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Abstract. This work addresses the problem of hierarchical topology optimization of structures and its 
applicability. Assuming that the structure is made of a locally periodic material, and based on the 
premises of topology optimization of structures, hierarchical topology optimization has the purpose of 
simultaneously optimize the lay-out of the structure and the material microstructure i.e. its 
characteristic unit cell. Here the problem is formulated as a structural compliance minimization 
(stiffness maximization) problem subjected, not only to a global volume upper bound constraint, but 
also to local material constraints that will guarantee appropriate features for fabrication or 
requirements in specific applications. The inclusion of (local) material microstructure constraints is 
critical if one seeks the identification of practical materials designs for instance in the design of bone 
substitutes (bone grafts). To demonstrate the model developed and its applicability, several examples 
ranging from structural engineering to biomechanical applications will be presented and discussed. 
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1 INTRODUCTION 

This work addresses the problem of hierarchical topology optimization of structures where 
the structure and its material are simultaneously optimized and analyses its applicability. The 
hierarchical topology optimization of structures requires a set of design variables covering 
two domains; the structure domain (macro or global scale) and the material domain (micro or 
local scale). A natural scale is associated with each of these domains. At the structure domain, 
associated with the macroscale, one assumes a material with variable density, as in standard 
material based topology design formulations. Additionally at the material domain, associated 
with the microscale, one assumes a cellular/composite designable periodic material. 

For this type of multiscale optimization, with compliance minimization and volume 
constraint, the Optimality Criteria (OC) Method has proved to be a straightforward and 
computationally efficient method (Bendsoe and Sigmund, 2003; Rodrigues et al., 2002). 
However, if one introduces design requirements such as local material design constraints 
(material symmetries, manufacturing details, perimeter or permeability control, etc), a proper 
algorithmic treatment has to be made since OC is not suitable to handle several constraints. 
Mathematical programming methods such as the Method of Moving Asymptotes (MMA) 
(Svanberg, 1987) and Convex Linearization method (CONLIN) (Fleury 1989) have been used 
successfully in hierarchical topology optimization dealing with extra design constraints 
(Coelho et al., 2007). 

Besides man-made structures, there are natural ones, such as bone or wood, which exhibit 
a hierarchical structure and for which mathematical models have been developed to 
understand the fine structural arrangement found at different length scales (Lucchinetti, 2001; 
Gibson and Ashby, 1988). Here we will present also some applications of the hierarchical 
optimization model to simulate the natural process of bone adaptation to mechanical loads. 
The results demonstrate that bone microstructure is not simply mechanically “optimal” but 
other factors (namely biological ones) play an important role in bone architecture (see e.g. 
Sigmund, 1999; Coelho et al., 2009). Among these factors one may stress permeability 
defined as a coefficient that measures quantitatively the ability of a porous medium to conduct 
fluid flow and implies interconnectivity of the pores, thus playing an important role in the 
blood flow, cell migration and nutrients diffusion within bone tissue (Nauman et al., 1999; 
Kohles et al., 2001; Kohles and Roberts, 2002; Martin, 1984). In the formulation presented, 
bone intertrabecular permeability is taken into account in the remodeling model as a local 
constraint dependent on relative density (ρ). Results are shown for a three-dimensional model 
of a proximal femur bone. At macroscale they show a good agreement with physiological 
relative density distribution. At microscale the resulting microstructures are more convoluted 
and present a surface distribution qualitatively in agreement with the empirical/experimental 
curves (Fyhrie et al., 1993; Fyhrie et al. 1995; Coelho et al., 2009). 

2 HIERARCHICAL OPTIMIZATION MODEL 

As illustrated in figure 1, the model considers a design domain Ω at macroscale level 
(structural) where the goal is to find an optimal structure topology (lay-out) for given loads 
(surface tractions t along Γt) and support conditions (imposed displacements u along Γu). At 
each point x in Ω, the design model computes a relative density ρ ∈]0, ρmax ≤ 1] which 
defines the structure lay-out. Intermediate values for ρ (gray) mean the existence of a cellular 
material defined at microscale level. At this level the aim is to find the optimal design of the 
material unit cell from which the structure is manufactured. This cell is assumed to be 
periodically repeated inside a small neighborhood of each point x∈Ω. This periodicity is only 
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local since unit cell topology may vary with the macroscopic variable x although smooth 
transitions must be assumed. Furthermore, it is assumed that the two scales differ by a proper 
size ratio, i.e. the material unit cell characteristic size, d, is much smaller than the 
characteristic size of the global domain D. 

The material unit cell geometry is defined by the “micro” density μ ∈]0,1] function of y in 
the design domain Y (|Y|=1) for fixed x in Ω. Here intermediate values for μ are not physically 
justified so they are penalized through SIMP (Solid Isotropic Model with Penalization) to 
warrant well-defined microstructures. 

In summary, a two-scale material distribution problem (macro and micro) is defined and a 
“density” field governs each one, ρ(x) and μ(y), respectively. The interpolation schemes 
between material properties and density used at macro and micro scales are the 
homogenization method and SIMP, respectively. 

For compliance objective function, the multiscale topology optimization problem, for 
multiload with P load cases, can be formulated as: 
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The max-min problem (1) is equivalent to a compliance minimization problem. This is the 
global problem related with the macroscopic spatial distribution of material in Ω subjected to 
a resource volume constraint V*. Problem (2) is the point wise maximization of the strain 
energy density function for the strain fields ε. The elasticity tensor superscript “H” denotes 
the homogenized properties of the cellular material. This is the local anisotropy material 
distribution problem subjected to a prescribed material volume fraction and to an extra 
material design constraint function g evaluated for a local design, μ, and its value should meet 
a target g* that in turn depends on global design variables, ρ. For a detailed description see 
Rodrigues et al., (1999) and Bendsoe and Sigmund, (2003). 

3 ALGORITHMIC STRATEGY  

Some algorithmic strategies have been applied to efficiently solve problem (1-2) (Coelho 
et al., 2007). The optimality criteria based methods solve the optimality conditions following 
basically a fix-point type update scheme for the density. Although these methods proved to be 
easy for numerical implementation and quite efficient in applications with a single constraint 
(usually a total volume constraint), the same is not verified in the case of multiple constraints. 
In order to broaden hierarchical optimization applicability, especially when local design 
constraints are imposed, it is critical to find appropriate algorithmic strategy. 

The algorithmic strategy adopted here considers both the macro (global) and micro (local) 
densities as independent design variables and therefore each problem (global/local) may have 
its own optimizer. It combines Method of Moving Asymptotes (MMA) to solve (1) with 
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Convex Linearization method (CONLIN) to solve (2). CONLIN is used here as the local 
optimiser since it gives the correct Lagrange multipliers, essential to satisfy the optimality 
conditions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Material model used in two-scale topology optimization 

The necessary condition for the inner min problem in (1) is just the equilibrium condition 
(in weak form) and is satisfied for the actual displacement fields.  Thus one can rewrite (1) as 
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where ur, r = 1,…, P, is the actual displacement field for the rth load case. 
Since maximization in (3) with respect to (w.r.t.) design variable ρ is solved by a 

mathematical programming method one needs gradient information of Φ (ρ) w.r.t. the density 
variable ρ. 

From problems (1, 2) and since ρ is a resource constraint bound in problem (2) one gets the 
gradient given as (see e.g. Coelho et al., 2008): 
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where λ1 and λ2 are the Lagrange Multipliers for the resource and g(.) constraints respectively 
in (2) 

If (2) has only the resource constraint then the derivative of Φ in (4) is simply equal to 
the respective Lagrange multiplier λ. 

The gradient related to problem (2) w.r.t. μ is derived analytically yielding: 
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Expressions (4) and (5) are valid only for intermediate values of macro and micro densities, 
respectively (the interested reader is referred to Coelho et al., 2008 where a detailed 
development is presented). 

4 COMPUTATIONAL PROCEDURE 

The two-scale model (see figure 1 and problems (1) and (2)) implies the iterative solution 
of one problem at a global (or macro) scale and many problems at a local (or micro) scale 
characterizing the material microstructure. Here, one considers as many local problems as the 
number of the finite elements used in the global mesh (macroscale). Since the local 
optimization problems can be independently solved, the model can be efficiently solved by 
computational means using parallel computing techniques (see Coelho et al., 2007, 2010). 
Between two consecutive iterations on global problem, local problems are distributed among 
several processors to speed up the local solutions task. Plots of speed-up and efficiency curves 
using some processors were obtained and presented in (Coelho et al. 2010) showing a very 
good scalability for this problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Flowchart for the MMA/CONLIN algorithmic strategy 

In figure 2 it is shown, by means of a flowchart, the computational procedure to run the 
algorithmic strategy MMA/CONLIN in a parallel computing environment. The dashed arrows 
represent the main data flow between global and local problems.  

 

On processor k : 

START 

Converged? 

Obtain F, 
ε(u) 

END 
Y 

N 

Serial   
or 

Parallel 
versions 

μ0, ρ0  

New ρ 

ε, ρ 

EH, λ 

global local 

E
ijklE

0
H

E
e

E
ijklE

μ∂

∂
0

H

Y 

N 

Homogenization: 

μ∂
∂ H

ijklENew EH
ijkl, 

E=Ek-1+1 

E=E+1 

E=Ek? 
Ek

max=M 

New μ 

Mecánica Computacional Vol XXIX, págs. 405-415 (2010) 409

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



5 APPLICATION IN STRUCTURAL DESIGN 

This example considers a supported beam subjected to a multiple load condition (two loads 
not simultaneously applied) as shown in figure 3a. Through this example it is analysed the 
influence of the shear and bending loads in the design. The problem was solved with 588 
finite elements for the global problem while the local problem was solved with a 20x20x20 
mesh. 

The volume constraint considered is 35% of the total volume of the design domain. It is 
assumed a base material E0

ijkl linear and isotropic. The material properties are 210 GPa for 
Young’s Modulus and 0.3 for Poisson ratio. The final global material distribution is presented 
in figure 3b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: (a) Example definition, (b) Macro density field and some microstructures 

6 APPLICATION TO BONE REMODELING 

Since the observations of Wolff, generally called the Wolff’s Law (Wolff, 1892), several 
mathematical and computational models for bone functional adaptation have been developed. 
Among these models the hierarchical model (see e. g.  Rodrigues et al., 1999 , Coelho et al., 
2009) appears as one of the most interesting developments. 

All models agree on the fact that the local mechanical environment plays a crucial role in 
this natural adaptation process. However it has been observed that the structure obtained by 
simple stiffness maximization doesn’t agree in various biologically driven features present in 
real bone, namely porosity, permeability and surface area density (see e.g. Sigmund, 1999; 
Coelho et al. 2009). In this section the consequences of these biological features are analyzed 
through the introduction of a permeability constraint at the local level and thus showing the 
hierarchical model capability to treat local constraints at the microstructure level. 

6.1 Permeability constraint 

Microstructure permeability will be enforced introducing, in the optimal design problem 
(2), a lower bound local constraint g*(ρ) – g(μ) ≤ 0. The function g(μ) is defined based on 
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components from the homogenized permeability tensor KH, (see e.g. ) and g*(ρ) is its lower 
admissible limit. More specifically we enforce an orthotropic symmetry of the permeability 
tensor KH, imposing the lower limit only to the diagonal components of this tensor and setting 
equal to zero de off diagonal terms i.e., Kii ≥ Kmin and  Kij,i≠j = 0. 

Several curves fi plotted in figure 4, defining a minimum permeability Kmin, are analyzed to 
study the influence of the respective local design constraint and to gain insight about how 
close the numerical results are from the real trabecular bone properties. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Test curves for the minimum permeability imposed. 

6.2 Results 

The bone (domain W) geometry is based on the standardized femur (Viceconti et al., 2001). 
The femur bone domain Ω and cell domain Y are discretized by 2112 and 8000 (20×20×20) 
hexahedral isoparametric finite elements with 8 nodes, respectively. Within each finite 
element ΩE and Ye the densities ρ and μ are assumed constant, respectively. It is assumed a 
solid and isotropic base material defined by 20 GPa of Young’s Modulus and 0.3 of Poisson’s 
ratio. The global volume fraction constraint requirement is 50% (for a full description see 
Coelho et al., 2009). 

Physiological loading conditions were assumed as a multiload case (number of load cases, 
P = 10) based on the data reported in Bergmann et al. (2001). 

The obtained results for apparent (relative) density distribution and respective 
microstructures are shown in figure 5. At macroscale level the differences on density 
distribution obtained with the different permeability limits (figure 3) are minimal. Figures 5a, 
(obtained for Kmin= f2) shows that apparent density distribution reproduces important 
characteristics of a real femur such as the external compact bone layer (black), the medullar 
cavity and the less dense spongy bone in the femoral head with the well known Ward’s 
triangle. 

At microscale the effect of permeability control is more notorious. Figures 5a identifies 
some selected elements from different anatomic regions of the femur. The corresponding 
microstructures with and without permeability control are shown in figure 5c and 5b 
respectively. Comparing these microstructures it is apparent that permeability control leads to 
more convoluted solutions resembling better real trabecular bone architecture (e.g. compare 
microstructures for element 2). In general, without permeability control local solutions tend to 
exhibit a lack of connectivity (e.g. laminates 2, 3, 9) whereas prescribing a minimum 
permeability the connectivity property seems to be improved. 
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Still about the microstructures shown it is worth noting how design/volume fraction differs 
depending on anatomic site, which is a characteristic of trabecular bone depending on the 
local stress field. In regions where a triaxial state of stress is dominant the microstructures are 
equiaxed (closest to isotropic behavior, see e.g. element 7, 8). On the other hand there are 
regions where microstructures are strongly oriented. For uniaxial and biaxial stress fields the 
resulting microstructures become like honeycomb (see elements 1, 12) or parallel plates (see 
elements 2, 3). These results agree well with bone microstructure idealizations presented by 
other authors (see Gibson and Ashby, 1988). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: a) Density distribution with local permeability constraint (with function f2, see figure 4) and finite 
element selection for microstructure inspection; b) microstructures obtained without permeability control; c) 

microstructures obtained with permeability control.. 

One interesting aspect is observed from the plot of volume fraction result versus bone 
surface area density (Fyhrie et al., 1993) for each finite element in global mesh.  

When the minimum permeability required is very low or absent it is seen that the points are 
scattered around two curves (see figure 6a), a plateau and an inverted parabola branch. This 
distribution trend is comparable to results obtained by models assuming simple 
microstructures for trabecular bone characterization (rod, plate, plate and rod, 3D rod, 
spherical hole, see e.g. Parfitt, 1983). However, bone architectures are not simply parallel 
plates, in fact they are “perforated plates” linked through small “bars”. These effects appear 
when the permeability lower limit is increased as seen in figure 4c. As the minimum 
permeability limit increases (from f1 to f3, see figure 4) the bone surface area density plots (see 
figures 6a to 6c) approach the distribution observed in real bone (as reported by Martin, 1984) 
as shown in figure 6d. 
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Figure 6: Plotting bone surface area density [mm2/mm3] versus apparent density. Results obtained with: a) 
function f1; b) function f2; c) function f3; d) polynomial interpolation p1, p2 , p3 for the results with f1, f2 , f3, 

respectively. 

7 CONCLUSIONS 

The main contribution of the present work is to show the wide applicability of hierarchical 
topology optimization when one includes local design constraints, especially material design 
constraints. Hierarchical topology optimization leads to massive computations but the 
independence of local problems favors the use of parallel computing techniques leading to a 
high reduction of computational time. 

The practical interest of hierarchical topology optimization subjected to constraints on 
material design was shown in several structural applications.  

Of special interest is the gain on understanding the fine structure of natural hierarchical 
materials such as bone. Considering two scales of bone (macro and micro scales related with 
whole bone and trabecular bone, respectively), the hierarchical model was applied with an 
extra design constraint that approaches trabecular bone in terms of permeability. This was 
carried out through microstructure permeability evaluation (homogenized coefficients). The 
results show a better agreement with real bone when permeability is controlled. As a 
conclusion, the present hierarchical model allows the evaluation of the relative influence of 
mechanical stimulus on biologically-driven variables such as the intertrabecular permeability.  
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