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Abstract. The goal of this effort is to solve the acoustic-structural coupling problem. To account for 
the inner acoustic cavity in the structural response, an expression for the acoustic pressure produced by 
the motion of the external structure is derived in this effort. To this end, the acoustic mode shapes and 
natural frequencies of the inner cavity are computed. The eigenproperties are then used to solve for the 
Green’s functions, which allows to compute the acoustic pressure due to the structural motion. The 
modeling of the acoustic cavity is included in the structural. The structural model is evaluated 
numerically and validated by comparison to experimental results from the open literature. It is shown 
in this work that the acoustic cavity dynamics effect results in a sharp increase of the response around 
the shell cavity resonance.                                                   . 
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INTRODUCTION 
 

The problem here is to obtain an expression for the acoustic pressure induced by the 
structure motion. The acoustic cavity pressure in turn affects the structure response. In Figure 
1, the general problem of finding the acoustic pressure in an structural enclosure is presented. 
 
 

n


 

 
Figure 1: Interior acoustic problem. 

 
The acoustic cavity is the volume ℑ  defined by the elastic boundary ∂ℑ . The motion of the 

boundary is given by the velocity ( )w r ∂ℑ


  in the normal direction n


 to the surface creates 

the acoustic pressure ( )p r


. Before addressing the general problem of finding ( )p r


, a 
discussion on the general boundary conditions for this type of problem is presented. The 
boundary conditions on the domain surface ∂ℑ , i.e. inside cavity surface, can be expressed as 
 

 ( ) ( ) ( ) ,
p r

p r B r on
n

α β ∂ℑ

∂
+ =       ∂ℑ

∂


 
 (1) 

 
Where n  is the normal to the boundary ∂ℑ , ( )p r


 the acoustic pressure and , , and Bα β    

are given functions evaluated on the region ∂ℑ . The boundary condition relates the values of 
( )p r


 on ∂ℑ  and the flux of ( )p r


 through ∂ℑ . The condition of 0, 0α β≥  ≥  and
onα β + > 0  ∂ℑ  are required (Zauderer, 1989). If  0 and =0α β≠   , the boundary condition is 

called of the first kind or Dirichlet condition. If 0 and 0α β=   ≠ , the boundary condition is 
called of the second kind or Neumann condition. If 0 and 0α β≠   ≠ , the boundary condition is 
called of the third kind or mixed kind. When B  does not vanish, the boundary conditions are 
of inhomogeneous type. If  B  and α  vanish at the boundary the condition is “hard wall”.  

Consider now a general differential operator L  and  
 

 ( ) ( ) inLp r F r=       ℑ
 

 (2) 
 

Where ( )F r


 represent the external influences on the system. The operator L  is not 

assumed to be formally self-adjoint, L L≠  in order to keep the richness in the development. 
Therefore, the adjoint operator L of L  satisfies the equation (Roach, 1970) 
 

( )w r ∂ℑ


 

 
Domain ℑ  

  Boundary ∂ℑ  ( )p r


 

 
r


 

   r ∂ℑ
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 ( ) ( )o oLG r r r rδ= −  
  

 (3) 

Where ( )oG r r


 is the Green’s function. The boundary condition are given by the adjoint of 

the operator ( )B r


. The inner product upon the domain ℑ  is defined as 

 ,x y x y d
ℑ

=   ℑ ∫  (4) 

Where the over-bar in equation (4) denotes complex conjugates (Naylor and Sell, 2000). 
Taking the inner product on equation (2) with the Green’s function ( )oG r r


, it gives 

 
 ( ) ( ) ( ) ( ), ,o oG r r Lp r G r r F r=   

   
 (5) 

 
and again the inner product on equation (3) by ( )p r


, it yields 

 
 ( ) ( ) ( ) ( ), ,o op r LG r r p r r rδ= −   

    
 (6) 

 Subtracting equation (6) from(5), the following relation holds 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,o o o oG r r Lp r p r LG r r G r r F r p r r rδ− = − −   
        

 (7) 
or 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )o o o oG r r Lp r p r LG r r d G r r F r p r r r dδ
ℑ ℑ

   − ℑ = − − ℑ    ∫ ∫
        

 (8) 

 
Using the following properties of the three-dimensional Dirac delta  
 

 ( )

( ), within
1( ) ( ), on
2
0, outside of

o o

o o o

o

p r r

p r r r d p r r

r

δ
ℑ

         ℑ 
 −  ℑ =           ∂ℑ 


           ℑ

∫
 

    



 (9) 

 

the expression for the acoustic pressure is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )o o o op r G r r F r p r LG r r G r r Lp r dεℑ
ℑ

  = + − ℑ   ∫ 
      

 (10) 

where  

 
1, within
2, on

o

o

r
r

εℑ

      ℑ
=             ∂ℑ




 (11) 

Equation (10) becomes 

 ( ) ( ) ( ) ( ) ( )o o op r p r LG r r G r r Lp r dεℑ
ℑ

  = − ℑ   ∫ 
    

 (12) 

The integrand of equation (12) is a divergence expression where L is the formally adjoint 
operator of L . Moreover if L L= , the operator L is formally self-adjoint. The boundary 
condition associated to the given equation and its formal adjoint boundary condition play an 
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important role to determine whether or not the problem is self-adjoint. Therefore, it is possible 
for an operator to be formally self adjoint but for the problem associated with this operator 
and its adjoint to be nonself-adjoint. But if the operator is not self-adjoint the problem cannot 
be self adjoint.  Equation (12) is a general expression for the acoustic pressure. Further 
development requires specifying the character of the operator L  used to model the acoustic 
problem. 
 

1 APPLICATION: THE CILINDRICAL ACOUSTIC CAVITY 
 

The operator for this particular application is given by the linear wave equation, which is 
self-adjoint ( L L= ). That is  

 
2

2
2 2

1 0d pp
c dt

∇ − =  (13) 

with boundary condition 

 ( ) ( )p r w r
with r

n t
ρ

∂ℑ

∂ ∂
= −                          ∈∂ℑ 

∂ ∂


 


 (14) 

 
where ( )w r


 is the velocity at the boundary and p  is assumed to have the form 

 
 ( ) ( ), , , , , i tp r x t p r x e ωθ θ=  (15) 

 
Since the boundary conditions is harmonic, replacing equation (15) into (13) and (14), the 

resultant equations is given by  

 ( ) ( )2 2 0       and 
p r

p k p i w r with r
n

ωρ
∂ℑ

∂
∇ + = = −                          ∈∂ℑ 

∂

 

 (16) 

 
this equation is the so called Helmholtz equation, in where k  is the free field acoustic 
wavenumber. Then, using equation (12) the acoustic pressure becomes 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2
o o o op r p r G r r k G r r G r r p r k p r d

with r

εℑ
ℑ

    = ∇ + − ∇ + ℑ    

              ∈∂ℑ

∫      



 (17) 

or 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2

o o o o op r p r G r r G r r p r p r k G r r G r r k p r d

with r

εℑ
ℑ

    = ∇ − ∇ + − ℑ   

             ∈∂ℑ  

∫        



 (18) 

 
The second term in the integral of equation (18) vanishes. The simplification in the inner 

product given in the integration is due to the self-adjoint property of the Helmholtz operator. 
Therefore, the operator left in equation (18) is the Laplace’s operator, which also is self 
adjoint (Kreyszig, 1978). Then, it is possible to write 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
o o o

o o

p r p r G r r G r r p r d

p r G r r G r r p r d

with r

ε

ε

ℑ
ℑ

ℑ
ℑ

  = ∇ − ∇ ℑ 

           = ∇ • ∇ − ∇ ℑ 

            ∈∂ℑ  

∫

∫
    

   



(19) 

Applying Gauss’s second identity on (19) (Griffel, 1985), it gives 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

o o o

o o

o
o

p r p r G r r G r r p r d

n p r G r r G r r p r d

G r r p r
p r G r r d

n n

with r

ε

ε

ε

ℑ
ℑ

ℑ
∂ℑ

ℑ
∂ℑ

  = ∇ • ∇ − ∇ ℑ  

           = • ∇ − ∇ ∂ℑ 

 ∂ ∂
          = − ∂ℑ 

∂ ∂  
              ∈∂ℑ

∫

∫

∫

    

   

 
 



(20) 

A Green’s function satisfying the “rigid wall” (Wu, 2000) condition implies that 

( )oG r r
on r

n
∂

= 0        ∈∂ℑ
∂



(21) 

Replacing the boundary condition given by equation (14) and the condition (21), the 
acoustic pressure produced by the motion of the boundary is given by 

( ) ( ) ( ) ( )o op r i w r G r r d

with r

ε ωρℑ
∂ℑ

 = ∂ℑ

              ∈∂ℑ

∫ 
  



(22) 

To find the acoustic pressure and thus the dynamics of the acoustic the hard wall Green’s 
function are needed. To this end, the eigenvalue problem associated to the operator for the 
hard wall boundary condition need to be solved. The eigenproperties are then used to 
construct the Green’s functions. Then, the Green’s function is used to compute the pressure 
inside the acoustic cavity due to the motion of the flexible shell using (22). The acoustic 
cavity is modeled as a cylindrical cavity with annular section as shown in Figure 2. 

Figure 2: Finite annular cylindrical cavity.
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Due to the geometry of the acoustic cavity, the Helmholtz equation is expressed in 
cylindrical coordinates as follow 
 

 
2 2 2

2
2 2 2 2

1 1 0p p p p k p
r rr r xθ

∂ ∂ ∂
+ + + + =

∂∂ ∂ ∂
 (23) 

 
the rigid wall boundary conditions are of the first kind or Dirichlet conditions defined as 
 

 
0

0
Tx x L r a r b

p p p p
x x r r= = = =

∂ ∂ ∂ ∂       = = = =       ∂ ∂ ∂ ∂       
 (24) 

 
the acoustic pressure p  is assumed to be the solution of equation (23) in the form 
 

 ( ) ( ) ˆ, , , , , ( , , )qpl qpl

qpl

i t i t
qplp r x t p r x e A r x eω ω

θ θ θ= = Ψ  (25) 
 
where ( , , )qpl r xθΨ  is the acoustic pressure mode shape corresponding to the natural angular 

frequency qplω  and ˆ
qpl

A  is the acoustic modal amplitude. The three indexes used in the 
acoustic pressure mode shapes have the following meaning: 

•  q  is the mode index on the axial direction.  
• p  index is the acoustic mode order on the azimuth direction, which also couples with 

the radial direction for the cylindrical cavity . 
• l  index represents the mode order in the radial direction.  

 
Replacing equation (25) into (23), the solution of equation (23) under the boundary 

conditions (24) is  
 

 ( ) ( ) ( ) ( )' '( , , ) cos( )cos( )  

wi th , , 0,1,2,...
qpl p pl p pl p pl p pl xqr x Y k a J k r J k a Y k r p k x

q p l

θ θ

                                           

 Ψ = − 
      =

 (26) 

 
where pJ  and pY  are the Bessel’s functions of First and Second Kind, respectively (Watson, 
G., 1958);   plk is the radial wavenumber which couples with the azimuth direction, and xqk  is 
the wavenumber associated to the axial direction.  The eigen-wavenumber of the Helmholtz 
operator is given by 

 
22 2

2 22 2 qpl qpl
qpl xq pl

T

f l p qk k k
c c a b a b L

ω π π π    = = ≅ + = + +     − +     
 (27) 

 
The eigenfunction ( , , )qpl r xθΨ  satisfies the following orthogonality property 
 

 
2

0 0

( , , ) ( , , )
TL a

qpl rso qpl qr ps lo
b

x r x r rdrdxd
π

θ θ θ δ δ δΨ Ψ = Λ∫ ∫ ∫  (28) 

 
Where qplΛ  is the mode normalization factor.  For example, the Figure 3 shows the  010Ψ  
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acoustic mode shape. This acoustic mode shape is highlighted because it is the one that 
couples with the structure in the low frequency range. Only this acoustic mode is analyzed in 
this effort because it is the culprit of the vertical excitation of the shell structure. Moreover, a 
harmonic point force acting in the shell structure is capable only to excite this acoustic mode 
due to the symmetry of the problem.  The mode shape 010Ψ  has variation along the azimuth 
direction θ  ( cos( )pθ ), while the values in the radial direction are “almost constant”, i.e. only 
a 2.5% of variation in the acoustic pressure from  to .r a r b= =  Therefore, the radial sections 
can be assumed constant without much loss of generality.  
 
 

 

                                        
Figure 3: Acoustic Mode Shape 010Ψ  at 010 232f Hz= . 

 
The next step is to use the spectral properties to find the Green’s functions G required in 

equation (22). The Green’s function is the solution of  
 

 ( ) ( ) ( )2 2, , , , , , , , , ,o o o o o o o oo
G x r x r k G x r x r x x r rθ θ θ θ δ θ θ∇ + = − − − −  (29) 

 
with rigid boundary conditions. Note that the dimension of the Dirac delta 

( ), ,o o ox x r rδ θ θ− − −  is 3m− . The eigenfunctions ( ), ,qpl x rθΨ  satisfy the boundary condition 
of “rigid wall” given by equation (24). Therefore, these functions are candidates to expand the 
Green’s function in the domain because the “rigid wall” condition is also required in G .       

Then, it is possible to write, 

                                         
0 0 0

( , , , , ) ( , , )
Q P L

o o o qpl qpl
q p l

G x r x r B x rθ θ θ
= = =

= Ψ∑∑∑   (30) 

 
Replacing equation (30) into (29) yields 

   

( )2 2

0 0 0 0 0 0
( , , ) ( , , ) , ,

Q QP L P L

qpl qpl qpl qpl qpl o o o
q p l q p l

B k r x k B x r x x r rθ θ θ θ
= = = = = =

−  Ψ + Ψ = −∂ − − −∑∑∑ ∑∑∑   (31) 

 

x
 

θ
 

r
 

y
 

z
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The next step is to solve for qplB by using the orthogonality condition of the acoustic modes 
shapes qplΨ  as follow 

( )

2
2 2

0 0 0 0 0 00 0

2

0 0

( , , ) ( , , ) ( , , )

( , , ) , ,

T

T

L a Q QP L P L

rso qpl qpl qpl qpl qpl
q p l q p lb

L a

rso o o o
b

x r B k x r k B x r rdrdxd

x r x x r r rdrdxd

π

π

θ θ θ θ

θ θ θ θ

= = = = = =

 
Ψ −  Ψ + Ψ = 

 

= − Ψ  ∂ − − −

∑∑∑ ∑∑∑∫ ∫ ∫

∫ ∫ ∫

 

 (32) 

which results in the following expression  

( )2 2 1( , , )qpl qpl qpl qpl o o oB k k x rθ
εℑ

Λ − = −Ψ   (33) 

and

( )2 2

( , , ) 1qpl o o o
qpl

qpl qpl

x r
B

k k
θ

εℑ

Ψ
=

Λ −
 (34) 

Therefore, the Green’s function given by equation (30) becomes

( )2 2
0 0 0

( , , ) ( , , ) 1( , , , , )
Q P L

qpl o o o qpl
o o o

q p l qpl qpl

x r x r
G x r x r

k k

θ θ
θ θ

ε= = = ℑ

Ψ Ψ
=

Λ −
∑∑∑ (35) 

This Green’s function is symmetric or reciprocal, i.e.  ( , , , , ) ( , , , , )o o o o o oG x r x r G x r x rθ θ θ θ=
due to the self-adjoint character of the Helmholtz operator and the “rigid wall” boundary 
condition. Equation (35) is used into (22) to obtain the acoustic pressure due to the boundary 
motion, ( ) withw r r   ∈∂ℑ

 
.

2 COUPLED STRUCTURAL-ACOUSTIC PROBLEM
The cavity-structure interaction problem is now solved for this particular problem. Figure 4

illustrates the problem of a structure and the interior acoustic pressure. It is important to
remark that the description of the cavity-structural problem is quite complex due to the six 
indices required to describe the structural and acoustic modes. Here a brief description of the 
coupled problem will be presented for a general understanding of the solution approach. 

Figure 4: Structure radiating into an enclosed volume. 

External Loading

( ', ', ')p r x θn


( , , )sr x aθ

Fluid Loading

Radial velocity 
component ( , )w x θ
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The approach to solve the coupled problem is to include in the equation of motion of the 
structure in the force due to the interior pressure i.e. fluid loading. However, the fluid forces 
depend on the velocity response of the structure which leads to the fluid feedback problem 
depicted in Figure 5. 

The equation of motion of the system including the fluid loading is written as 
 

 [ ] [ ]( )2
0
0

( , , )

u

c v

w

fu
L I v f

p x aw f θ

    
     − Ω = −     
     

    

 (36) 

 
 
 
 
 
 
                        
 
 
 
 
 
 

 
Figure 5: Dynamic interaction between the structure and the fluid. 

 
The forcing function { }, , T

u v wf f f  in equation  (36) is the external force for the harmonic 
point force assumed for the example. The last vector in (36) represents the acoustic pressure 
acting on the shell structure. The acoustic pressure, ( , , )p x aθ , on the structure is given by 
equation (22) with G defined in (35) 
 

 
2

0 0

( , , ) ( , ) ( , , , , )  d   
TL

o o o o o op x a i w x G x a x a a dx
π

θ ε ωρ θ θ θ θℑ= ∫ ∫   (37) 

 
Where ( , )o ow x θ  is the radial component of the shell velocity response and

( , , , , )o oG x r x aθ θ  is the Green’s function obtained in (35). The solution of the coupled 
problem is again obtained by expanding the structural response in term of the modes as: 
 

 [ ]

( )

( )

( )

1

2

1 0 3

    
mn

M N

mn mn
m n

mn

Au
v A
w A

= =

       = Φ ⋅   
   
    

∑∑  (38) 

 
Where ( )j

mnA  are the structural modal amplitudes including the fluid loading. Then, replacing 
(38) into (36), it gives 
 

External and 

fluid loading 

 

Structural Response to 

Prescribed Forces 

Radiation Loading 
For Prescribed 

Velocities Boundary 
Elastic 

Problem 

Acoustical 

Problem 

Fluid-Structure 

Feedback loop 
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 [ ] [ ]{ } [ ]

( )

( )

( )

1

22

1 0 3

0
0

( , , )

mn uM N

c mn mn v
m n

wmn

A f
L I A f

p x afA θ= =

           − Ω Φ = −     
     

    

∑∑  (39) 

 
Once again this equation is pre-multiplied by the transpose of the modal matrix and 

integrated over the surface of the structure as 
 

[ ] [ ] [ ] [ ]{ } [ ]

( )

( )

( )

[ ]

1

2 2
2 2

1 00 0 0 03

0
 0

( , , )

T T
mn uL LM N

T T
rs c mn mn rs v

m n
wmn

A f
L I A ad dx f ad dx

p x afA

π π

θ θ
θ= =

              Φ − Ω Φ = Φ −       
     

     

∑∑∫ ∫ ∫ ∫  (40) 

The acoustic pressure acting on the surface of the structure ( , , )p x aθ  is obtained from (37) 
where the radial velocity component is replaced in terms of the structural modes and the 
modal amplitudes as follow 

 ( ) ( ) ( ) ( ){ }
( )

( )

( )

( )

1

1 2 3 2

1 0 3

, , , sin cos
mn

M N

o o mn mn mn mn o o
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Ψ Ψ
⋅

Λ −

∑∑∫ ∫

∑∑∑

 (42) 

 
Since only the radial velocity component of the structural response couples with the cavity, 

the cavity pressure will affect in turn mainly the radial structural modes. Replacing (42) into 
(40) and solving the integrals explicitly in terms of the unknown modal amplitudes of the 
radial modes, the following coupled system of equations results 

  

 [ ] [ ] { } { } { }2 2

0 0 0

Q P L

sr sr sr sr mnsrqpl sr
q p l

K M A f Aα
= = =

   − Ω ⋅ = − Ω ⋅   ∑∑∑  (43) 

 
where [ ]srK  and [ ]srM  are diagonal matrices and their elements represents the modal 

stiffness and mass of the radial modes; { }srA  is the vector of modal amplitudes; { }mnf  is the 

vector of modal forces; and 
0 0 0

Q P L

srmnqpl
q p l

α
= = =

  ∑∑∑  is the fluid coupling matrix, which requires the 

manipulation of six indexes.  The second term in the right hand side of equation (43) is moved 
to the other side and the coupled system of equation is solved for the unknown modal 
amplitudes{ }srA .  
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The coefficients srmnα  corresponding to the radial component of the matrix 

0 0 0

Q P L

srmnqpl
q p l

α
= = =

  ∑∑∑  are given by the product of the surface integrals as 

 

2 2

0 0 0 0
2 2

( , ) ( , , ) ( , ) ( , , )

( )

T TL L

sr qpl mn o o qpl o o o o

srmn
qpl qpl

x a x ad dx x a x ad dx

k k

π π

θ θ θ θ θ θ
α

Φ Ψ Φ Ψ

=
Λ −

∫ ∫ ∫ ∫
 (44) 

 
The coefficient in (44) represents the effect of the (q,p,l) acoustic mode on the (m,n) 

structural radial mode and reciprocally. One of the advantage of the process developed here is 
that the interaction of the acoustic and structural modes can be easily determine by inspection 
of the coefficients in (44). For example, if the coefficient  srmnα  vanishes implies that the 
(q,p,l) acoustic does not affect the (m,n) structural mode. It can be observed that the coupling 
coefficient in (44) is the results of two independent integrations, i.e. in the axial and azimuth 
directions. Thus, inspection of these integrations can be performed independently. Tables 1 
and 2 shows the results of the coupling analysis for the (0,1,0) acoustic mode with several 
structural modes in the radial and azimuth directions, respectively. In Table 1, the axial 
pressure variation of the (0,1,0) mode on the shell (r=a) and the axial variation of the 
structural modes are illustrated. From inspection, it is trivial to find that the inner product of 
these axial variations show that the (0,1,0) acoustic mode will couple with only the (1,1) and 
(1,3) structural modes.  
 

Table1: Effect in the axial variation on the coupling between structural 
and acoustic modes of same azimuth variation. 

 Structural (m(x), n(θ)) 

Acoustic  
(q(x), p(θ), l(r))   

 

 (1,1) (2,1) (3,1) 
(0,1,0) 

 
Coupling 

 α1111010≠0 
No coupling 
α1212010=0 

Coupling 
α1313010≠0 

 
Table 2 shows the coupling results on the azimuth direction for the (0,1,0) acoustic mode 

and the (1,1), (1,2), and (1,3) structural modes. Simple inspection of this table shows that the 
(0,1,0) mode couples with only the (1,1) structural mode in the azimuth direction. It is easy to 
find that acoustic and structural modes that have the same azimuth variation will be coupled. 
Thus, the acoustic mode (0,1,0) can couple with the (1,1), (3,1), (5,1) and so forth. 

 
Table 2: Effect in the circumferential direction on the coupling between structural and acoustic modes.  

 Structural (m(x), n(θ)) 

Acoustic 
(q(x),p(θ),l(r))    

 
(1,1) (1,2) (1,3) 

(0,1,0) Coupling 
α1111010≠0 

No Coupling 
α1212010=0 

No Coupling 
α1313010=0 
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The modal amplitudes for the radial modes are obtained from equation (43), and the 
structural response is then obtained from (38) and then the acoustic response is computed 
using (37). 

Equation (43) represents the following coupled matrix equation 
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Where in the last equation 
 

 [ ] [ ] [ ]2
sr sr srH K M = − Ω   (46) 

 

3 NUMERICAL EXAMPLE 
A numerical simulation for the coupled acoustic cavity-shell structural model will be 

presented. The in vacuo and coupled responses were computed and compared over the 
frequency range of 0-400 Hz. The analysis included 25 structural modes and 5 acoustic 
modes. Figure 6 and 7 show the modal amplitudes for the  and  radial structural 
modes with and without acoustic coupling, respectively. The structural radial mode , and 
the acoustic mode  are coupled as shown in these figures. Table 3 shows the acoustic 
cavity resonance frequencies for a range between 0 to 1000 Hz. The acoustic natural 

( )1
11Φ ( )1

31Φ
( )1
11Φ

010Ψ
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frequency for the mode 010Ψ  is highlighted in the table because is the only acoustic mode in 
the frequency range of interest for the example that couples with the structure dynamics.  

The in vacuo and coupled responses were computed and compared over the frequency 
range of 0-400 Hz. The analysis included 25 structural modes and 5 acoustic modes. Figure 6 
and 7 show the modal amplitudes for the ( )1

11Φ  and ( )1
31Φ  radial structural modes with and 

without acoustic coupling, respectively. The structural radial mode ( )1
11Φ , and the acoustic 

mode 010Ψ  are coupled as shown in these figures. 
 

Table 3:  Acoustic cavity natural frequencies between [0-1000] Hz 

                                      

q p l frequency [Hz]
0 0 0 0.0
0 1 0 232.6
0 2 0 465.1
0 3 0 697.6
1 0 0 879.5
1 1 0 909.7
0 4 0 930.2
1 2 0 994.9  

 
It is clear that the effect of the acoustic cavity mode in the structural response is significant 

even though the acoustic resonance is not very close to the structural resonance, i.e. not tuned. 
Since the acoustic system is modeled without acoustic damping, the “slight” damping in the 
acoustic resonance is coming from the shell structure due to the coupling process.  It can be 
observed that this small amount of damping do not help enough to control the effect of the 
acoustic cavity in the modal amplitude response, i.e., Figure 6 and 7. 

 

 
 Figure 6: Radial Modal Amplitude for mode ( )1

11Φ .  
 

0 50 100 150 200 250 300 350 400
-85

-80

-75

-70

-65

-60

-55

frequency [Hz]

M
ag

. A
(3

)
11

 [d
B 

- r
ef

. 1
]

Shell structural 
resonance Acoustic cavity 

resonance 010Ψ  

Coupled 

In vacuo 

Mecánica Computacional Vol XXVIII, págs. 3281-3296 (2009) 3293

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



It is interesting to note that the relatively high damping of the shell structure does not damp 
out the energy in the acoustic resonance. Figure 7 also reveals the coupling of the structural 
modes ( )1

11Φ  and ( )1
31Φ   by the acoustic mode. 

 

 
Figure 7: Radial Modal Amplitude for mode ( )1

31Φ . 
 

Figure 8 includes three curves corresponding to the in vacuum model in red dotted line, the 
coupled model in blue solid line, and results from a test measurement performed by 
Yamauchi and Akiyoshi (2002) in a green dash-dotted line.  

The gain factor to match the acoustic cavity resonances is 0.1775. The results from this 
simple analytical model show qualitatively similar trends as the experimental observation, i.e. 
blue line for coupled and green line for experimental results. The green line corresponding to 
the experimental data shows also the presence of the rigid body motion, which is not 
accounted for the model.  

The dynamic of the shell structure is clearly represented and the effect of the acoustic 
cavity is very well predicted. These results provide a validation of the close model approach 
undertaken here as a valid tool to capture the behavior of the shell dynamics including the 
acoustic cavity. 
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Figure 8: Point accelerance at the external force location at the shell middle point. 

 

 
SYNOPSIS AND CONCLUSIONS 
 

The study presented here show analytical closed form solutions to help gaining insight into 
the coupling phenomenon between the acoustic cavity and a structural enclosure.  
Subsequently the analysis permits the investigation and development of practical techniques 
to control the cavity resonance. In the example developed in this work, the external excitation 
is a harmonic point force acting normal to the external surface of the structural enclosure. 
Therefore, numerical results for the cavity-structural model are shown. Lastly, validation of 
the structural shell model is also included by comparison with experimental results obtained 
from the experimental work done by Yamauchi and Akiyoshi (2002). 
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