitable axial field equations 
can be constructed using cosine basis functions. 
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j
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α
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⎝ ⎠
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where α = ( ju - 1)π. The first term in the series (with ju = 1) is the unitary function that 
represent the rigid body motion which is kinematically admissible for this system. This is 
because the screw is attached to the base by the bearing, which is modeled as a lumped 
spring, as Figure 2a shows. Therefore, although the rigid body motion would not actually 
occur, it is advisable to introduce a unitary function to account for stiffness differences 
between the screw and the rigid bearing (Ginsberg, 2001). 

It is more obvious that the screw has a rigid body motion for the angular displacement; 
then, the displacement field to describe rotation in the screw can be represented by 
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where α = ( jθ - 1)π.  
The number of terms Nu and Nθ, can be selected by studying the convergence of the model 

solutions as will be discussed later. 
The power balance method requires expressions in terms of generalized coordinates, which 

can be obtained combining de Ritz series with the expressions for T, V, Pin and Pdis. This can 
be done, replacing Eq. (8) and Eq. (9) in the expression for the kinetic energy, Eq. (2), 
potential energy, Eq. (3), power input, Eq. (5), and power dissipation, Eq. (6). In order to 
account for all combinations when the series expansion is substituted into the energy and 
power expressions, different indices j and n are used to form each term, (Ginsberg, 2001). 
Therefore, the kinetic energy can be expressed in a general form as 
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where the inertia coefficients, Mjn, are calculated as 
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In the same way, it is possible to obtain an expression for the potential energy as 
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where the stiffness coefficients, Kjn, are given by 
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Also, the dissipated energy can be expressed as  
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where the viscosity coefficients, Cjn, are 
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Finally, it is possible to obtain an expression for input energy as follows  

 
1

N

in j j
j

P Q q
=

= ∑ �  (16) 

where the generalized forces, Qj, are given by 

 ( )
0

,
L

j x j j FQ f dx F x tψ ψ= + ∑∫  (17) 

where the fx represents a distributed force and F a concentrated force.  
The benefit of using the Power Balance methodology is the convenient way to find the 
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dynamic equations from the energy formulation. After the coefficients and the generalized 
forces are calculated as described above, they can be used to write the dynamic equations in a 
matrix form as  

 [ ]{ } [ ]{ } [ ]{ } { }M q C q K q Q+ + =�� �  (18) 

where each matrix is formed using the calculated coefficients; therefore, the solution of this 
system will be a function of the generalized coordinates.  

As Figure 2 shows, in addition to the generalized coordinates from the continuous portion, 
there are two additional generalized coordinates, one to describe the carriage position uc and 
other one to describe the rotor angular position θm. Thus the total system order is N = NU +NΘ, 
with NU = Nu +1 and NΘ = Nθ +1.  

The solution of the eigenvalue problem [[K]-ωj
2[M]]{Φj}={0} related to Eq. (18) gives N 

eigensolutions, each of one features a natural frequency ωj and a normal mode {Φj}. 
The convergence of the model solution can be analyzed comparing the changes in each 

natural frequency value from the solutions for different series extensions. As the number of 
terms increases, more high frequency modes can be estimated and each particular frequency 
approaches a stationary value monotonically from higher values. It was observed that the first 
four modes present a favorable approximation using only 3 terms in Eq. (8) and (9), (Vicente 
et al. 2007). 

2.3 Decoupled system equations 

The Eq. (18) represents a system of N differentials equations coupled by the off diagonal 
elements of the inertia, stiffness and damping matrices, making difficult to find the solutions 
for generalized coordinates. 

Nevertheless, considering the uncoupled nature of the stiffness and inertia matrices, 
applying the modal transformation {q} = [Φ]{η}, Eq. (18) results in 

 { } [ ] [ ][ ]{ } ( ) { } [ ] { }T T2diag =C Qη η ω η⎡ ⎤+ Φ Φ + Φ⎣ ⎦�� �  (19) 

where {η} is the vector formed by the modal coordinates, [Φ] is a matrix formed from the 
normalized eigenvectors [Φ] = [{Φ1} ... {ΦN}] and [diag(ω2)] is a diagonal matrix formed by 
the square natural frequencies. 

As can be seen, the modal equations are only coupled by the matrix [Φ]T[C][Φ]. However, 
the off-diagonal elements of [Φ]T[C][Φ] can be discarded in systems where damping is light. 
Thus for a particular ηj the equivalent damping ratio can be obtained replacing the coefficient 
[[Φ]T[C][Φ]]jj by 2ωjζj, resulting in 

 

{ }{ }

[ ] [ ][ ]T

22 =

1
2

j j j j j j j

j
jjj

Q

C

η ζ ω η ω η

ζ
ω

+ + Φ

⎡ ⎤= Φ Φ⎣ ⎦

�� �
 (20) 

The light damping approximation is acceptable when the equivalent damping ratios ζj are 
found to be less than 0.1 (Ginsberg, 2001). In ball-screw servosystems, the damping is 
provided by viscous forces in the screw and servomotor bearings, the nut, and the guide ways, 
so the structural modes tend to have low damping ratios. In Smith (1999) the equivalent 
damping ratio of the first mode was found to be 0.1, whereas in the others modes it was about 
0.01. In Varanasi (2002), the damping ratio for the first mode was found to be 0.02. 

Mecánica Computacional Vol XXVIII, págs. 3265-3277 (2009) 3271

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



According to this, the light damping approach seems to be a good approximation to decouple 
Eq. (19) in this kind of systems.  

To decouple the system equations is convenient to find the solution for modal coordinates. 
As Eq. (20) shows, the differential equation for each modal coordinate is like a one-degree-
of-freedom oscillator with unitary mass. In other words, the N-degree-of-freedom system was 
converted into N one-degree-of-freedom systems whose solution is well known. 

3 EXPRESSIONS FOR THE DISPLACEMENT FIELDS 

Tasks such as system identification and controller design for HSM, require a better 
knowledge of the system dynamics, particularly at higher frequencies that conventional 
machines. In this way, some researchers have developed finite elements models from which 
the mode shapes can be predicted (Smith, 1999; Erkorkmaz and Kamalzadeh, 2006). 
Alternatively, this work proposes to obtain expressions to allow the numerical evaluation of 
the displacement fields, from the solution of the general model presented in previous sections. 

An alternative form to write the displacement field, as is done in Eq (7), is to use matrix 
notation as follows 

 { }( , ) [ ]u x t qψ=  (21) 

where [ψ] is a row formed from the basis functions [ψ] = [ψ1 .... ψN]. Generally, the matrix 
representation may be advantageous in front of the summation form for computational 
implementation. 

Since damping is light in ball-screw systems and Eq. (19) can be decoupled, it is 
convenient to express the deformation fields in terms of modal coordinates, which can be 
done by simply substitution of modal transformation {q} = [Φ]{η} into Eq. (21). Then, the 
displacement field in terms of modal coordinates results in 

 { } { }( , ) [ ][ ] [ ]u x t η ηψ = Ψ= Φ  (22) 

where [Ψ] is a row formed by the functions Ψj = [ψ]{Φj} known as mode functions.  
As the elements of the mode vector {Φj} gives the proportions between the various 

generalized coordinates, the mode function Ψj gives the deformation proportions as a function 
of the x coordinate, in the jth mode. On the other hand, the ηj represents the mode 
contribution to the displacement field. 

3.1 Computer implementation 

The matrix form of Eq. (22) is particularly useful for computational implementation. For 
example, to evaluate u(x,t) at a succession of n points along the system, that is x = {x1 ... xn}, 
the matrix [Ψ] = [ψ][Φ] will be a rectangular array having n rows and N columns. 
Computation of the product values [Ψ]{η} would yield a column whose elements are the 
displacements at the various xn corresponding to the instant ti at which {η} is evaluated. 
Mathematically, this can be expressed as 
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 (23) 
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According to this, the procedure to obtain an expression for the displacement field requires 
the construction of the mode functions [Ψ] and to solve Eq. (20) to obtain the solution for the 
modal coordinates {η}. In the most general case, the solution for {η} will depend on initial 
conditions {η(0)} and external forces applied on the system {Q}. 

Nevertheless, the first step in the analysis of the system behavior is to find and draw the 
mode functions, which are own of the system and, therefore, they depend neither on the 
particular conditions nor on the external excitations. Although, the mode functions do not 
represent the absolute deformations, they indicate how the deformation is distributed along 
the system in each mode. This is the main focus of the remaining of this work. 

3.2 Axial and angular components of the mode functions 

Since the system undergoes two types of deformation, it is clear that in the most general 
case, each vibration mode is composed of two kinds of movements: axial and angular. 
According to this, it can be said that each mode function will have two components. One of 
them associated to axial displacement, that will be identified as Ψuj and other one associated 
to the angular displacements, identified as Ψθj. 

To compute the axial and angular components of the mode functions, it is necessary to 
distinguish, in each mode vector {Φj}, the elements corresponding to each one of the 
generalized coordinates. In this sense, if the generalized coordinates vector {q} has the 
following arrange  

 { } { }T

1 1 c mN Nuu uq q q q q u
θ

θ θ θ= " "  (24) 

each mode vector {Φj} can be written as 

 { } { }T

1 1 c mj N Nu uu u
θ

θθ θΦ = Φ Φ Φ Φ Φ Φ" "  (25) 

Therefore, the first Nu elements of {Φj} are associated with the axial displacements and the 
following Nθ elements of {Φj} are associated with the angular displacements. Whereas, the 
last two elements of {Φj}, Φucj and Φθmj, are the elements describing the carriage 
displacement and the rotor-motor angular displacement, respectively. 

In this way, the axial component of jth mode function can be constructed from the basis 
functions used to describe the axial field and the first Nu elements of {Φj} as follows 

 
1 2

( ) ( ) ( )

N

j

j Nu

u j

u

u u u ux x xψ ψ ψ

Φ⎧ ⎫
⎪ ⎪⎪ ⎪⎡ ⎤Ψ = ⎨ ⎬⎣ ⎦ ⎪ ⎪Φ⎪ ⎪⎩ ⎭

… #  (26) 

Similarly, the angular component of jth mode function results in 

 
1 2

( ) ( ) ( )

N

j

j N

j

x x x
θ

θ

θ

θ θ θ θψ ψ ψ

Φ⎧ ⎫
⎪ ⎪⎪ ⎪⎡ ⎤Ψ = ⎨ ⎬⎢ ⎥⎣ ⎦ ⎪ ⎪Φ⎪ ⎪⎩ ⎭

… #  (27) 

According to Eq (26) and (27), to find the axial and angular components of the mode 
functions, it only requires to identify the elements, from {Φj}, associated with each type of 
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deformation. It is important to state that the arrangement of the mode vector will depend on 
arrangement of the generalized coordinates in Eq. (18). 

In this system, a complete description of the axial shape in the jth mode includes the Φucj 
element, accounting for the carriage motion, in addition to the axial component of mode 
function. In the same way a complete description of the angular shape includes Φθmj, 
accounting for the rotor motion, in addition to the angular component of the mode function. 

4 MODE FUNCTIONS 

Figures 3a and 3b show the axial and angular components of the mode functions for the 
first four modes of a ball screw drive. Also, in Figure 3a, the motion of the carriage was 
described in each mode as a point value Φucj plotted at x = xc. Similarly, in Figure 3b, the 
motion of the motor rotor was described by Φθmj plotted at x = 0. 

The mode functions were obtained according to Eq. (26) and (27) in which the mode 
vectors correspond to the system solution with the physical parameters in Table 1 and the 
particular carriage position xc = 0.5L. The number of terms included into Eq. (8) and (9) were 
Nu = Nθ = 4. 

As can be seen from the first mode, Ψu1 and Ψθ1, the screw is not experiencing any kind of 
deformation; because, this is the rigid body mode corresponding to the rigid rotation of the 
rotor, the coupling and the screw. This is also confirmed by the ratio between the carriage 
motion value Φuc1 and the angular motion value Ψθ1, which is exactly the transmission ratio l. 
The rigid body mode is the only mode that provides useful motion, whereas the others 
correspond to small displacements around the position determined by the rigid motion. 

Although each mode has axial and angular deformations, it is important to classify the 
vibration modes either as axial or torsional, according to the predominant deformation. The 
knowledge of each mode character is convenient to identify the stiffness and inertia 
parameters that have greater influence on each mode, which can be useful for design 
purposes. 

The mode characterization from the comparison of axial and angular components of the 
mode functions is somewhat subjective. It requires a match between different kinds of 
deformations, which implies an implicit valuation of when one kind of deformation is 
substantially less significant compared to the others.  

Nevertheless, it can be seen that the amplitude of axial components Ψu diminishes as the 
mode number grows, whereas the angular component amplitude Ψθ increases. It is important 
to point out that the absolute deformation in each mode depends on the mode contribution ηj, 
as Eq. (22) indicates. An increment or decrement of the amplitude in the mode function, from 
one mode to another, does not necessarily means that the deformation increases or decreases 
in the same proportion. However, as the axial and angular deformation in each mode depends 
on the same contribution ηj, a relative increment of one component respect to the other one, 
means a greater predominance of this type of deformation in the mode. 

In this way, in the second mode, which is the first vibration mode, the axial component 
amplitude Ψu2 has the greatest values compared to their homologues, whereas the angular Ψθ2 
has the smaller one. In addition, the displacement of the carriage Φuc2 has the largest value, 
which is consistent with Smith (1999), in which the second mode was described as an axial 
mode where de carriage is connected to ground by the axial stiffness of the ball screw, ball 
nut and the rigid bearing. The axial dominance of this mode also agrees with Vicente et al. 
(2008), who compared the natural frequencies values from the solutions of axial and torsional 
decoupled models, with the values from the coupled model as represented by Eq. (18). 

D.A. VICENTE, R.L. HECKER, G.M. FLORES3274

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



As can be also seen from Figure 3, in the third mode, the amplitude of the angular 
component increases considerably, whereas the axial decreases and the axial displacement of 
the carriage is substantially lower. Nevertheless, the axial mode function amplitude has a 
significant value. This agrees with results in Vicente et al. (2008), in which was observed that 
in some modes exists a strong coupling between the axial and angular deformations, and the 
coupling increases as the trasnmition ratio increases. It means that the axial and angular 
deformations are both important. About the character of this mode, Vicente et al. (2008) 
concluded that it is essentially a torsional mode for low transmission ratios and becomes 
coupled as the transmission ratio increases. 

  

a) Axial component b) Angular component 

Figure 3 : Axial an Angular components of the mode functions. 

Finally, in the fourth mode, the amplitude of the angular component shows the largest 
values, whereas the axial, as well as the displacements of the carriage, are very small. For this 
mode Vicente et al. (2008) concluded that this is a clearly torsional mode. 

On the other hand, the knowledge of system behavior in each mode can be very useful for 
identification purposes, especially at high frequencies. From Figure 3 it can be seen that a 
convenient point to perform measurements, to identify the second mode, is the carriage 
position uc, because this is the point showing the largest deformation in this mode. Similarly, 
the angular position at the end of the screw θ(x = L) can be a suitable point of measurement to 
identify the third and fourth modes.  
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ρ 7850 [kg/m3] 
E 2,06x1011 [N/m2] 
G 8,1x1010 [N/m2] 
A 4,22x10-4 [m2] 
Jt 2,8x10-8 [m4] 
L 0,743 [m] 
Ja 3,8x10-4 [kg m2] 
Jm 2,6x10-4 [kg m2] 
mc 30 [kg] 
kn 4,3x108 [N/m] 
kb 4,5x108 [N/m] 
ka 5200 [Nm/rad] 
l 1,59x10-3 m/rad 

Table 1: Parameter values used in the model. 

Furthermore, the knowledge of the mode functions can be very important for certain 
control application. For example, if the carriage position uc is the variable to be controlled, it 
is clear that the second mode is the one that contributes with greatest elastic deformations. 
Therefore, to enhance the final linear positioning bandwidth it is necessary to compensate this 
mode, (Kamalazadeh and Erkorkmaz, 2007). 

5 CONCLUSIONS 

A finite dimensional model of a ball-screw feed-drive system is presented, where Ritz 
series were used to approximate the continuous field displacements of the ball screw 
subsystem. The model was used to predict the natural frequencies and to evaluate the system 
deformation based on the mode functions. 

Since this kind of systems has very low damping, the system equations in modal 
coordinates can be decoupled. In this way a procedure to compute the deformation fields in 
terms of modal coordinates was discussed, based on the mode functions and modal 
coordinates.  

As the system experience axial and angular deformations, the mode functions will have 
two components in each mode. Thus, a way to obtain the axial and angular components is 
proposed and then applied to find and to analyze the shapes of the first four modes. 

From the components of the mode functions can be seen that the first mode is the rigid 
body mode, corresponding to the rigid rotation of the screw. In the second mode, the axial 
deformation has the largest values as well as the largest carriage displacement. The third 
mode is highly coupled, whereas the fourth mode has an angular predominance. 
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