Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXIX, págs. 133-157 (artículo completo) Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.) Buenos Aires, Argentina, 15-18 Noviembre 2010

ANÁLISE DO COMPORTAMENTO DE SISTEMAS ESTRUTURAIS DE PONTES EM VIGAS UTILIZANDO A TÉCNICA DE ANALOGIA DE GRELHA APLICADA AO TABULEIRO ASSOCIADA A UM MODELO DE PÓRTICO

David L. N. F. Amorim^b, Aline S. R. Barboza^a, João C. C. Barbirato^a

^aCentro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Motta, Maceió, Brasil, alramos@ctec.ufal.br, jccb@ctec.ufal.br, http://www.ctec.ufal.br

^bDepartamento de Engenharia de Estruturas, Escola de Engenharia de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos, Brasil, davidnf@usp.br, <u>http://www.set.eesc.usp.br</u>

Palavras-chave: Pontes, Modelo de Pórtico, Analogia de Grelha.

Resumo. O uso de microcomputadores na análise de grandes estruturas, como pontes, ganha muita importância, pois viabiliza um estudo integrado da estrutura. Em estudos como esses, a avaliação de esforços e tensões na estrutura, considerando-se a interação dos elementos estruturais que a compõem, permite determinar de forma mais realista a influência do carregamento. O desenvolvimento de métodos e modelos discretos que abordem essa questão de maneira satisfatória, mas sem perder o cunho prático de aplicação corriqueira nos escritórios de cálculo, ainda é motivo de estudos dos pesquisadores e projetistas. Dentro deste contexto a analogia de grelha se apresenta como uma técnica de modelagem estrutural bastante atrativa, pois reúne características que possibilitam uma representação, ao mesmo tempo, geometricamente e computacionalmente favorável, para aplicação nos escritórios de cálculo. Aliando-se um modelo de pórtico a um modelo de grelha pode-se analisar globalmente uma estrutura de ponte. Este trabalho tem como objetivo analisar o comportamento de sistemas estruturais de pontes, investigando a influência de carregamentos peculiares desses sistemas, por meio da simulação computacional de exemplos de pontes com variações de solicitações e de concepção estrutural. A simulação dos modelos de pórtico e de grelha foi desenvolvida utilizando-se o método dos deslocamentos em sua forma matricial aplicando-se a técnica da analogia de grelha para simulação do tabuleiro da ponte. Para as simulações, foi utilizado um software desenvolvido durante o estudo, que também será apresentado no trabalho.

1 INTRODUÇÃO

As pontes são grandes obras que historicamente vêm marcando o desenvolvimento da engenharia civil, pois exigem dos projetistas soluções cada vez mais inovadoras e, em diversas situações, o desenvolvimento de novos métodos e materiais. Além disso, as pontes são indispensáveis ao desenvolvimento urbano, pois têm como objetivo interligar regiões, viabilizando o transporte de mercadorias, de pessoas e idéias, favorecendo assim o crescimento que tanto beneficia a sociedade.

Segundo O'Connor (1971), uma ponte é um meio de conduzir o tráfego, de veículos ou pedestres, entre dois pontos separados por algum obstáculo, que pode ser água ou um vale, por exemplo. Já para Pfeil (1990), ponte é uma obra de engenharia destinada à transposição de obstáculos à continuidade do leito normal de uma via, como rios, braços de mar, vales profundos, outras vias, etc.

A estrutura de uma ponte é, de maneira geral, subdividida em três sistemas que interagem entre si: a superestrutura, a meso-estrutura e a infra-estrutura (Figura 1).

Figura 1: Subdivisão Genérica de uma Estrutura de Ponte

A infra-estrutura é formada pelos elementos de fundação e na meso-estrutura situam-se os pilares, cintas de travamento e aparelhos de apoio. Os pilares podem ou não ser ligados por uma cinta de travamento, alocada numa altura intermediária em relação à altura dos pilares, e a ligação entre os pilares e o vigamento pode ser completamente rígida, em caso desta ser monolítica, simplesmente apoiada, caso se utilizem aparelhos especiais para esta finalidade, ou com certo grau de engastamento, caso a ligação entre os elementos estruturais seja enrijecida. Na superestrutura situam-se os elementos estruturais que recebem influência direta do carregamento móvel atuante, os quais podem se apresentar de várias maneiras ou tipos construtivos. Podem-se citar como mais comuns os sistemas formados pelo próprio tabuleiro, por vigas longitudinais, também chamadas de vigamento principal ou longarinas, e vigas transversais, também chamadas de vigamento secundário ou transversinas. Considerando apenas o conjunto das vigas existentes na superestrutura, as mesmas formam uma grelha de sustentação para o tabuleiro. Há também aquelas superestruturas que são formadas pela laje e por uma ou mais vigas longitudinais celulares (vigas "caixão") providas de diafragmas transversais ao longo do seu comprimento, e ainda superestruturas formadas unicamente pela laje do tabuleiro, denominado superestruturas em laje, conforme esclarece Mason (1977).

Usualmente, no projeto estrutural de uma ponte, são feitas aproximações que possibilitam um cálculo manual dos elementos que compõem o sistema estrutural, separando os elementos e analisando cada um deles de maneira isolada. Desta forma, o dimensionamento da estrutura torna-se oneroso, pois não é verificado o comportamento real da mesma. Por este motivo, o uso de microcomputadores na análise de grandes estruturas como pontes, ganha muita importância, pois viabiliza um estudo integrado da transmissão de esforços entre seus elementos constituintes. Em estudos como esses, a avaliação de esforços e tensões internas na estrutura, considerando-se a interação dos elementos que a compõem, permite determinar de forma mais realista a influência do carregamento sobre a estrutura.

O desenvolvimento de métodos e modelos discretos que abordem essa questão de maneira satisfatória, mas sem perder o cunho prático de aplicação corriqueira nos escritórios de cálculo, ainda é motivo de estudos dos pesquisadores e projetistas. Dentro deste contexto, a analogia de grelha se apresenta como uma técnica de modelagem estrutural bastante atrativa, pois reúne características que possibilitam uma representação, ao mesmo tempo, geometricamente favorável (com barras na mesma direção das longarinas e transversinas e solicitada perpendicularmente ao seu plano médio), e, computacionalmente, de fácil aplicação nos escritórios de cálculo e fácil implementação. Associando à grelha equivalente um modelo de pórtico, é possível obter uma visão integrada do comportamento das vigas, laje e pilares da ponte. Para isto, foi desenvolvida uma ferramenta computacional que associe o modelo de pórtico espacial ao modelo de grelha.

2 AÇÕES

As pontes estão submetidas às mais diversas ações, impostas pela natureza ou pela sua utilização corrente. Na primeira, pode-se citar a ação do vento, que é uma ação dinâmica, e o peso próprio, que é uma ação considerada estática, além de intempéries das mais variadas. Na segunda, se enquadram as cargas trazidas pelos veículos que ali trafegam. Essas cargas dependem do tipo de ponte, rodoviária ou ferroviária, e da classe de utilização da mesma. A ação ocasionada pelo peso de um veículo é um carregamento móvel, que provoca esforços dinâmicos na estrutura e que dependem da posição em que se encontra o veículo no pavimento (tabuleiro) da ponte. Tal efeito dinâmico provoca variações de esforços internos e, conseqüentemente, das tensões em toda estrutura. Esse fato deve ser estudado detalhadamente pelo projetista, pois provoca fenômenos importantes como a fadiga, que pode levar o material à ruptura com solicitação de tensões bem menores do que as toleráveis. Para fins de projeto estrutural, as ações dos veículos são pré-definidas pela norma brasileira NBR 7188 (1982), para pontes rodoviárias, ou pela NBR 7189 (1985), para pontes ferroviárias, melhor exemplificadas posteriormente.

Para fins de dimensionamento é necessário conhecer as posições da carga móvel que provocam solicitações críticas na estrutura, por meio das envoltórias de esforços. A determinação desta, de acordo com a literatura disponível para Estática das Estruturas, pode ser feita com o auxílio de linhas de influência, que mostram a evolução de um determinado esforço numa seção S ao mover-se uma carga pontual unitária ao longo de todo o comprimento do elemento estrutural. O esforço dito crítico na superestrutura é obtido posicionando-se o carregamento móvel real, da maneira mais desfavorável, na posição de pontos máximos da linha de influência da seção S em estudo, sendo o esforço diretamente proporcional a estes pontos críticos da linha de influência. Portanto, se para cada seção fosse feita uma linha de influência e verificado os pontos críticos, a envoltória de solicitações da estrutura pode ser obtida traçando-se a curva que liga esses valores.

Os carregamentos peculiares numa estrutura de ponte são descritos a seguir.

2.1 Carga permanente

De acordo com a NBR 7187 (2003), ações permanentes são aquelas cujas intensidades podem ser consideradas como constantes ao longo da vida útil da construção. As principais ações permanentes são: as cargas provenientes do peso próprio dos elementos estruturais, da pavimentação, dos trilhos, dos dormentes, dos lastros, dos revestimentos, das barreiras, dos guarda-rodas, dos guarda-corpos, e dos dispositivos de sinalização, os empuxos de terra e de líquidos, as forças de protensão e as deformações impostas, isto é, provocadas por fluência e retração do concreto, por variações de temperatura e por deslocamentos de apoios.

Na avaliação das cargas devidas ao peso próprio dos elementos estruturais, o peso específico deve ser tomado no mínimo igual a 24 kN/m³ para o concreto simples e 25 kN/m³ para o concreto armado ou protendido (ABNT, 2003). Em situação de projeto esta ação deve ser majorada por um fator de 1,40.

2.2 Carga móvel

A carga móvel é fixada de acordo com o tipo de ponte e a classe da rodovia ou da ferrovia. No caso de pontes rodoviárias a NBR 7188 (1982), fixa um veículo padrão, também chamado de veículo-tipo, que é classificado em três tipos, conforme a Figura 2.

Figura 2: Veículos-tipo para Pontes Rodoviárias (ABNT, 1982)

Este veículo-tipo é associado a um sistema de cargas distribuídas p e p', colocadas no seu entorno, e sobre todo o pavimento, para que seja simulado o tráfego da via (Figura 3), sendo esta associação chamada de trem-tipo. O valor das cargas p, p' e do peso dos eixos dos veículos depende da classe da ponte (Tabela 1).

Figura 3: Cargas Distribuídas p e p' para Simular Tráfego Rodoviário (Manson, 1977)

	Veículo			Carga uniformemente distribuída					
Classe da	Tina	Peso total		р		p'		Dianaciaão do conco	
ponte Tipo		kN	tf	kN/m²	kgf/m²	kN/m²	kgf/m²	Disposição da carga	
45	45	450	45	5	500	3	300	Carga p em toda pista	
30	30	300	30	5	500	3	300	Carga p' nos passeios	
12	12	120	12	4	400	3	300		

Tabela 1: Adoção do Trem-tipo (ABNT, 1982)

O veículo-tipo é uma simplificação feita pela NBR 7188 (1982) para facilitar a aplicação do carregamento móvel, sem que seja necessário estudar cada tipo de veículo existente para que se escolha um. A desvantagem desta adoção é que, a depender do tipo de tráfego a ser suportado pela ponte em estudo, o veículo-tipo pode não representar adequadamente a solicitação imposta.

No caso de pontes ferroviárias, a NBR 7189 (1985) estabelece trens-tipo padrões, constituídos de cargas concentradas para a locomotiva, e uma carga distribuída para os vagões (Figura 4).

Figura 4: Exemplo de Trem-tipo para Pontes Ferroviárias (Mason, 1977)

Para rodovias para transporte pesado ou ferrovias para trens especiais, deverão ser obtidas as informações adequadas para a carga móvel de projeto.

As cargas móveis produzem efeitos dinâmicos diversos, em conseqüência de sua própria mobilidade, irregularidades da pista, entre outros. Na prática, os diversos efeitos dinâmicos costumam ser levados em conta através do coeficiente de impacto vertical φ , aplicado ao valor estático das cargas móveis. A NBR 7187 (2003) fixa este coeficiente conforme abaixo, para pontes rodoviárias e ferroviárias, sendo *l* o comprimento de cada vão teórico do elemento carregado (ver Eq.(1)).

$$\varphi_{RODOVIA} = 1,4 - 0,007 \cdot l \ge 1,00,$$

$$\varphi_{FERROVIA} = 0,001 \cdot \left(1600 - 60 \cdot \sqrt{l} + 2,25 \cdot l\right) \ge 1,20.$$
(1)

Nas pontes ferroviárias, deve-se ainda levar em conta a carga de impacto lateral das rodas e composições, devidas ao efeito Lacet. Esta carga é estimada em 20% do eixo mais pesado da locomotiva e é aplicada no topo do trilho.

2.3 Carga de vento

O vento é uma ação que incide transversalmente sobre a ponte, sendo seu efeito avaliado através da NBR 6123 (1988). Esta preconiza que o vento atua sobre uma determinada estrutura através de uma velocidade característica. Sendo esta calculada através da velocidade básica do vento, do fator topográfico, do fator de rugosidade do terreno, dimensões da edificação e altura sobre o terreno, e do fator estatístico.

A velocidade básica do vento, V_0 , é a velocidade de uma rajada de 3 s, excedida em média uma vez em 50 anos, a 10 m acima do terreno, em campo aberto e plano (ABNT, 1988). Via de regra, é admitido que o vento básico pode soprar de qualquer direção horizontal. Para o Brasil, foram determinadas as velocidades básicas do vento para todo seu território (Figura 5).

Figura 5: Isopletas da Velocidade Básica do Vento (ABNT, 1988)

O fator topográfico S_1 leva em consideração as variações do relevo do terreno e é determinado de acordo com a declividade do mesmo. Caso este seja plano ou fracamente acidentado, tal fator será igual a 1,0. Em caso de taludes e morros, o procedimento de cálculo está descrito de forma detalhada na NBR 6123 (1988).

O fator S_2 considera o efeito combinado da rugosidade do terreno, da variação da velocidade do vento com a altura acima do terreno e das dimensões da edificação ou parte da edificação em consideração (ABNT, 1988).

Em ventos fortes em estabilidade neutra, a velocidade do vento aumenta com a altura acima do terreno. Este aumento depende da rugosidade do terreno e do intervalo de tempo considerado na determinação da velocidade. Este intervalo de tempo está relacionado com as dimensões da edificação, pois edificações pequenas e elementos de edificações são mais afetados por rajadas de curta duração do que grandes edificações. Para estas, é mais adequado considerar o vento médio calculado com um intervalo de tempo maior (ABNT, 1988).

O fator S_3 é baseado em conceitos estatísticos, e considera o grau de segurança requerido e a vida útil da edificação. Segundo a NBR 6123 (1988), a velocidade básica V_0 é a velocidade do vento que apresenta um período de recorrência médio de 50 anos. A probabilidade de que a velocidade V_0 seja igualada ou excedida neste período é de 63%.

O nível de probabilidade (0,63) e a vida útil (50 anos) adotados são considerados adequados para edificações normais destinadas a moradias, hotéis, escritórios, etc. (ABNT, 1988).

Assim, as forças estáticas devidas ao vento são determinadas a partir da escolha da velocidade básica, onde esta é multiplicada pelos fatores S_1 , S_2 e S_3 para que se tenha a velocidade característica do vento (ver Eq. (2)).

$$V_k = V_0 \cdot S_1 \cdot S_2 \cdot S_3. \tag{2}$$

A velocidade característica do vento permite determinar a pressão dinâmica, dada pela Eq. (3).

$$q = 0.613 \cdot V_k^2.$$
(3)

Sendo $q \in V_k$ dados em N/m² e m/s, respectivamente.

Vale salientar que, para um projeto de pontes, a NBR 7187 (2003) preconiza que a ação do vento sobre a estrutura deve ser avaliada pela NBR 6123 (1988). Entretanto, esta norma traz especificações imprecisas para a adoção dos valores de S_1 , S_2 e S_3 para pontes, forçando o projetista a adotar parâmetros com base em experiências de projetos anteriores.

3 MODELAGEM NUMÉRICA

Considerando o sistema estrutural de uma ponte como uma associação de elementos estruturais integrados utilizou-se para definição do modelo de cálculo a associação entre os modelos de pórtico e grelha. Para a definição deste último foi utilizada a técnica da analogia de grelha.

3.1 Técnica da analogia de grelha

A técnica da analogia de grelha, ou grelha equivalente, é provavelmente o método computacional mais utilizado para analisar tabuleiros de pontes (Hambly, 1976), por ser facilmente compreendida e aplicada. Inicialmente, esta técnica foi utilizada por Timoshenko e Woinowsky (1959) para estudar placas. Posteriormente, Braga (2002) confrontou a técnica de analogia de grelha e os elementos finitos de placas e elementos tridimensionais para a

modelagem de superestruturas de pontes, obtendo diferenças inexpressivas entre os métodos. Assim, neste trabalho foi utilizada apenas a técnica da analogia de grelha para simular a superestrutura, pois tal processo possui custo computacional relativamente baixo.

Este método representa o tabuleiro através de uma grelha equivalente, onde as rigidezes de torção e flexão dispersas por toda a região da laje são assumidas para efeitos de análise concentradas na barra de grelha equivalente mais próxima. Sendo assim, a barra de grelha assume as propriedades de um trecho de viga ou laje (Figura 6 e Figura 7).

Figura 6: Barras de Grelha das Vigas (Amorim et al., 2009)

Figura 7: Inclusão das Barras de Grelha de Laje à Malha Disposta Anteriormente pelas Vigas (Amorim *et al.*, 2009)

Idealmente, as rigidezes das barras devem ser tal que, quando a superestrutura e a grelha equivalente são submetidas a cargas idênticas, ambas devem flexionar de forma idêntica, e os momentos fletores, as forças de cisalhamento e as torções em qualquer barra de grelha devem ser iguais as resultantes das tensões na seção transversal da parte da superestrutura que a barra representa (Hambly, 1976). Porém, sabe-se que, por se tratar de uma aproximação da estrutura real por uma simplificada, os cálculos são aproximados, e não exatos como idealizado no método. Entretanto, para tabuleiros com laje e vigas a técnica da analogia de grelha é extremamente recomendada, pois o vigamento forma uma grelha de sustentação, fazendo com que os resultados desta técnica sejam muito próximos à realidade.

O processo de geração da malha de grelha não possui regras específicas, mas apenas recomendações, conforme explica Hambly (1976). Sendo assim, o processo de geração das barras de grelha para este trabalho é iniciado com as posições das vigas, onde se criam as barras de grelhas de vigas. Com isso, verifica-se se as barras de vigas de extremidade estão a,

no mínimo, 0,3*d* da borda do tabuleiro, onde *d* é a espessura da laje. Caso não estejam, estas são reposicionadas, pois é uma exigência da teoria de grelha equivalente, conforme explana Hambly (1976). Com a disposição das barras de vigas concluída, é feita a verificação dos espaços entre vigas, ou viga-borda, caso não haja vigas de fechamento. Desta verificação é feita a subdivisão destes subdomínios onde, a partir daí, acontecerá a disposição das barras de laje à já pré-disposta pelas vigas. Assim, a grelha equivalente estará pronta para aplicação dos carregamentos e análise da estrutura. A Figura 8 mostra o fluxograma do algoritmo de geração da grelha equivalente.

Figura 8: Fluxograma para Geração da Grelha Equivalente (Amorim et al., 2009)

Numa estrutura de grelha, todos os elementos e nós existem no mesmo plano, supondo-se que os elementos estão rigidamente ligados nos nós. O elemento de grelha possui seis graus de liberdade, três por nó, mostrados na Figura 9. Estes são, por nó, o deslocamento vertical, o giro em torno do eixo do elemento e o giro numa direção ortogonal aos outros dois graus de liberdade.

O carregamento atuante na grelha é predominantemente ortogonal ao seu plano.

Figura 9: Elemento de Barra de Grelha para Eixos do Elemento (Gere e Weaver, 1981)

Cada elemento possui uma matriz de rigidez $[k]_M$ (ver Eq. (4)), chamada matriz de rigidez do elemento. Sendo, em tal matriz, *E* o módulo de elasticidade longitudinal, *G* o módulo de elasticidade transversal, *L* o comprimento do elemento, I_y o momento de inércia à flexão em torno do eixo y_M e *J* o momento de inércia à torção em torno do eixo x_M.

$$[k]_{M} = \begin{bmatrix} \frac{GJ}{L} & 0 & 0 & -\frac{GJ}{L} & 0 & 0\\ 0 & 4\frac{EI_{y}}{L} & -6\frac{EI_{y}}{L^{2}} & 0 & 2\frac{EI_{y}}{L} & 6\frac{EI_{y}}{L^{2}}\\ 0 & -6\frac{EI_{y}}{L^{2}} & 12\frac{EI_{y}}{L^{3}} & 0 & -6\frac{EI_{y}}{L^{2}} & -12\frac{EI_{y}}{L^{3}}\\ -\frac{GJ}{L} & 0 & 0 & \frac{GJ}{L} & 0 & 0\\ 0 & 2\frac{EI_{y}}{L} & -6\frac{EI_{y}}{L^{2}} & 0 & 4\frac{EI_{y}}{L} & 6\frac{EI_{y}}{L^{2}}\\ 0 & 6\frac{EI_{y}}{L^{2}} & -12\frac{EI_{y}}{L^{3}} & 0 & 6\frac{EI_{y}}{L^{2}} & 12\frac{EI_{y}}{L^{3}} \end{bmatrix}$$
(4)

Para análise da grelha, a matriz de rigidez do elemento para eixos do elemento deverá ser transformada para os eixos da estrutura.

3.2 Modelo de pórtico

O modelo de pórtico é bastante utilizado para análise de estruturas reticuladas, pois dimensiona os elementos estruturais lineares através de barras de pórtico espacial. Estruturas de edifícios, por exemplo, têm seus elementos estruturais lineares, como pilares e vigas, dimensionados por este processo, pois os mesmos possuem uma dimensão preponderante em relação às outras duas, sendo a representação por barras uma aproximação considerável.

A partir da disposição da malha de grelha, os pilares são posicionados conforme as coordenadas dos seus eixos. Com isso, a altura de cada pilar é colocada a partir do nível da malha de grelha, que é adotado como zero.

O elemento de pórtico espacial possui doze graus de liberdade, conforme mostrado na Figura 10. Sendo três rotações e três translações para cada nó, fazendo-se possível todos os tipos de movimentação do elemento.

Figura 10: Elemento de Barra de Pórtico Espacial para Eixos do Elemento (Gere e Weaver, 1981)

Cada elemento possui uma matriz de rigidez $[k]_M$, chamada matriz de rigidez do elemento. Esta matriz, em eixos do elemento, é dada na Eq. (5), sendo A a área da seção transversal, E o módulo de elasticidade longitudinal, G o módulo de elasticidade transversal, L o comprimento do elemento, I_y o momento de inércia à flexão em torno do eixo y_M, I_z o momento de inércia à flexão em torno do eixo z_M e J o momento de inércia à torção em torno do eixo x_M.

Para análise do pórtico espacial, a matriz de rigidez do elemento para eixos do elemento deverá ser transformada para os eixos da estrutura.

3.3 Associação grelha-pórtico

Para a análise proposta neste trabalho, é necessário que haja a associação entre os elementos de grelha que simulam o tabuleiro da ponte e os de pórtico que incorpora os pilares.

Para isto, a transmissão de esforços entre as barras de grelha e pórtico se faz necessária.

Inicialmente, pode-se observar com as matrizes de rigidez e as figuras dos elementos apresentados anteriormente que o elemento de grelha é um caso particular do elemento de pórtico espacial. Posteriormente, Amorim *et al.* (2009) mostra que o elemento de pórtico espacial comporta-se como elemento de grelha se for solicitado como tal.

Diante do exposto, neste trabalho será adotado o elemento de pórtico espacial para análise do modelo estrutural integrado de uma ponte em vigas. Pois, tal elemento é mais genérico e, assim, pode absorver informações de solicitações como vento, que não seriam obtidas com o elemento de grelha.

3.4 Método dos deslocamentos

O procedimento utilizado para cálculo de esforços internos, deslocamentos lineares e rotações, adotado para implementação computacional no presente trabalho, é o método dos deslocamentos, ou método da rigidez, em formulação matricial.

O método dos deslocamentos permite analisar o comportamento de uma estrutura reticulada, fornecendo as informações de esforços totais e deslocamentos prescritos da mesma. Para aplicação deste método, é necessária a discretização da estrutura estudada em segmentos, onde seus pontos de vinculação fornecerão as grandezas procuradas. Portanto, quanto maior for a quantidade de pontos para análise do problema melhor será a resposta, pois o método é discreto e tenderá à solução exata de diagramas de esforços e comportamento da linha elástica dos elementos estruturais. Assim sendo, define-se a entidade nó como o ponto de análise discreta da estrutura, e a entidade elemento como um segmento limitado entre dois nós. Exemplifica-se na Figura 11 um elemento qualquer, denominado j, delimitado aos nós i e k.

Figura 11: Elemento j Delimitado pelos Nós i e k

Como exposto anteriormente, os elementos utilizados neste trabalho são de pórtico espacial (Figura 12) por serem os mais genéricos, tratando-se dos elementos de barra.

Os sistemas de coordenadas são classificados em local e global. O sistema local é o sistema de cada elemento (Figura 12), onde o eixo x é o eixo longitudinal do elemento. Os eixos y e z são ortogonais entre si e ao eixo x, sendo aqueles os eixos principais de inércia.

Figura 12: Elemento de Barra no Espaço Tridimensional para Sistema de Coordenadas de Elemento

O sistema global é aquele que referencia a estrutura como um todo, sendo este utilizado para a análise estrutural. Neste trabalho o eixo x será adotado no sentido longitudinal da superestrutura da ponte, o eixo y será adotado no sentido transversal da mesma e z será adotado ortogonal aos outros dois eixos, no sentido da meso-estrutura.

Contudo, o cálculo das incógnitas nodais da estrutura é feito em relação ao referencial global, pois permite a análise de todos os elementos simultaneamente, como será abordado adiante. Sendo assim cada elemento sofre uma transformação de suas coordenadas, de local para global, através da matriz de transformação de coordenadas [*T*], função dos ângulos α , φ (Figura 13) e ζ (Figura 14).

Figura 13: Sistemas Global X (x, y, z), Auxiliar X' (x', y', z') e Local X'' (x", y", z") de Coordenadas

Figura 14: Rotação do Elemento de Pórtico Espacial em Torno de x"

Para elementos de pórtico espacial é considerada a possibilidade de rotação do mesmo em torno do seu eixo. Com isso, a sua matriz de rotação é dada em função dos ângulos α , $\varphi \in \zeta$, já

apresentados (vide Eq. (6)).

$$[T] = \left(\begin{bmatrix} \cos\varphi & -\sin\varphi & 0\\ \sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\alpha & 0 & -\sin\alpha\\ 0 & 1 & 0\\ \sin\alpha & 0 & \cos\alpha \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\zeta & -\sin\zeta\\ 0 & \sin\zeta & \cos\zeta \end{bmatrix} \right)^{T}.$$
 (6)

Assim, em cada nó de barra há dois sistemas cartesianos de medições de grandezas: uma para grandezas lineares e outra para angulares. Portanto, a matriz para transformação de referências locais e globais do elemento é uma matriz de dimensão 12x12, composta por quatro matrizes [T], conforme a Eq. (7).

$$[T] = \begin{bmatrix} [T] & 0 & 0 & 0 \\ 0 & [T] & 0 & 0 \\ 0 & 0 & [T] & 0 \\ 0 & 0 & 0 & [T] \end{bmatrix}.$$
(7)

Para resolução de toda estrutura é necessário que se defina um sistema global em que todos os elementos estejam referidos, onde a determinação das incógnitas, deslocamentos lineares e angulares, é feita numa equação única. Sendo assim, entende-se a necessidade de uma entidade de transformação de referenciais que o faça de forma automatizada endereçando as contribuições dos elementos em toda estrutura. Esta entidade é chamada de matriz de incidência cinemática [β] que, por definição, relaciona os deslocamentos locais aos globais. Esta matriz é função do transformador de coordenadas, [T], já definido, e das conectividades (nós) do elemento.

Esta transformação é feita em todos os elementos, gerando as matrizes de rigidez, de forças e deslocamentos e rotações, agora, globais. Esta transformação é feita por meio da Eq. (8).

$$[F]_{M} = [\beta]^{T} \cdot [f],$$

$$[U]_{M} = [\beta]^{T} \cdot [\delta],$$

$$[K]_{M} = [\beta]^{T} \cdot [k]_{M} \cdot [\beta].$$

(8)

Onde [f] é a matriz de forças dos elementos em relação ao referencial local, $[\delta]$ é a matriz de deslocamentos dos elementos em relação ao referencial local, $[F]_M$ é a matriz de forças dos elementos em relação ao referencial global, $[U]_M$ é a matriz de deslocamentos dos elementos em relação ao referencial global e $[K]_M$ é a matriz de rigidez do elemento em relação ao referencial global e $[K]_M$ é a matriz de rigidez do elemento em relação ao referencial global.

Assim, as matrizes de rigidez, forças e deslocamentos são calculadas através do somatório das matrizes dos elementos (Eq. (9)).

$$[F] = \sum_{M=1}^{N} [F]_{M},$$

$$[U] = \sum_{M=1}^{N} [U]_{M},$$

$$[K] = \sum_{M=1}^{N} [K]_{M}.$$
(9)

Sendo N o número de elementos, [F] a matriz de forças globais, [U] a matriz de

deslocamentos globais e [K] a matriz de rigidez global.

As condições de contorno do problema estão embutidas na formulação dada, pois a restrição é feita diretamente nos nós travados, para evitar que haja singularidade na matriz de rigidez da estrutura.

Com a definição de todas as grandezas globais é solucionado o sistema de equações lineares dado abaixo, onde são obtidos os deslocamentos globais dos nós não restringidos da estrutura (Eq. (10)).

$$[F] = [K] \cdot [U]. \tag{10}$$

Assim, esforços internos e deslocamentos nodais de cada elemento podem ser determinados a partir dos deslocamentos calculados, dos nós de conectividade em relação ao referencial local e multiplicando-os pela sua matriz de rigidez também no referencial local (Eq. (11)).

$$\begin{bmatrix} \boldsymbol{\delta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\beta} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{U} \end{bmatrix},$$

$$\begin{bmatrix} \boldsymbol{f} \end{bmatrix} = \begin{bmatrix} \boldsymbol{K} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\delta} \end{bmatrix}.$$

$$(11)$$

3.5 Aplicação das cargas

Neste trabalho, o efeito do movimento da carga móvel é aproximado através da aplicação de estados de carregamentos estáticos com o trem-tipo, sendo este posicionado sobre o tabuleiro de forma que sua atual posição seja encontrada a partir do estado anterior com um leve deslocamento longitudinal Δx (Figura 15 e Figura 16). Ou seja, imagina-se que, ao mover um veículo sobre o tabuleiro a certa velocidade, fossem tiradas fotografias sucessivas em intervalos de tempo sincronizados de forma a se obter várias configurações de solicitação, estados de carregamento, sobre a estrutura. Portanto, o que seria uma solicitação móvel passa a ser estática e composta de diversas configurações.

Figura 15: Trecho de uma Superestrutura Submetida ao Veículo-tipo: Primeiro Estado de Carregamento

Figura 16: Trecho de uma Superestrutura Submetida ao Veículo-tipo: Segundo Estado de Carregamento

Ressalte-se, ainda, que existem cargas pontuais do trem-tipo que podem estar aplicadas em

posições intermediárias aos nós funcionais (entre elementos) da malha de grelha, ou seja, em subdomínios retangulares limitados por elementos adjacentes pertencentes à grelha equivalente. Neste caso, é necessário determinar um carregamento nodal equivalente para considerar essas cargas. Para tanto, discretiza-se esses subdomínios em elementos finitos retangulares de placas, acoplados aos elementos que constituem a grelha, localizados no contorno, obtendo-se as reações nodais equivalentes. Neste procedimento também é aplicado o Método dos Deslocamentos como já foi descrito. Porém, desta vez, o domínio retangular é discretizado por elementos de placas com quatro nós e três graus de liberdade por nó, necessários à obtenção das reações nodais equivalente de forças cortantes na direção vertical e momentos fletores e torçores. Com isso, o elemento apresenta 12 graus de liberdade, como mostrado na Figura 17.

Figura 17: Elemento Retangular de Placa

Assim, w₁, w₂, w₃ e w₄ são os deslocamentos verticais nodais; θ_{x1} , θ_{x2} , θ_{x3} e θ_{x4} são rotações em x e θ_{y1} , θ_{y2} , θ_{y3} , θ_{y4} são rotações em y, nodais. Maiores detalhes podem ser vistos em Amorim *et al.* (2009).

O carregamento proveniente do vento é estimado a partir da NBR 6123 (1988), como exposto anteriormente. Assim, o carregamento encontrado no cálculo será aplicado na lateral da ponte e será suposto constante na mesma.

Assim, numa viga longitudinal de borda a carga de vento q (N/m^2) é multiplicada pela altura da mesma, onde é encontrada uma carga q_v, dada em N/m. Já em um pilar, a carga de vento q (N/m^2) é multiplicada pela largura do mesmo que recebe a ação do vento (b_v) , resultando numa carga q_v, dada em N/m. A partir destes carregamentos distribuídos, são calculadas as cargas nodais equivalentes nos elementos que constituem os portantes viga e pilar, de acordo com a literatura disponível para Estática das Estruturas.

4 EXEMPLO DE APLICAÇÃO

O exemplo analisado consiste numa ponte em vigas com seção transversal indicada na Figura 18. Tal ponte deve ser concebida para vencer um vão total de 108 m onde, para isto, foram analisadas várias disposições estruturais a fim de verificar o comportamento das diferentes concepções estruturais possíveis para o problema.

Figura 18: Seção Transversal da Ponte

As concepções estruturais adotadas neste trabalho partem da vertente básica de que a superestrutura está simplesmente apoiada nos encontros e rigidamente ligada a quatro pilares a meio vão. Em tais concepções, são consideradas quatro possíveis disposições do vigamento secundário. A primeira consiste em vigas transversinas colocadas apenas nos apoios, para conformizar os esforços que chegam nos encontros da ponte. A segunda adota a mesma idealização da primeira, onde só difere devido a inclusão de uma transversina a meio vão. A terceira disposição consiste na colocação de mais duas vigas transversais, sendo estas posicionadas a um quarto e três quartos do vão total. Na quarta, e última disposição, posicionam-se mais quatro vigas transversais intermediárias às vigas já colocadas, de modo que a distância entre todas as vigas transversais sejam as mesmas.

As simulações das diferentes concepções estruturais foram feitas com e sem a ação do vento, para verificar o comportamento global dessas. Em todas as simulações, considerou-se a ponte constituída de concreto armado com peso próprio de 25 kN/m³, módulo de elasticidade (E) igual a 30104.88 MPa e coeficiente de Poisson de 0.2. Cada viga longitudinal possui seção transversal em I, conforme exposto na Figura 18, com momento de inércia igual a 0,1286 m⁴ com a horizontal e $0,0157 \text{ m}^4$ com a vertical, área de $0,5280 \text{ m}^2$, centróide a 0,63 m do topo, base inferior de 0,50 m e altura de 1,42 m. Cada viga transversal possui seção transversal retangular, com momento de inércia igual a 0.0378 m⁴ com a horizontal e 0.0016 m⁴ com a vertical, área de 0,3050 m², centróide a 0,61 m do topo, base de 0,25 m e altura de 1,22 m. Cada pilar possui seção transversal retangular, com momento de inércia igual a 0,2160 m⁴ com o alinhamento transversal à superestrutura e 0,3375 m⁴ com o alinhamento longitudinal à superestrutura, área de 1,80 m² e lados de 1,20 m e 1,50 m. O peso próprio da estrutura é calculado conforme exposto e varia de acordo com a concepção utilizada. Foi adotado veículo-tipo de classe 45 para o cálculo da carga móvel, com coeficiente de impacto vertical de 1,022. Para a carga de vento foi adotado 30 m/s como velocidade básica, pois este é o valor preconizado para todo o Estado de Alagoas (Figura 5), e os fatores estatísticos S_1 , S_2 e S_3 foram admitidos com valor de 1,00 (terreno fracamente acidentado), 0,96 (via de categoria III e classe B, com altura de 15 m) e 1,10 (pior situação prevista), respectivamente, conforme NBR 6123 (1988).

5 RESULTADOS

O modelo de simulação (Figura 19) e os gráficos da estrutura deformada na vertical (Figura 20) e horizontal (Figura 21) de uma das simulações são dados abaixo.

Figura 19: Modelo para simulação

Figura 20: Deslocamentos verticais

Figura 21: Deslocamentos horizontais

As quatro concepções estruturais foram analisadas com e sem o carregamento do vento, onde a princípio foram observados os deslocamentos máximos da superestrutura (Tabela 2) e os esforços máximos no vigamento principal (Tabela 3 e Tabela 4) e na meso-estrutura (Tabela 5).

Exemplo	Deslocamento vertical máximo (cm) - superestrutura	Deslocamento horizontal máximo (cm) - superestrutura	
Dues transversings nos encies	Sem vento	8,30	0,0338
	Com vento	8,37	1,4800
Três transversinas: duas nos apoios e uma	Sem vento	8,36	0,0063
a meio vão total	Com vento	8,36	1,2300
Cinco transversinas: duas nos apoios, uma	Sem vento	8,59	0,0063
a meio vão total e duas intermediárias	Com vento	8,60	1,2100
Nove transversinas: duas nos apoios, uma	Sem vento	8,93	0,0104
a meio vão total e seis intermediárias	Com vento	8,97	0,7500

Tabela 2: Deslocamentos globais da superestrutura

Exemplo	Momento fletor máximo (kN.m) - longarinas	Momento fletor horizontal máximo (kN.m) - longarinas	
Duas transversinas nos apoios	Sem vento	5290,2	3,4462

	Com vento	5598,0	209,1020
Três transversinas: duas nos apoios e uma	Sem vento	5324,3	4,4603
a meio vão total	Com vento	5346,4	192,6797
Cinco transversinas: duas nos apoios, uma	Sem vento	5471,5	4,4676
a meio vão total e duas intermediárias	Com vento	5493,8	193,6358
Nove transversinas: duas nos apoios, uma	Sem vento	5702,5	5,0903
a meio vão total e seis intermediárias	Com vento	6739,9	339,0032

Tabela 3: Momentos fletores máximos no vigamento longitudinal

Exemplo	Cortante vertical máxima (kN) - longarinas	Cortante horizontal máxima (kN) - longarinas	
Dues transversings nos engins	Sem vento	493,6336	2,2136
	Com vento	565,0417	61,7647
Três transversinas: duas nos apoios e uma	Sem vento	512,8767	2,9936
a meio vão total	Com vento	513,1762	61,6244
Cinco transversinas: duas nos apoios, uma	Sem vento	519,1882	3,0363
a meio vão total e duas intermediárias	Com vento	520,3984	61,8946
Nove transversinas: duas nos apoios, uma	Sem vento	523,9534	3,0552
a meio vão total e Seis intermediárias	Com vento	623,8799	155,0611

Tabela 4: Cortantes máximas no vigamento principal

Exemplo	Normal máximo (kN) - pilares	Cortante máximo (kN) - pilares	Momento fletor máximo (kN.m) - pilares	
Dues transversings has analos	Sem vento	4379,3	114,1576	1147,9
	Com vento	4653,8	219,2766	3240,3
Três transversinas: duas nos apoios e uma a	Sem vento	4383,5	279,3312	1290,0
meio vão total	Com vento	5243,8	426,6664	2663,3
Cinco transversinas: duas nos apoios, uma a	Sem vento	4421,2	278,5924	1281,9
meio vão total e duas intermediárias	Com vento	5287,9	422,9519	2627,8
Nove transversinas: duas nos apoios, uma a	Sem vento	4493,4	285,6021	1350,7
meio vão total e seis intermediárias	Com vento	5346,7	410,5594	2517,7

Tabela 5: Esforços máximos na mesoestrutura

Em termos de deslocamentos verticais máximos da superestrutura as diferenças entre as concepções estruturais são inexpressivas, porém, pode-se ver que a inserção de vigas transversais ao longo do vão leva a um aumento do deslocamento vertical. Este fenômeno é intuitivamente entendido, pois quanto maior é o número de transversinas, maior será o peso próprio da superestrutura. Os deslocamentos horizontais máximos são desprezíveis quando as concepções estruturais são analisadas sem a carga de vento, mas quando esta é imposta, observa-se que a mesma diminui quando há aumento da quantidade de vigas transversais.

Os momentos fletores e esforços cortantes máximos no vigamento principal aumentam com a colocação de vigas transversais, porém, a primeira concepção, que possui transversinas apenas nos extremos da ponte, possui esforço maior que a concepção seguinte. Vale salientar que a ação do vento aumenta os esforços no vigamento longitudinal, principalmente nos esforços ditos horizontais, que ocorrem no plano paralelo ao do tabuleiro da ponte.

Nos pilares da ponte, observa-se aumento do esforço normal com a inserção de vigas transversais. Isto se dá devido o aumento do peso próprio da estrutura, já comentado anteriormente. Em termos de esforços cortantes e momentos fletores máximos nos pilares, ocorre decaimento dos valores dos esforços com o acréscimo de vigas transversais, exceto no primeiro caso, pois neste só há vigas transversais nos extremos da ponte, fazendo com que o vigamento principal suporte as solicitações sem que haja uma distribuição conformizada de esforços para os pilares.

Exemplo		Solicitoção mávimo nos longorinos	Longarinas				
		Sonettação máxima nas longarmas	V1	V2	V3	V4	
		Esforço normal (kN)	20,859	19,603	19,603	20,859	
		Esforço cortante lateral (kN)	2,213	1,146	1,145	2,214	
	Sem	Esforço cortante vertical (kN)	493,634	509,946	509,269	493,634	
	vento	Momento torsor (kN.m)	130,790	138,429	138,409	130,826	
		Momento fletor (kN.m)	5290,220	5274,445	5270,438	5289,297	
Duas		Momento fletor lateral (kN.m)	3,446	1,896	1,896	3,446	
nos apoios		Esforço normal (kN)	284,567	101,186	101,150	284,590	
1		Esforço cortante lateral (kN)	65,367	61,765	60,986	53,295	
	Com	Esforço cortante vertical (kN)	430,654	503,028	514,603	565,042	
	vento	Momento torsor (kN.m)	211,555	300,055	339,103	280,639	
		Momento fletor y (kN.m)	4990,067	5200,820	5316,898	5598,023	
		Momento fletor lateral (kN.m)	128,007	99,315	102,171	139,630	

A seguir, são apresentados os resultados dos esforços máximos para cada viga longitudinal.

Tabela 6: Esforços máximos nas longarinas - primeira concepção estrutural

Exemplo		Solicitoção máximo nos longorinos	Longarinas				
		Sonettação maxima nas longarmas	V1	V2	V3	V4	
		Esforço normal (kN)	38,611	32,587	32,587	38,611	
		Esforço cortante lateral [y] (kN)	2,994	1,155	1,156	2,994	
	Sem	Esforço cortante vertical [z] (kN)	492,823	512,877	512,157	491,618	
— •	vento	Momento torsor (kN.m)	127,868	135,855	135,834	127,904	
I res transversinas		Momento fletor y (kN.m)	5324,267	5319,421	5314,518	5322,967	
duas nos		Momento fletor lateral [z] (kN.m)	4,460	1,585	1,585	4,460	
apoios e uma	Com vento	Esforço normal (kN)	256,288	108,068	108,031	256,314	
a meio vão		Esforço cortante lateral [y] (kN)	61,624	57,329	56,567	49,507	
totai		Esforço cortante vertical [z] (kN)	487,317	511,652	513,176	497,455	
		Momento torsor (kN.m)	140,012	142,858	134,511	146,381	
		Momento fletor y (kN.m)	5301,810	5311,353	5321,653	5346,370	
		Momento fletor lateral [z] (kN.m)	151,221	111,280	112,213	155,156	

Exemplo		Solicitação máximo pos longorinos	Longarinas				
		Sonchação maxima has longarinas	V1	V2	V3	V4	
		Esforço normal (kN)	38,779	32,900	32,900	38,779	
		Esforço cortante lateral [y] (kN)	3,036	1,106	1,106	3,036	
	Sem	Esforço cortante vertical [z] (kN)	501,995	519,138	519,188	501,995	
Cinco transversinas:	vento	Momento torsor (kN.m)	113,384	111,867	111,847	113,425	
		Momento fletor y (kN.m)	5471,533	5452,699	5448,387	5470,540	
duas nos		Momento fletor lateral [z] (kN.m)	4,468	1,475	1,475	4,468	
meio vão total	Com vento	Esforço normal (kN)	265,367	115,223	115,198	265,380	
e duas		Esforço cortante lateral [y] (kN)	61,895	58,655	57,863	49,942	
intermediárias		Esforço cortante vertical [z] (kN)	496,535	517,653	520,398	507,727	
		Momento torsor (kN.m)	123,418	121,264	109,145	135,363	
		Momento fletor y (kN.m)	5448,821	5443,921	5456,657	5493,760	
		Momento fletor lateral [z] (kN.m)	148,121	109,073	109,957	152,320	

Tabela 7: Esforços máximos nas longarinas - segunda concepção estrutural

Tabela 8: Esforços máximos nas longarinas - terceira concepção estrutural

Exemplo		Solicitoção máximo nos longorinos	Longarinas				
		Sonchação maxima has longarmas	V1	V2	V3	V4	
		Esforço normal (kN)	42,611	34,671	34,671	42,611	
		Esforço cortante lateral [y] (kN)	3,055	0,917	0,917	3,055	
	Sem	Esforço cortante vertical [z] (kN)	523,953	519,538	519,538	523,953	
Nove	vento	Momento torsor (kN.m)	141,444	155,361	155,361	141,444	
transversinas:		Momento fletor y (kN.m)	5702,539	5607,786	5607,791	5702,539	
duas nos		Momento fletor lateral [z] (kN.m)	5,090	1,653	1,653	5,090	
meio vão total	Com vento	Esforço normal (kN)	305,262	253,006	252,746	303,849	
e seis		Esforço cortante lateral [y] (kN)	82,131	155,061	153,293	76,477	
intermediárias		Esforço cortante vertical [z] (kN)	609,497	609,933	615,512	623,880	
		Momento torsor (kN.m)	172,933	189,536	176,412	190,185	
		Momento fletor y (kN.m)	6672,962	6595,548	6630,798	6739,907	
		Momento fletor lateral [z] (kN.m)	311,059	149,507	151,816	322,632	

Tabela 9: Esforços máximos nas longarinas - quarta concepção estrutural

Para melhor entendimento do comportamento do vigamento principal devido às variações de concepções estruturais, os resultados dos momentos fletores (Figura 22), esforços cortantes laterais (Figura 23 e Figura 24) e momentos fletores laterais (Figura 25) máximos são comparados a seguir.

Figura 22: Comparação entre os momentos fletores máximos das quatro concepções estruturais, sem e com vento

Figura 23: Comparação entre os esforços cortantes laterais máximos das quatro concepções estruturais, sem e com vento

Figura 24: Detalhe da comparação entre os esforços cortantes laterais máximos

Figura 25: Comparação entre os momentos fletores laterais máximos das quatro concepções estruturais, sem e com vento

6 CONCLUSÕES

De acordo com as concepções estruturais adotadas para análise, observou-se que a carga de vento influencia a distribuição de esforços em toda a estrutura da ponte, provocando aumento no valor dos esforços internos solicitantes. Ainda observou-se que a inserção de vigas transversais combate o carregamento de vento, servindo como sistema de contraventamento, e assim, fazendo com que os deslocamentos laterais da ponte diminuam. Por outro lado, quanto mais vigas transversais são inseridas na estrutura maior será seu peso próprio, provocando deslocamentos verticais cada vez maiores.

Ainda neste raciocínio, a colocação excessiva de vigas transversais pode provocar solicitações excessivas, mesmo essas servindo como contraventamento. Isto se dá porque o peso próprio da estrutura fica exagerado, provocando efeitos de segunda ordem bastante

consideráveis.

Assim, a colocação de transversinas numa estrutura de ponte em vigas deve ser moderada, para que estas sirvam como contraventamento, combatendo os esforços horizontais, como vento, de forma satisfatória.

REFERÊNCIAS

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6123: Forças devidas ao vento em edificações. 1988.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7187: Projeto de pontes de concreto armado e de concreto protendido Procedimento. 2003.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7188: Cargas móveis em ponte rodoviária e passarela de pedestre. 1982.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7189: Cargas móveis para projeto estrutural de obras ferroviárias. 1985.
- Braga, W. Transversinas Internas nos Tabuleiros das Pontes. 1º ed. São Paulo, SP: Instituto de Engenharia Divisão Técnica de Estruturas. 2002. p. 08-14, p 15-24.
- Amorim, D. L. N. F., Barboza, A. S. R., Barbirato, J. C. C., Análise do comportamento de sistemas estruturais de pontes utilizando a técnica de analogia de grelha aplicada ao tabuleiro associada a um modelo de pórtico. Monografia de Graduação, Universidade Federal de Alagoas, 77 f. Maceió. 2009.
- Gere, J. M., Weaver Jr, W., Análise de Estruturas Reticuladas. Editora Guanabara. Rio de Janeiro. 1981.
- Hambly, E., *Bridge Deck Behaviour*. 1° ed. New York: LONDON CHAPMAN AND HALL, John Wiley & Sons, Inc. 1976. p. 46-68.
- Mason, J., Pontes *em Concreto Armado e Protendido*. 1º ed. Rio de Janeiro, RJ: Livros Técnicos e Científicos Editora S.A. 1977. p. 8-12.
- O'Connor, C., *Pontes Superestruturas*. 1º ed. São Paulo, SP: Editora LTC/EDUSP. 1979. p. 1-15. vol. 1.
- Pfeil, W., *Pontes em concreto armado: Elementos de Projeto, Solicitações, Superestrutura.* 4° ed. Rio de Janeiro, RJ: Livros Técnicos e Científicos Editora S.A. 1990. p. 5-20. vol. 1.