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Abstract. In this work, a mixed stabilized formulation based on the orthogonal sub-grid scale
method, is evaluated. The approach considers linear interpolation for displacement and pres-
sure variables. The numerical analysis is particularly addressed to test the formulation behav-
ior under kinematical incompressibility constraints, such as incompressible elasticity problems,
limit load determination or strain localization in standard isochoric plasticity models.

The stabilized scheme is implemented in PETSc-FEM parallel finite element code. A novel
preconditioner is used to solve the iterative linear system, comparing its convergence properties
with other classical widely used preconditioner.

J2 plasticity model is used as the constitutive law for the proposed examples. The numerical
results are compared with standard Galerkin elements and with an alternative stabilized mixed
formulation based on pressure stabilized Petrov-Galerkin method.
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1 INTRODUCTION

From a computational point of view, the low-order irreducible displacement formulation present
several advantages to solve practical problems in solid mechanics. However, it is well known
that the numerical response of classical Galerkin elements loses precision (and sometimes also
physical sense) for problems involving incompressibility constraints. This situation is typical
as much in modelling of near incompressible elasticity as in those constitutive models able to
predict isochoric strain plastic rate.

As a result of years of exhaustive investigation, different strategies have been proposed to
overcome this problem. In this context, the stabilized finite element methods seems to be a
robust and general approaches. Initially they were used in the CFD area (Brooks and Hughes,1

Johnson et al.,2 Hughes3). The stabilized schemes consist of adding mesh-dependent terms to
the usual mixed formulation. Similar concepts, for compressible and incompressible elasticity
and plasticity, have been applied to solid mechanics (see for example Hughes and Franca,4

Franca and Hughes,5 Lyly and Stenberg,6 Wall et al.,7 Klaas et al.8).
This study aims at evaluating the numerical performance of a mixed stabilized formulation,

recently introduced (Chiumenti et al.,9, 10 Cervera et al.,11 Valverde12), for incompressible elastic
problems, perfect Von Mises plasticity and specially for localization phenomenon induced by
material instability.

In order to solve large structural problems, the stabilized scheme has been implemented in the
”PETSc-FEM” general parallel finite element code (Storti, et al.13). Its numerical performance
in a 3D test is shown.

This work represents a previous step to obtain a more complex formulation. Our ultimate
goal is to develop a finite element technology which also will consider embedded strong dis-
continuity kinematic to capture collapse mechanisms, typically slip lines, for J2 plasticity with
softening. This advanced formulation is subject of another paper.

2 MIXED STABILIZED FORMULATION

Let us consider a solid quasi-static mechanical problem based on linear geometric hypothesis.
Next, we introduce some nomenclature to define it: Ω is a open bounded set included in IRn

whose points represent those of a continuum body B in the reference configuration, Γ is the
boundary of Ω which can be split in two subsets Γu and Γσ where prescribed displacements u

and traction t are imposed:
u = u

σ · n = t

on Γu

on Γσ

(1)

The stress tensor σ can be uncoupled into their spherical (σm = 1
3
tr(σ)) and deviatoric parts

(S = dev(σ)):
σ = σm I1 + S (2)

allowing us to write the equilibrium equations as follows (without inertial forces):

∇σm +∇ · S + ρb = 0 on Ω (3)
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being I1 the second order identity tensor, b the distributed mass forces and ρ the material density.
Assuming that the mean stress depends uniquely of the strain tensor trace (∇ · u = tr(ε)),

the dependence of stresses with the (symmetric gradient of) displacements u can be write as
follows:

σ = σ̂(u) = σ̂m(∇ · u) I1 + S(u) (4)

The standard widely used mixed approach to the problem (3), (4) with boundary conditions
(1) is based on the set of primary variables (p,u), where p(x) is the hydrostatic pressure (neg-
ative mean stress). According to this formulation, the stress tensor can be computed as:

σ = −p I1 + S(u) (5)

where both principal variables (p and u) should verify the following continuum constraint:

p = −σ̂m(∇ · u) on Ω (6)

The variational equations of the mechanical problem (3), (5), (6) and (1) can be put in the
classical context: find (p,u) ∈ L2(Ω)×H1(Ω), such that:

L([p,u]; [q,w]) = −〈p;∇ ·w〉+ 〈S(u);∇sw〉 − 〈ρb; w〉−

−

∫

Γσ

(t ·w)dΓσ + 〈q; (p + σ̂m(∇ · u))〉 = 0

∀w ∈ H1
0 (Ω) ∧ ∀q ∈ L2(Ω)

(7)

where the expression 〈a; b〉 =
∫

Ω
(a · b)dΩ represents a internal product, L2(Ω) includes the

square integrable functions in Ω, H1(Ω) includes the functions whose first derivative belongs
to L2(Ω), and H1

0 (Ω) is a subspace of H1(Ω) whose elements vanish on Γu.
Let (ph,uh), with ph ∈ Q ⊂ L2(Ωh) and uh ∈ V ⊂ H1(Ωh), be the finite element ap-

proaches of the above mentioned fields and V the finite element approach to H 1(Ωh). Using
linear interpolation for displacement and pressure, stabilizing terms Sst should be introduced
in order to overcome the Babuska-Brezzi condition.14–16 The discrete form of equation (7) then
reads:

L([ph,uh]; [qh,wh]) = −〈ph;∇ ·wh〉+ 〈S(uh);∇swh〉 − 〈ρb; wh〉−

−

∫

Γσ

(t ·wh)dΓσ + 〈qh; (ph + σ̂m(∇ · uh))〉+

+Sst([p
h,uh]; [qh,wh]) = 0 ∀wh ∈ V0 ∧ ∀qh ∈ Q

(8)

In CFD context, many different stabilization terms Sst have been proposed. The PSPG
scheme17 (pressure stabilizing Petrov-Galerkin, a particular type of GLS procedure) and the
PGP method (orthogonal sub-grid pressure gradient projection)18, 19 are shortly described in the
following paragraphs. The last scheme has been extended to the elastic solid mechanics con-
text by Chiumenti et al.9 and used in plasticity by Chiumenti et al.10, 11 and Valverde.12 These
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papers have shown the plausibility of this approach in challenging problems where alternative
formulations hardly works well.

Both mentioned procedures consider the term Sst as being directly proportional to a stability
coefficient τ which depend on the elastic shear modulus and the finite element size, conse-
quently it can changes from element to other.

2.1 Stabilization term for PSPG scheme

In this case, the stabilization term Sst of equation (8) is defined as:

SPSPG
st = −

〈

∇qh; τPSPG (∇ · σ(ph,uh) + ρb))
︸ ︷︷ ︸

r
CE : residue of theCauchy equations

〉

(9)

where the factor τPSPG is chosen as follows:

τPSPG = α
h2

2µ
(10)

being α a positive stability parameter (we have taken α = 1
6
), h the element characteristic size

and µ the shear modulus for the elastic regime.

2.2 Stabilization term for PGP scheme

Now, the stabilization term Sst is defined as follows:

SPGP
st =

〈
∇qh; τPGP (∇ph −Πh)

〉
(11)

where Πh(∈ V) is the L2 projection of discrete pressure gradient (∇ph) over finite element
approximation space (V), as Figure (1) shows:

〈
(∇ph −Πh); ηh

〉
= 0 ; ∀ηh ∈ V (12)

Ñp

P

u* ( p )L 0-P V=

V

z

V
z

h h

h

h

Figure 1: Pressure gradient projection.

Expression (12) should be considered as an additional equation in the variational form (8).
The stabilization parameter τPGP can be determined element-wise as a function of the ele-

ment size and the shear modulus:

τPGP = c
h2

2µ∗
(13)
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where the scalar coefficient c = 4 has been employed by Codina18 in CFD application. Fol-
lowing Chiumenti et al.,10 we have adopted the secant shear modulus µ∗ in those problems
involving J2 type constitutive model.

3 PGP PROCEDURE, ITS NUMERICAL IMPLEMENTATION

Let a finite element method using linear-equal-order interpolation fields for Q and V be con-
sidered. The mechanical problem can be rewritten as: find p ∈ Q and u ∈ V , verifying
simultaneously (notice that, by legibility, the supra-index h has been removed):

−〈p;∇ ·w〉+ 〈S(u);∇sw〉 − 〈ρb; w〉 =

∫

Γσ

(t ·w)dΓσ ∀w ∈ V0 (14)

〈q; (p + σ̂m(∇ · u))〉+
〈
∇q; τPGP (∇p−Π)

〉
= 0 ∀q ∈ Q (15)

〈(∇p−Π); η〉 = 0 ∀η ∈ V (16)

We also assume a material constitutive model whose mean stress can be described by a linear
relation of tr(ε):

σ̂m(∇ · u) = κ∇ · u (17)

being κ the bulk modulus.
Using standard matrix notation the interpolated fields, at element level, can be written as:

ue(x, t) = N e
u
(x)ûe(t) ; we(x) = N e

u
(x)ŵe (18)

pe(x, t) = N e
p (x)p̂e(t) ; qe(x) = N e

p (x)q̂e (19)

Πe(x, t) = N e
u
(x)Π̂e(t) ; ηe(x) = N e

u
(x)η̂e (20)

where N e
u and N e

p are the shape function matrices. Furthermore, it is considered that:

∇sN e
u

= Be (21)

∇ ·N e
u

= I
T Be (22)

∇N e
p = De (23)

where Be is the standard strain-displacement operator and I the vector representation of the
second order identity tensor.

The algorithmic form of equations (14)-(16) can be now expressed as:







nel

A
e=1

[∫

Ωe

BeT Se(û) dΩe

]

−G0 p̂ = f

−GT
0 û−

[
1

κ
Mp + L

]

p̂ + HT Π̂ = 0

Hp̂−Mu Π̂ = 0

(24)
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being A the standard finite element assembly operator.
The discrete external force is computed as:

f =

nel

A
e=1

[∫

Ωe

ρN eT
u

be dΩe +

∫

Γ e
σ

N eT
u

te dΓ e
σ

]

(25)

and the matrices G0, Mp, Mu, L and H acquire the following expressions:

G0 =

nel

A
e=1

[∫

Ωe

BeT
IN e

p dΩe

]

(26)

Mp =

nel

A
e=1

[∫

Ωe

N eT
p N e

p dΩe

]

(27)

Mu =

nel

A
e=1

[∫

Ωe

N eT
u

τPGP N e
u

dΩe

]

(28)

L =

nel

A
e=1

[∫

Ωe

DeT τPGP De dΩe

]

(29)

H =

nel

A
e=1

[∫

Ωe

N eT
u

τPGP De dΩe

]

(30)

where the 0 subscript accounts the Dirichlet homogeneous boundary condition.
The non-linear equation systems (24) can be solved for every load step using a classical

Newton-Raphson procedure. In this circumstances, the extra computational cost due to the
introduction of the new field Π , provides a no competitive scheme if compared with alternative
stabilizing method. Following to Codina et al.18 and Chiumenti et al.9 a simplified strategy can
be introduced to make it more efficient. Considering that the pressure projection gradient does
not change significantly in the (i + 1) load step, it is possible to solve the alternative system:







nel

A
e=1

[∫

Ωe

BeT Se
(i+1) dΩe

]

−G0 p̂(i+1) = f(i+1)

−GT
0 û(i+1) −

[
1

κ
Mp + L(i+1)

]

p̂(i+1) = −HT
(i+1) Π̂(i)

(31)

where Π̂(i) is evaluated, by considering equation (24-c), once the nonlinear solver has con-
verged for displacement and pressure variables at the (i) load step. At the global level, it is
possible to write:

Π̂(i) = M−1
u

H(i) p̂(i) (32)
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Therefore, the right hand side term of (31-b) can be considered as an external force for this
equation. The evaluation of Π̂(i), from equation (32), at the end of the step (i), represents the
same computational cost as a postprocessing step.

3.1 Parallel implementation topics

This formulation has been implemented in the PETSc-FEM code (Storti et al.13). It is a general
purpose multi-physics finite element program developed at the CIMEC running on a Beowulf
cluster. PETSc-FEM makes use of the PETSc library20–22 for linear algebra operations, MPI
libraries23 as the communication package and C++ object oriented philosophy.

The PETSc library allows to treat vectors and matrices in a distributed memory environment
without dealing explicitly with parallelism. Therefore it performs the allocation of data on the
cluster nodes and let the user make calls to subroutines for linear algebra including solving lin-
ear equation systems. The global equation system is solved, in this case, by iterative strategies.
As a consequence of PGP stabilization procedure, the global system of equation is symmetri-
cal but not definite positive. A GMRES scheme is used for the solution of the global system
(GGMRES).

However global iterative methods fail to solve very large systems. It have been found that
procedures based on domain decomposition are better suitable for these large problems. These
procedures are based on decomposing the whole domain into subdomains in such a way that
solving the global system may be split in two phases: i) solving internal subdomain unknowns
and ii) solving global interface unknowns. The internal unknowns may be solved concurrently
on each computing node by direct methods (based on LU decomposition). The interface un-
knowns makes part of a global system which is solved by means of iterative methods. Again
here a GMRES-based scheme is used. The size of the global interface system is much smaller
than that of the global system, and so the condition number is much smaller making suitable the
GMRES solver.

Mesh partitioning is performed by using METIS.24 Decomposing the domain into non-
overlapping subdomains leads to the interface problem whose matrix is the Schur comple-
ment. This interface problem is solved by iterative methods which will be referred here as
IISD (Interface-Iterative/Subdomain-Direct).

In order to improve the efficiency, this interface solver must be preconditioned, and so the
condition number of Schur complement matrix is lowered. In this sense, we use an Interface
Strip (IS) preconditioner recently developed (Storti et al.25). It is based on solving a problem
posed in a narrow strip of nodes around the subdomain interfaces so that the high frequencies
of Steklov operator can be correctly captured.

The IS preconditioner requires less memory and computational cost than classical Neumann-
Neumann preconditioner and its variants. Besides, the width of strip can be used as a parameter
to decide how much memory to assign for preconditioning purposes. In the next section we
show its convergence capability.
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4 NUMERICAL RESULTS

In this section, the numerical performance of the mixed stabilized PGP model is evaluated and
compared with the standard Galerkin (STD), the standard unstable mixed formulation (MSTD)
and the PSPG stabilization scheme. The first numerical problem, which involves a large number
of equations, is solved in parallel mode with iterative strategies. Its numerical performance is
here remarked.

4.1 3D Incompressible elasticity test

The first test consist in a near incompressible elastic block (140 x 140 x 100 millimeters) with the
following boundary conditions: all displacement are prescribed to zero at the bottom surface,
the upper head is glued to a stiff plate which imposes vertical downward displacements (δy =
7 [mm]); free displacements are assumed on the lateral faces. The mechanical parameters are:
Young’s modulus E = 2999800 [MPa], Poisson’s ratio ν = 0.4999.

(b)(a)

140
140

100

Figure 2: Discretization level: (a) 56000. (b) 90000 tetrahedral elements.

(b)(a)

-0.25

-13.0

values x 1.0e5 [MPa]

Figure 3: Mean stress maps, MSTD-formulation: (a) 56000. (b) 90000 elements.

Figure (2) shows the discrete models for two unstructured meshes of about 56000 (Figure (2-
a)) and 90000 (Figure (2-b)) tetrahedral elements. To test the numerical performance of the par-
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allel implementation, this example has been computed solving simultaneously the fully coupled
system of equations (24) (entailing approximately 71000 and 112000 equations, respectively).

Figure (3) shows the mean stress field for both meshes and assuming a negligible level of
stabilization (c ≈ 0). This situation represents the response of an unstable mixed standard
formulation (MSTD) and severe locking effects are observed. The mean stress oscillation di-
minishes drastically if the stabilization term SPGP

st is activated, as can be seen from Figure (4),
where c = 1 has been considered.

(b)(a)

-0.25

-13.0

values x 1.0e5 [MPa]

Figure 4: Mean stress maps, PGP-formulation: (a) 56000. (b) 90000 elements.
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Figure 5: Mean stress curves along of AB line, PGP-formulation.

The transition from unstable to stable solution by varying the parameter c can be more clearly
evidenced in Figure (5), where the mean stress distributions along the internal line AB have
been plotted.

P. Sanchez, A. Huespe, V. Sonzogni

763



Figure (6) shows a comparison between the mean stress curves along the AB internal line for
the PSPG and PGP stabilization schemes. It can be observed that both solutions are practically
identical. According to expressions (10) and (13), the stabilization factors that have been used
in this simulation, are:

τPSPG =
h2

12µ
; τPGP =

2h2

µ
(33)
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[
M
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a
]

PSPG
PGP

A
B

Figure 6: Stabilization procedure comparison: PSPG vs PGP.

Next, we examine the numerical performance of the parallel implementation procedures.
Nine nodes of a PC cluster (P4, 2.4 [GHz], 1GB-RAM DDR 333 [MHz]) were utilized. The
computational cost comparative analysis for solving the full equation systems (without segre-
gating the Π d.o.f.), considers two strategies: i) a global iterative GMRES scheme (GGMRES),
where the iterative process is carried out on the full system; ii) a Schur complement-based pro-
cedure, which solves iteratively the interface problem while the internal d.o.f. are solved by
direct procedures (IISD). Furthermore, either the standard Jacobi or the Interface Strip (IS) pre-
conditioner are used in the simulations. In the present example the IS preconditioner with a
single element layer has been used, and the whole domain is decomposed on nine subdomains,
each allocated on a cluster processing node.

Table 1: Time performance, test with 56000 elements.

Solver strategy Preconditioner Absolute time Relative time
GGMRES Jacobi 64.85 [sec] 3.33

IISD Jacobi 19.47 [sec] 1.00

IISD IS 16.93 [sec] 0.87
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Table 2: Time performance, test with 90000 elements.

Solver strategy Preconditioner Absolute time Relative time
GGMRES Jacobi 197.02 [sec] 3.83

IISD Jacobi 51.49 [sec] 1.00

IISD IS 45.99 [sec] 0.89

Figure (7) depicts, for the 90000 element test, the required number of iterations to reduce ten
orders of magnitude the relative residual norm. The differences between IISD and GGMRES
strategy are evident. Using IS preconditioner less iterations are needed and consequently less
memory is required to store the Krylov space. The performance measured in total CPU time
shows an improvement of approximately 12% with respect to the Jacobi preconditioner (see
Table (1) and (2)).
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Figure 7: Linear solver convergence, test with 90000 elements.

4.2 Perfect plasticity plane strain test

The plane strain Prandtl’s punch test (see Figure (8)) consists of a semi-infinite halfspace
vertically loaded by a stiff plate. The collapse mechanism and the corresponding structural
limit load, considering a J2 elastic-perfectly plastic material, has been determined analytically
(Kachanov,26 pp. 219). The limit load solution is σN

σy
= 2+π√

3
, where σN is the net stress under

the punch and σy the material yield stress.
Figure (8) depicts the idealized numerical model, geometry relations (dimensions in millime-

ters) and the boundary conditions. Figure (9) shows two meshes, the unstructured and structured
ones. Both of them have approximately 1800 triangular elements. The material properties are:
Young’s modulus E = 1.0 [MPa], Poisson’s ratio ν = 0.499 (note the quasi-incompressible

P. Sanchez, A. Huespe, V. Sonzogni

765



P

1

0.75 0.750.50

Figure 8: Geometry and boundary condition for 2D plane strain Prandtl test.

elastic response here considered), yield strength σy = 0.01 [MPa], perfectly plastic von Mises
constitutive model.

(a) (b)

Figure 9: Mesh configurations: (a) Unstructured mesh. (b) Structured mesh.

The unstructured configuration has been solved using the linear-linear mixed triangle with
the PGP stabilization procedure (c = 1) and the standard mixed triangle MSTD (c ≈ 0). The
mean stress values, at the maximum vertical displacement (δy = 0.10 [mm]), are displayed in
Figure (10). Again, the standard mixed formulation shows a poor performance characterized
by a severe oscillation in the hydrostatic stress field, while the PGP formulation gives a smooth
solution.

0.00

-0.05

(b)(a)

[MPa]

Figure 10: Mean stress maps: (a) MSTD-formulation. (b) PGP-formulation.

The correct capturing of the collapse mechanism for both meshes are analyzed in Figure
(11). It shows the equivalent plastic strain fields for the stabilized element (PGP), once the
plastic flow is fully achieved. For the unstructured mesh, the failure mechanism observed is
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in correspondence with a symmetrical slip line pattern (Figure (11-a)). We remark that the
unstructured configuration shows a very approximated symmetrical mesh. Nevertheless, the
equivalent plastic strain map, in the structured configuration, does not seem to present a sym-
metrical response.

0.00

0.60

(b)(a)

Figure 11: Equivalent plastic strain maps, PGP-formulation: (a) Unstructured mesh. (b) Structured mesh.

Figure (12) compares the total plate reaction vs. the vertical plate displacement curves for
both meshes using linear triangles and with different alternatives: the standard Galerkin (STD),
the standard mixed (MSTD) and the stabilized mixed (PGP) formulations. As it is expected,
the standard Galerkin element shows a response where the limit load is not detected, while the
MSTD and PGP formulations, either for unstructured or structured meshes, show a clear limit
load. A mesh refining and a larger domain of analysis shall give a more adjusted prediction of
the analytical solution.

0 0.02 0.04 0.06 0.08 0.1
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↑ Analitical solution = (2+π)/31/2
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σ N
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σ y

PGP  (unstructured mesh)
PGP  (structured mesh)
MSTD (unstructured mesh)
STD  (unstructured mesh)

Figure 12: Load-displacement curve.

P. Sanchez, A. Huespe, V. Sonzogni

767



4.3 2D Strain localization problem test

Finally, a compression test of a prismatic block is considered. This classical plain strain example
has been previously used by some authors, to test the ability of finite element formulations for
modelling strain localization problems. Von Mises J2 elasto-plastic material model with linear
softening is adopted. Under this circumstance, and after the material bifurcation condition
has been reached, it should be expected the development of a plastic strain localization band
(inclination of about 45◦). We want to analyze the capability of the stabilized PGP triangle to
capture this failure mode.

32 16

16

dy

32

(a) (b)

Figure 13: Localization problem: (a) Physical model. (b) Numerical model.

The constitutive model has not been regularized. Therefore the computed load-displacement
curve will change with the mesh refining. However, our interest here is to show the mesh-
direction independence rather than the mesh-size independence. It should be expected that by
using different meshes, with similar element size, the results should be comparable even if the
mesh direction changes.

Figure (13-a) shows the geometric proportions of the problem (all dimensions in millime-
ters). A quarter of the block is considered in the numerical simulation (see Figure (13-b)).

(b)(a) (c)

Figure 14: Meshes used in the simulation: (a) 375 elements. (b) 128 elements. (c) 128 elements.
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The adopted mechanical parameters are: Young’s modulus E = 3e4 [MPa], Poisson’s ratio
ν = 0.3, yield stress σy = 36 [MPa], softening material modulus H = −1.8e3. A small
geometric perturbation is also considered in order to determine the strain localization onset
point.

Three meshes of linear-linear PGP stabilized triangles (c = 4) are considered. The first one,
Mesh (a), corresponds to a rather arbitrary distribution of 375 elements. The two remaining
meshes are structured arranged of triangles, either following the failure line direction (Mesh
(b)), or orthogonal to it (Mesh (c)). Both of them have 128 finite elements (Figure (14)).

0.016

0.00

(b)(a) (c)

Figure 15: Equivalent plastic strain maps.
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Figure 16: Load-displacement curve.

The performance of the PGP elements in this test can be evaluated by comparing the equiva-
lent plastic strain field (see Figure (15)) and the load displacement curves (Figure (16)) obtained
with the meshes (b) and (c). Solution for the mesh (a) is not relevant for the load-displacement
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curve comparisons. We can observe that both responses (b) and (c) are clearly different. How-
ever, we remark that they represent two extreme conditions. In general, when arbitrary meshes
will be used, it should be expected a response like that of Figure (15-a), which display a correct
trend for the slip line mode capturing.

5 CONCLUSIONS

We have evaluated a stabilized mixed finite element formulation with equal-low-order (lin-
ear) interpolation which shows good performances for solving incompressible solid mechanics
problems.

If compared with displacement irreducible formulations, it should be considered the extra
computational cost introduced by the additional degree of freedom per node corresponding to
the pressure field. However the good performance displaying the linear triangles, and mainly
the tetrahedral in 3D cases, makes more than acceptable its use. The treatment of the vectorial
field Π does not introduce an appreciable computational cost, because it could be treated as an
additional smoothing step, once every Newton step has converged.

Its parallel implementation have also shown good performance when the subdomain par-
titioning method jointly with the Interface-Iterative/Subdomain-Direct technique (IISD) and
Interface Strip (IS) preconditioner is used, even though the complete system is solved (i.e. for
displacement, pressure and pressure gradient projection d.o.f.).

Using biased meshes, we have observed some mesh-dependence in the plastic localization
modelling. The stabilized element conserves the excessive rigidity that shows the standard
element, inducing plastic strain dissipation. Probably this deficiency is associated to that neither
the mixed formulation nor the stabilization technique, have modified substantially the kinematic
of the linear base element, indispensable condition to capture the failure mechanism.

The future work will be dedicated indeed to enrich the element kinematics, incorporating
incompatible deformation modes, following the regularized strong discontinuities approach.
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