VIBRACIONES LIBRES DE BARRAS INCLINADAS CON UN TIPO PARTICULAR DE RESTRICCIÓN EXTREMA

Santiago Maíz^{1,2}, Mario J. Maurizi¹, Carlos A. Rossit^{1,2}

¹ Departamento de Ingeniería, Instituto de Mecánica Aplicada (IMA) Universidad Nacional del Sur. Avda. Alem 1253. 8000 – Bahía Blanca. e-mail: <u>smaiz@uns.edu.ar</u>, <u>ima@criba.edu.ar</u>, <u>carossit@criba.edu.ar</u>

² Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Palabras Clave: barras inclinadas, vibraciones axiles, vibraciones acopladas

Resumen: Los entramados simétricos, planos y espaciales, con elementos de directriz recta e inclinación cualquiera, forman parte de innumerables diseños de aplicación destinados a satisfacer los requerimientos actuales de las ingenierías civil, mecánica, naval y aeroespacial.

En un escalón de necesidades asociadas cabe citar el conocimiento exhaustivo de las vibraciones libres de barras inclinadas con distintas restricciones en sus extremos.

En el presente estudio las vibraciones axisimétricas de las estructuras citadas son analizadas mediante un modelo simplificado de una barra inclinada con el extremo inferior fijo en el espacio y el extremo superior guiado, es decir, con la posibilidad de moverse en una ranura o hendidura vertical sin fricción.

Por otra parte, el efecto del esfuerzo axial inducido durante la vibración de una barra resulta apreciable solamente cuando las amplitudes de la vibración lateral, son grandes comparadas con la dimensión mínima del elemento estructural. Además, es sabido que las frecuencias de las vibraciones axiles son de mayor orden que aquellas de las vibraciones laterales (ver, por ejemplo, L.W. Rehfield, <u>International Journal of Solids and Structures</u>, Vol..9, 581-590 (1973)). De allí que, para vibraciones de pequeña amplitud no están acopladas, como se las identifica comúnmente en las teorías convencionales.

De la aplicación del principio de Hamilton al funcional energético se obtienen dos ecuaciones no lineales, que para vibraciones pequeñas y funciones de primer orden, se identifican con las usadas separadamente para vibraciones axiles y laterales.

Como resultado, se obtienen las ecuaciones de frecuencias para distintos casos de vinculaciones extremas, así como se suministran en forma de Tablas los valores numéricos de las primeras tres frecuencias naturales, siempre en función de los parámetros involucrados.

1. INTRODUCCIÓN

Consideremos una barra prismática, inclinada y elástica, de longitud L y que está representada en la figura 1. Sean \overline{x} e \overline{y} las coordenadas axial y transversal, con el origen localizado en el centroide de la sección transversal del extremo inferior. El extremo superior satisface la condición de que el desplazamiento horizontal en el mismo, resultante de los desplazamientos \overline{U} y \overline{V} , es nulo:

$$\overline{U}\operatorname{sen}\alpha + V\cos\alpha = 0 \quad en \quad \overline{x} = L \tag{1}$$

Además expresamos:

$$x = \frac{\overline{x}}{L}; \quad U = \frac{\overline{U}}{L}; \quad V = \frac{\overline{V}}{L}$$
 (2a-c)

La energía cinética del sistema es:

$$E_{C} = \frac{AEL}{2\beta^{2}} \int_{t_{0}}^{t_{1}} \int_{0}^{1} \left(\left(\frac{\partial V}{\partial t} \right)^{2} + \left(\frac{\partial U}{\partial t} \right)^{2} \right) dx dt$$
(3)

donde A es el área de la sección transversal, E es el módulo de elasticidad, y en la cual

$$\beta^2 = \frac{Eg}{\gamma L^2} \tag{4}$$

siendo g la aceleración de la gravedad y γ el peso específico de la barra. Por otro lado, la energía potencial del sistema para vibraciones finitas, es la siguiente:

S. Maíz, M. Maurizi, C. Rossit

$$E_{P} = \frac{AEL}{2} \int_{t_{0}}^{t_{1}} \left[\int_{0}^{1} \left(\frac{\partial U}{\partial x} + \frac{1}{2} \left(\frac{\partial V}{\partial x} \right)^{2} \right)^{2} dx + \frac{1}{R^{2}} \int_{0}^{1} \left(\frac{\partial^{2} V}{\partial x^{2}} \right)^{2} dx \right] dt$$
(5)

donde:

$$R = \frac{L}{\sqrt{I/A}} \tag{6}$$

siendo I el momento de inercia respecto al eje z.

La condición de restricción (1) se puede tomar en consideración usando el multiplicador de Lagrange que simbolizamos con λ . Entonces, un funcional equivalente a la función de Lagrange se puede obtener como sigue:

$$F_e = E_C - E_P - A E L \lambda \int_{t_0}^{t_1} \left[U \operatorname{sen} \alpha + V \cos \alpha \right]_{x=1} dt$$
(7)

Cuando aplicamos el principio de Hamilton a este funcional, y asumimos que los desplazamientos virtuales δU y δV son nulos para cualquier intervalo de tiempo[t_0 , t_1], se obtienen las siguientes dos ecuaciones no lineales:

$$\frac{1}{\beta^2} \frac{\partial^2 U}{\partial t^2} - \frac{\partial}{\partial x} \left(\frac{\partial U}{\partial x} + \frac{1}{2} \left(\frac{\partial V}{\partial x} \right)^2 \right) = 0$$
(8a)

$$\frac{1}{\beta^2} \frac{\partial^2 V}{\partial t^2} + \frac{\partial}{\partial x} \left(\frac{\partial U}{\partial x} + \frac{1}{2} \left(\frac{\partial V}{\partial x} \right)^2 \right) \frac{\partial V}{\partial x} + \left(\frac{\partial U}{\partial x} + \frac{1}{2} \left(\frac{\partial V}{\partial x} \right)^2 \right) \frac{\partial^2 V}{\partial x^2} + \frac{1}{R^2} \frac{\partial^4 V}{\partial x^4} = 0$$
(8b)

En vista de la condición (1), asumimos:

$$U = \xi U_1 + \xi^2 U_2 + \cdots$$
(9a)

$$V = \xi V_1 + \xi^2 V_2 + \dots$$
 (9b)

en las cuales ξ es la amplitud.

Para pequeñas amplitudes, es decir $\xi >> \xi^2$, y empleando las funciones de primer orden U_1 y V_1 , se obtienen las siguientes ecuaciones:

$$\frac{1}{\beta^2} \frac{\partial^2 U_1}{\partial t^2} - \frac{\partial^2 U_1}{\partial x^2} = 0$$
(10a)

$$\frac{1}{\beta^2} \frac{\partial^2 V_1}{\partial t^2} - \frac{1}{R^2} \frac{\partial^4 V_1}{\partial x^4} = 0$$
(10b)

Ambas son idénticas a las usadas separadamente en vibraciones axiales y transversales de una barra^{1, 2 y 4}.

Para la barra AB que nos ocupa, con el extremo inferior A fijo en el espacio y empleando análisis variacional, se obtienen las siguientes condiciones de borde:

$$U_1 = 0 \quad en \quad x = 1$$
 (11a)

$$\frac{\partial U_1}{\partial x} + \lambda \operatorname{sen} \alpha = 0 \quad en \quad x = 1$$
(11b)

$$V_1 = 0 \quad en \quad x = 0 \tag{12a}$$

$$\frac{\partial V_1}{\partial x} = 0 \quad \acute{o} \quad \frac{\partial^2 V_1}{\partial x^2} = 0 \quad en \quad x = 0$$
(12b-c)

$$\frac{\partial V_1}{\partial x} = 0 \quad \acute{o} \quad \frac{\partial^2 V_1}{\partial x^2} = 0 \quad en \quad x = 1$$
(13a-b)

$$\frac{\partial^3 V_1}{\partial x^3} - R^2 \lambda \cos \alpha = 0 \quad en \quad x = 1$$
(13c)

a las que se agrega la condición:

$$U_1 \operatorname{sen} \alpha + V_1 \cos \alpha = 0 \quad en \quad x = 1 \tag{14}$$

En consecuencia, el multiplicador de Lagrange λ puede interpretarse físicamente como la reacción horizontal adimensionalizada en el extremo superior **B**. Esta nueva incógnita λ , involucrada en las condiciones (11b) y (13c), está compensada por la condición adicional (14).

2. ECUACIONES DE FRECUENCIAS

Sean:

$$U_1(x,t) = u(x)\operatorname{sen}(pt) \tag{15a}$$

$$V_1(x,t) = v(x)\operatorname{sen}(pt) \tag{15b}$$

Sustituyendo estas dos funciones en las ecuaciones (10), obtenemos:

$$\frac{\partial^2 u}{\partial x^2} + \left(\frac{k^4}{R^2}\right) u = 0$$
(16a)

$$\frac{\partial^4 v}{\partial x^4} - k^4 v = 0 \tag{16b}$$

En las cuales:

$$k = \sqrt{\frac{pR}{\beta}} \tag{17}$$

Con p simbolizamos la frecuencia circular natural del sistema que nos ocupa y con k el coeficiente de frecuencia. Por otra parte, las condiciones (11) a (14) devienen en:

$$u = 0 \quad en \quad x = 0 \tag{18a}$$

$$\frac{\partial u}{\partial x} + \lambda \operatorname{sen} \alpha = 0 \quad en \quad x = 1$$
(18b)

$$v = 0 \quad en \quad x = 0 \tag{19}$$

$$\frac{\partial v}{\partial x} = 0$$
 \acute{o} $\frac{\partial^2 v}{\partial x^2} = 0$ $en \quad x = 0$ (20a-b)

$$\frac{\partial v}{\partial x} = 0$$
 \acute{o} $\frac{\partial^2 v}{\partial x^2} = 0$ $en \quad x = 1$ (21a-b)

$$\frac{\partial^3 v}{\partial x^3} - R^2 \lambda \cos \alpha = 0 \quad en \quad x = 1$$
(22)

$$u \operatorname{sen} \alpha + v \cos \alpha = 0 \quad en \quad x = 1$$
 (23)

,

Teniendo en cuenta las condiciones (18), la solución de la ecuación (16a) es:

$$u(x) = -\frac{\lambda R}{k^2} \operatorname{sen} \alpha \tan\left(\frac{k^2}{R}\right)$$
(24)

A su vez, la solución general de la ecuación (16b) es:

$$v(x) = C_1 \operatorname{sen}(kx) + C_2 \cos(kx) + C_3 \operatorname{senh}(kx) + C_4 \cosh(kx)$$
(25)

Donde C_1 , C_2 , C_3 y C_4 son constantes de integración que serán determinadas para cada uno de los casos de barras vinculadas que a continuación se analizan.

3. BARRA INCLINADA CON EXTREMOS ARTICULADO-"ARTICULADO"

Para este tipo de barras y cumpliendo con las condiciones de borde(19), (20b), (21b) y (22), la solución de la (25) resulta:

$$v(x) = -\frac{\lambda R^2 \cos(\alpha) [\operatorname{senh}(k) \operatorname{sen}(kx) + \operatorname{sen}(k) \operatorname{senh}(kx)]}{k^3 [\operatorname{senh}(k) \cos(k) - \cosh(k) \operatorname{sen}(k)]}$$
(26)

Por último, sustituyendo las ecuaciones (24) y (26) en la condición (23), y para $\lambda \neq 0$, obtenemos la siguiente ecuación de frecuencia:

$$\tan^{2}(\alpha) + 2\cot\left(\frac{k^{2}}{R}\right)\frac{R}{k}\frac{\cos^{2}(\alpha)\operatorname{senh}(k)\operatorname{sen}(k)}{\left[\operatorname{senh}(k)\cos(k) - \cosh(k)\operatorname{sen}(k)\right]} = 0$$
(27)

Los resultados de esta ecuación de frecuencias son presentados en la Tabla 1, donde los cinco (5) primeros valores de k están calculados en función de α y donde el parámetro R asume las magnitudes 200, 100 y 50.

Si $\alpha = 0$, la ecuación (27) se reduce a:

$$\cos\left(\frac{k^2}{R}\right) = 0 \tag{28}$$

ó

$$\operatorname{sen}\left(k\right) = 0 \tag{29}$$

(31)

para $k \neq 0$. Ambas se satisfacen respectivamente para:

$$k = \sqrt{\frac{\pi R}{2}}, \sqrt{\frac{3\pi R}{2}}, \sqrt{\frac{5\pi R}{2}}, \dots$$
 (30)

у

 $k = \pi, 2\pi, 3\pi, ...$

Por otra parte, cuando $\alpha = \pi/2$ la ecuación (27) exige que:

$$\operatorname{sen}\left(\frac{k^2}{R}\right) = 0 \quad \text{y entonces} \tag{32}$$

S. Maíz, M. Maurizi, C. Rossit

$$k = \sqrt{\pi R}, \sqrt{2\pi R}, \sqrt{3\pi R}, \dots$$
 (33)

$$\tanh(k) = \tan(k)$$
 y en consecuencia (34)

$$k = 0; 3,927; 7,069; 10,210; ...$$
 (35)

En este caso, las frecuencias de vibración desacopladas, tanto axiles como transversales, respectivamente, son las correspondientes a una viga articulada – libre⁵⁻⁷.

En el caso del valor k = 0, incluido en (35) debe aclararse que tiene sentido físico toda vez que corresponde al movimiento de cuerpo rígido de la estructura inestable.

4. BARRA INCLINADA CON EXTREMOS ARTICULADO-"EMPOTRADO"

Si se cumplen las condiciones (19), (20b), (21a) y (22), la solución de la ecuación (25) resulta:

$$v(x) = -\lambda R^2 \cos(\alpha) (\cosh(k) \operatorname{sen}(kx) - \cos(k) \operatorname{senh}(kx)) (2k^3 \cos(k) \cosh(kx))$$
(36)

La condición (23), para $\lambda \neq 0$, suministra la ecuación de frecuencia para el caso que se analiza:

$$\tan^{2}(\alpha) + \cot\left(\frac{k^{2}}{R}\right)\left(\frac{R}{2k}\right)(\tan(k) - \tanh(k)) = 0$$
(37)

Esta expresión, para $k \neq 0$ y $\alpha = 0$, también se reduce a la ecuación (34) para las vibraciones transversales y a la ecuación (28) para las vibraciones longitudinales.

En el caso que $\alpha = \pi/2$, la ecuación (37) da lugar para vibraciones transversales a:

$$\tan(k) \to \infty \tag{38}$$

y en consecuencia,

$$k = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$$
(39)

En el caso de los modos longitudinales responde a la ecuación (32).

Estas resultan ser las frecuencias de vibración de una viga articulada-"guiada"⁵⁻⁷. Los resultados numéricos de las cinco primeras frecuencias, correspondientes a las ecuaciones (37) y (38), aparecen listadas en la Tabla 2.

5. BARRA INCLINADA CON EXTREMOS EMPOTRADO-"ARTICULADO"

Cuando se satisfacen las condiciones (19), (20a), (21b) y (22), la solución de la ecuación (25) tiene la siguiente forma:

$$v(x) = -\frac{\lambda \cos(\alpha)R^2}{2k^3} (1 + \cos(k)\cosh(k)) [(\cos(k) + \cosh(k))(\sin(kx) - \sinh(kx)) - (40) (\sin(k) + \sinh(k))(\cos(kx) - \cosh(kx))]$$

Al aplicar la condición (23), y para $\lambda \neq 0$, resulta la siguiente ecuación de frecuencias:

$$\tan^{2}(\alpha) + \cot\left(\frac{k^{2}}{R}\right)\left(\frac{R}{k}\right)\frac{(\operatorname{sen}(k)\cosh(k) - \cos(k)\operatorname{senh}(k))}{(1 + \cos(k)\cosh(k))} = 0$$
(41)

Los autovalores que se obtienen de esta ecuación se presentan en la Tabla 3 para las primeras cinco frecuencias de vibración. Para el caso límite de $\alpha = 0$ y $k \neq 0$, la ecuación (41) se reduce a la conocida ecuación (34) y a la (28).

En el otro caso límite, cuando $\alpha = \pi/2$, obtenemos, para modos transversales:

$$1 + \cos(k)\cosh(k) = 0 \tag{42}$$

a partir del cual:

$$k = 1.875, 4.694, 7.855, \dots \tag{43}$$

y nuevamente la ecuación (32) para los modos longitudinales, valores citados en las referencias [5] para la viga empotrada-libre.

6. BARRA INCLINADA CON EXTREMO INFERIOR EMPOTRADO Y EXTREMO SUPERIOR EMPOTRADO EN ROTACIÓN.

Si se satisfacen las condiciones (19), (20a), (21a)y (22), la solución (25) resulta ser:

$$v(x) = -\left[\lambda \cos\left(\frac{\alpha}{2}\right)R^{2}(\operatorname{sen}(k)\operatorname{cosh}(k) + \cos(k)\operatorname{senh}(k))\right] \times$$

$$[(\operatorname{sen}(k) + \operatorname{senh}(k))(\operatorname{sen}(kx) - \operatorname{senh}(kx)) - (\cos(k) - \cosh(k))(\cos(kx) - \cosh(kx))]$$
(44)

A continuación, y a partir de la condición (23), la ecuación de frecuencias obtenida es:

$$\tan^{2}(\alpha) + \cot\left(\frac{k^{2}}{R}\right)\left(\frac{R}{k}\right)\frac{(1+\cos(k)\cosh(k))}{(\sin(k)\cosh(k)-\cos(k)\sinh(k))} = 0$$
(45)

Los resultados de esta ecuación, correspondientes a las primeras cinco frecuencias, aparecen tabulados en la Tabla 4.

Cuando $\alpha = 0$, la misma se reduce a:

$$1 + \cos(k)\cosh(k) = 0 \tag{46}$$

de la cual

$$k = 4.730, 7.853, 10.996, \dots$$
 (47)

ó a la ecuación (28), como aparece registrado en las referencias [5] para vigas doblemente empotradas.

Asimismo, cuando $\alpha = \pi/2$ obtenemos, para modos transversales:

$$\tan(k) + \tanh(k) = 0 \tag{48}$$

por lo tanto

$$k = 2.365, 5.498, 8.639, \dots$$
 (49)

y también responde a la conocida ecuación (32), para los modos longitudinales, como se cita en las referencias [5-7] para vigas empotradas-guiadas.

7. RESULTADOS

Tabla 1: Primeros cinco coeficientes de frecuencia para viga ARTICULADA-"ARTICULADA" en función de α

R=50	α	0°	15°	30°	45°	60°	75°	90°
	k_1	3,142	3,141	3,139	3,135	3,123	3,054	3,927
	k_2	6,283	6,279	6,262	6,219	6,085	5,463	7,069
	k_3	8,862	8,819	8,689	8,454	8,038	7,393	10,210
	k_4	9,425	9,455	9,536	9,661	9,836	10,063	12,533
	k_5	12,566	12,566	12,566	12,564	12,561	12,551	13,352
R=100	k_1	3,142	3,141	3,141	3,140	3,137	3,120	3,927
	k_2	6,283	6,282	6,279	6,270	6,243	6,088	7,069
	k_3	9,425	9,421	9,405	9,365	9,238	8,564	10,210
	k_4	12,533	12,405	12,222	11,949	11,471	10,643	13,352
	k_5	12,566	12,677	12,801	12,935	13,090	13,259	16,493
R=200	k_1	3,142	3,142	3,141	3,141	3,140	3,136	3,927
	k_2	6,283	6,283	6,282	6,280	6,274	6,238	7,069
	k_3	9,425	9,424	9,421	9,413	9,390	9,254	10,210
	k_4	12,566	12,564	12,556	12,534	12,465	12,034	13,352
	k_5	15,708	15,700	15,670	15,591	15,342	14,341	16,493

S.	Maíz,	М.	Maurizi,	С.	Rossit
)		

		00	1 70	200	4 50	600	= = 0	0.00
R=50	α	00	15°	30°	45°	60°	75°	90°
	k_1	3,927	3,925	3,918	3,901	3,851	3,584	1,571
	k_2	7,069	7,053	6,994	6,844	6,439	5,464	4,712
	k_3	8,862	8,820	8,689	8,463	8,169	7,933	7,854
	k_4	10,210	10,235	10,310	10,437	10,623	10,855	10,996
	k_5	13,352	13,343	13,312	13,240	13,073	12,757	12,533
	k_1	3,927	3,926	3,925	3,920	3,908	3,840	1,571
	k_2	7,069	7,066	7,056	7,029	6,947	6,476	4,712
R=100	k_3	10,210	10,198	10,150	10,025	9,645	8,568	7,854
	k_4	12,533	12,468	12,279	11,960	11,513	11,121	10,996
	k_5	13,352	13,392	13,500	13,654	13,843	14,040	14,137
R=200	k_1	3,927	3,926	3,926	3,925	3,922	3,905	1,571
	k_2	7,069	7,068	7,066	7,060	7,041	6,935	4,712
	k_3	10,210	10,208	10,200	10,180	10,117	9,723	7,854
	k_4	13,352	13,346	13,324	13,265	13,069	12,094	10,996
	k_5	16,493	16,466	16,364	16,110	15,506	14,511	14,137

Tabla 2: Primeros cinco coeficientes de frecuencia para viga ARTICULADA-"EMPOTRADA" en función de α

Tabla 3: Primeros cinco coeficientes de frecuencia para viga EMPOTRADA-"ARTICULADA" en función de α

R=50	α	0°	15°	30°	45°	60°	75°	90°
	k_1	3,927	3,926	3,923	3,915	3,891	3,760	1,875
	k_2	7,069	7,061	7,032	6,956	6,733	5,910	4,694
	k_3	8,862	8,841	8,769	8,621	8,354	8,007	7,855
	k_4	10,210	10,223	10,265	10,348	10,501	10,764	10,996
	k_5	13,352	13,347	13,332	13,294	13,191	12,892	12,533
R=100	k_1	3,927	3,926	3,926	3,924	3,918	3,886	1,875
	k_2	7,069	7,067	7,062	7,049	7,009	6,773	4,694
	k_3	10,210	10,204	10,181	10,120	9,928	9,075	7,855
	k_4	12,533	12,500	12,392	12,183	11,800	11,244	10,996
	k_5	13,352	13,373	13,437	13,549	13,723	13,968	14,137
R=200	k_1	3,927	3,927	3,926	3,926	3,924	3,917	1,875
	k_2	7,069	7,068	7,067	7,064	7,055	7,004	4,694
	k_3	10,210	10,209	10,205	10,195	10,165	9,981	7,855
	k_4	13,352	13,349	13,338	13,309	13,218	12,657	10,996
	k_5	16,493	16,479	16,429	16,299	15,935	14,885	14,137

R=50	α	0°	15°	30°	45°	60°	75°	90°
	k_1	4,730	4,727	4,715	4,686	4,595	4,144	2,365
	k_2	7,853	7,821	7,708	7,448	6,902	5,980	5,498
	k_3	8,862	8,850	8,813	8,757	8,698	8,655	8,639
	k_4	10,996	11,009	11,054	11,142	11,298	11,552	11,781
	k_5	14,137	14,114	14,032	13,847	13,481	12,925	12,533
	k_1	4,730	4,729	4,727	4,720	4,699	4,580	2,365
	k_2	7,853	7,849	7,834	7,796	7,673	7,017	5,498
R=100	k_3	10,996	10,975	10,897	10,697	10,179	9,142	8,639
	k_4	12,533	12,500	12,396	12,219	12,001	11,836	11,781
	k_5	14,137	14,159	14,226	14,347	14,535	14,778	14,923
R=200	k_1	4,730	4,730	4,729	4,727	4,722	4,694	2,365
	k_2	7,853	7,852	7,849	7,841	7,815	7,663	5,498
	k_3	10,996	10,993	10,983	10,957	10,873	10,353	8,639
	k_4	14,137	14,129	14,100	14,020	13,756	12,663	11,781
	k_5	17,279	17,206	16,998	16,624	15,972	15,183	14,923

Tabla 4: Primeros cinco coeficientes de frecuencia para viga EMPOTRADA-"EMPOTRADAEN ROTACIÓN" en función de α

8. CONCLUSIONES

Las soluciones obtenidas en el estudio de las vibraciones de barras inclinadas resultan exactas siempre que las amplitudes consideradas sean pequeñas. Cuando éstas son moderadamente incrementadas, es deseable asumir las funciones U_2 y V_2 . Éstas se pueden obtener mediante la sustitución de las series (9) en las ecuaciones (8), dando como resultado dos ecuaciones similares a las ecuaciones (10).

El tratamiento desarrollado en el presente trabajo puede ser aplicado a otras estructuras con miembros inclinados, por ejemplo, cuando se trata de materializar la sección meridiana de un cono truncado. De allí que la secuencia operativa puede ser seguida cuando se analizan vibraciones de cáscaras y cubiertas cónicas.

9. REFERENCIAS

[1]- R.S.Ayre and L. S. Jacobsen, *Engineering Vibrations*. McGraw-Hill Book Company, Inc.. New York (1958).

[2]- W. T. Thomson, *Theory of Vibrations with Applications*. Pretince-Hall, Inc.. Englewood Cliffs, New Jersey (1972).

[3]- L. W. Rehfield, *Non-linear free vibrations of elastic structures*, International Journal of Solids and Structures 9, 581-590, (1973).

[4]- F. S. Tse, I. E. Morse and R. T. Kinkle, *Mechanical Vibrations*: Theory and Applications. Allyn and Bacon, Inc., second edition. Boston, Mass. (1978).

[5]- R. D. Blevins, *Formulas for Natural Frequency and Mode Shape*. Van Nostrand Reinhold Company, New York (1979).

[6]- W. Weaver, Jr., S. P. Timoshenko and D. H. Young, *Vibrations Problems in Engineering*. John Wiley & Sons, Inc., fifth edition (1990).

[7]- S. S. Rao, *Mechanical Vibrations*. Addison-Wesley Publishing Co., third edition (1995).