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Abstract. This work develops a kinematically linear shell model departing from a consistent nonlinear 
theory. Starting with a flat reference configuration for the shell midsurface, an initial (curved) geometry 
is imposed as a stress-free deformation, after which, the actual motion of the shell takes place. This 
strategy leads to the use of only orthogonal frames, precluding the use of objects as Christoffel symbols, 
the second fundamental form or 3-D degenerated solids. The resort to a flat reference configuration 
allows the use of 2-D Moving Least Squares approximations. The resulting model inherits the same 
features of the original formulation in the sense that (i) cross-sectional stresses and strains are defined in 
a totally consistent way, rendering a complete stress-resultant theory and (ii) first order shear 
deformations are accounted for, as Reissner-Mindlin kinematics is assumed, based on an inextensible 
director (no thickness changes). A variational statement of the shell model is presented, where the 
domain displacements and kinematic boundary reactions are independently approximated, hence falling 
in the category of the hybrid displacement formulations. The discretization of this variational form is 
made using the Multiple Fixed Least-Squares (MFLS) approximation on the domain and simple 
Lagrange polynomials on the boundary. The presented model is assessed through several numerical 
examples and results are compared to those in the literature. The smoothness and convergence of the 
meshless approximation is discussed. The present scheme's use of only orthogonal frames, along with 
the consistent definition of stress resultants and consequent plane stress definition led to a neat, 
consistent formulation for the analysis of initially curved shells. The consistent linear approximation, 
combined with MFLS approximation, lead to fast computations with high continuity, thus, smooth 
results for the displacement, strain and stress fields. 
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1 INTRODUCTION 
For about half a century, the Finite Element Method have been developed and improved, 

becoming the standard approximation method in most numerical simulations. Its limitations are 
now, due to the devotion of many researchers, largely known and, as far as possible, 
overcome. 

However, some difficulties endure, as lack of precision with large mesh distortions, the need 
of a fine mesh for high gradient problems, loss of homogeneity and isotropy due to mesh 
orientation and, most important, difficulties on obtaining a high order of approximation. 

This deficiency led to the research of approximation methods that could provide a higher 
order of continuity to the results, such as the Meshless Methods. According to Li and Liu 
(2004), “It can easily provide a smooth higher order interpolation field in any dimension, which 
makes the implementation of both single primary variable Galerkin variational formulations and 
mixed Galerkin variational formulations easy”. 

The present work uses some of those advantages in the study of shells. It uses the shell 
theory developed by Pimenta and Campello (2009) approximating the trial and test spaces by 
Moving Least Squares (MLS) as in Tiago (2007). It is a particularization of the latter, as the 
displacements and rotations are taken to be small. 

The shell theory therein follows the effort dedicated to developing consistent geometrically 
exact formulations of beams and shell structural theories made by Simo (1985); Pimenta 
(1993); Simo et al. (1989), their subsequent FEM implementation by Pimenta and Yojo (1993) 
and Campello, Pimenta and Wriggers (2004) and meshless discretization by Tiago and Pimenta 
(2005) and (2008), and the considerations of initially deformed structures as in Pimenta (1996) 
and Pimenta and Campello (2009). 

The latest work presents the summation of this effort as a shell theory that departs from a 
flat reference configuration, from which the initial configuration is mapped as a stress-free 
deformation. From this initial curved configuration the actual motion takes place. This strategy 
precludes the use of metrics of differential geometry as it only uses orthogonal frames. It also 
dismisses some objects as Christoffel Symbols. Another important characteristic is that it isn’t 
based on degenerated solids, but on kinematical impositions, rendering a theory in which “(i) 
cross-sectional stresses and strains are defined in a totally consistent way, rendering a complete 
stress-resultant theory, (ii) first-order shear deformations are accounted for, as Reissner–
Mindlin kinematics is assumed based on an inextensible director (no thickness changes)” 
(Pimenta and Campello, 2009). 

The generalized effective strains are then taken in their first order (linear in the 
displacements and rotations). A linear material is also adopted to relate the effective stresses 
and strains. Assessment is made to the integration over the shell thickness. 

Throughout the text, italic Greek or Latin lowercase letters  , , , , ,a b     denote scalar 
quantities, bold italic Greek or Latin lowercase letters  , , , , ,a b     denote vectors and 
bold italic Greek or Latin capital letters  , ,A B   denote second-order tensors in a three-
dimensional Euclidean space. Summation convention over repeated indices is adopted, with 
Greek indices ranging from 1 to 2 and Latin indices from 1 to 3. 

2 MESHLESS APPROXIMATION 

2.1 Moving Least Squares 
Let u  be a function on the domain . The approximation hu  of this function around a 

point x  may be expressed by a linear combination of a set of functions named basis, as in 

      hu  x p x a x , (1) 

where  p x  gathers the basis and  a x  the coefficients for the linear combination. If a set of 
particles (defined positions in the domain  ) x  are associated to a set of nodal values u , the 
approximation in those nodes can be gathered in 
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  h u Pa x , (2) 

being each column of P  the basis evaluated at each point of x . The coeficients  a x  can be 
obtained through the minimization of the weighted error 

     2
1

( )
n

h
i i i

i

J w u u


  a x x x  (3) 

with respect to a . In (3),  iw x x  is a weighting function that enforces the local 
character of the approximation. Discursion on the properties of this function can be found 
along with examples in Tiago (2007). This minimization renders the linear sytem of equations 

 x x xA a B u , (4) 

where 

 

 

   
           

1
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n
x

i i
i

T
i i i
x

n n

w

w w w



 


      

A x x A

A p x p x

B x x p x x x p x x x p x

. (5) 

The approximation can then be expressed as 

        1hu x p x A x B x u , (6) 

or, resorting to the shape functions  i x , as 

    
1

n
h

i i
i

u u


 x x , (7) 

being 

        1
i i x p x A x B x , (8) 

and  iB x  the i th column of B . The shape functions can be gathered in the vector  , so the 
approximation and its derivatives can be expressed by 

 
   
   , ,

h

h
i i

u

u





x x u

x x u




. (9) 

The derivative of the shape functions can easily be obtained directly from (8) and expressed 
by 

   1 1 1
, , ,,i i ii

       x p A B p A B pA B , (10) 

as the derivative of the moment matrix is taken as 

 1 1 1
,, ii

       A A A A , (11) 
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2.2 Multiple Fixed Least Squares 
The definition of a weighting function in the whole domain can be a burdensome task. The 

common practice when dealing with Moving Least Squares is to define the weight on the 
particles x  rather than in the interest points x . This fact was pointed out by Tiago (2007) 
where the approximation defined in this way is called Multiple Fixed Least Squares (MFLS). 

Although this seems as a minor theoretical difference, it has major implementation 
repercussions. Throughout this text and in most of the implementations found in the literature, 
the shape function is the same in the whole domain, but the parameter that defines its support 
varies. In this case, the difference between MLS and MFLS is that, instead of storing these 
parameters for every interest point, it’s associated with each particle in the distribution. The 
approximation, the shape function and its derivatives are the same as defined in the previous 
section. 

Some observations concerning the approximation in this work must also be made. The 
support of the cloud associated to each particle is defined as to, in every interest point (e.g. 
integration quadrature sample point, load application point), the approximation can be defined 
(the moment matrix can be inverted). The used weight function is the adjustable spline of order 
3. 

      if 
 if 

321 , 1

0, 1

r rw r
r

    
, (12) 

3 NONLINEAR SHELLS 

3.1 Introduction 
This chapter presents the shell theory described in Pimenta and Campello (2009) for shells 

encompassing finite displacements and rotations. For now, no assumption is made concerning 
the magnitude of such quantities; only in the next chapter the theory is linearized. 

The shell is described in a flat reference configuration. The initial curved configuration is 
then obtained in a stress-free transformation after which the actual or effective transformation 
takes place. 

 

Figure 1: Shell kinematics 
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All the back-rotated quantities and integrations are defined in the flat reference surface r , 
referred to as the shell midsurface (although it may not actually be in the middle of the shell’s 
thickness). Let r

ie  be a orthogonal frame where r
e  are aligned to the midsurface and 3

re  is 
orthogonal to them. 

In r , a point in the shell can be described by its position 

 r a   (13) 

where   e  defines the projection of this position in the midsurface and 3 3
r ra e  is the 

through-the-thickness component. The triad  1 2 3, ,   defines a Cartesian system in three 
dimensions. 

3.2 Kinematics 
The initial deformation is a mapping from the flat reference to the initial configuration. The 

displacement of the shell midsurface points are described as 

  o o
z z . (14) 

This deformation is assumed to be of Kirchhoff-Love type. The director oa  is then 
perpendicular to the shell curvature. The frame o

ie , that follows this director, is obtained from 
the rotation of the reference director: 

 

,1 ,1 ,2
1 3 2 3 1

,1 ,1 ,2

, ,

o o r
i i

o o r
i i

o o o
o o o o o

o o o



 


   



a Q a

Q e e

z z z
e e e e e

z z z

. (15) 

The deformation gradient for the initial deformation can be expressed by 

  
 

, ,

o
o o o r o oT o r o

o o o r o

   

  


     


   

x
F z Q e Q Q a e Q

a e Q

 

, (16) 

where the generalized membrane strain vectors 

 ,
o o o r
   z Q e , (17) 

and the curvature skew-symmetric tensors 

 , ,
o o oT o o

i i    Q Q e e , (18) 

are defined. The axial vector of o
  are 

         2, 3 1 3, 1 2 1, 2 1axialo o o o o o o o o o o
          e e e e e e e e e  , (19) 

and the generalized initial strains can be summoned in the vectors 

 o o o o
    a   , (20) 

so the initial deformation gradient can be neatly written as 

 o o r o
   F e Q , (21) 
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Those quantities are affected by rigid body motions and are not suitable for an objective 
theory. Therefore, it’s compelling to work with their back-rotated counterparts, not affected by 
such motions: 

 

     
,

2, 3 1 3, 1 2 1, 2 3

or oT o or or r

or oT o oT o r

or oT o o o r o o r o o r

   

   

    

   

  

      

Q a

Q Q z e

Q e e e e e e e e e

   

 

 

. (22) 

It’s also possible to define a back-rotated deformation gradient such as o o orF Q F  

 

3 3

or or r
i i

or r or

or r
  

 

 



F f e

f e

f e

 . (23) 

The inverse of this transformation is given by 

 

 1

3 1 2

1 2 3

2 3 1

3 1 2

1

det

o r or oT
i io

o o r or or

or or r

or r or

or or or

J
J

  

   

 

 

 

F e g Q

F e f f

g f e

g e f

g f f

. (24) 

The effective motion of the shell can be described in the same manner. The displacement of 
the midsurface is u  and the rotation of the director is given by e o

i i Q e e . This time, the 
rotation is independent of the displacement, as Reissner-Mindlin kinematics is assumed. eQ  
can be described by the Euler parameters grouped in the rotation vector   through the Euler-
Rodrigues relation: 

     2
1 2h h   Q I   , (25) 

where 
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
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



  
    
   





      

 


. (26) 

The final position of a point in the shell can be expressed by 

 o e o    x z a z u Q a  (27) 

The three components of u  along with the three components of   in a global Cartesian 
System define the six degrees of freedom of the theory. 

The deformation from the flat reference configuration to the current deformed configuration 
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is called the total deformation, and its gradient is given by 

  
 

, , ,
o T r r

i i
r

    

  





      
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x
F

z u e Q Q a e e e

K a e Q





, (28) 

where, as in (17)-(19), one can define 

 , , ,
o r

         z u e z Qe , (29) 

 ,
T e e o eT

     Q Q Q Q   , (30) 

  axial e e e eT e e o
       K Q K Q Q   , and (31) 

 r r r r
    a   , (32) 

so (28) can be expressed by 

  r r
   F Q I e . (33) 

As in (23), 
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

 . (34) 

The velocity gradient can be obtained by differentiation of (34) in time, rendering 

  r r
   F F Q e 

 , (35) 

where TQQ 

 is the spin tensor and 
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 . (36) 

The total deformation can be decomposed in the initial and effective ones as e oF F F , 
and with the use of (24), 
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By analogy to (34), the effective back-rotated strains can be defined as 

   e e o  1 .r r r o r r r r rJ       
     f e e g e e   (38) 

3.3 Statics 
The first Piola-Kirchhoff effective tensor is 

 e e e TJ P TF , (39) 
where dete eJ  F  is the Jacobian of the effective deformation and T  is the Cauchy stress 
tensor. Its correspondent for the total deformation is 

 o e o o oT e T T e TJ J J J     P TF TF F P F . (40) 
Both those vectors can be expressed in their column vectors as 
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   

   
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 

 
. (41) 

Using (24) in (39), one can obtain the relationship between them: 

  
   3 3 3 1 2 3 3 3

r or r er
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   
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. (42) 

The shell internal power per unit volume in the reference configuration is 

 : :o eJ eP F P F  . (43) 
Developing the left side of (43), 

  : r r r r r
       P F a   

 . (44) 

The same power per unit area of r  is obtained through the integration of (44) in the 
thickness as 
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where the vectors 

    andr r r r r

H H
dH dH      n m a   (46) 

are, respectively the back-rotated generalized internal resultants of forces and moments. 
Combining those in the vectors 
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and the time derivatives of the generalized strains in the vectors 

J. COSTA, C. TIAGO, P. PIMENTA, E. CAMPELLO456

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
r

r
r





 
   
  












, (48) 

such that 
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where 
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(45) can be gathered as 

  : r r

H
dH    P F  

 , (51) 

and the internal power can be evaluated through 
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r r r
int V

P dV d 
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 . (52) 

The external power can be computed in the reference configuration by 
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, (53) 

where , , , ,t b l rt t t b r  are respectively the external surface tractions on the top, the bottom and 
the lateral surfaces of the shell, per unit reference area, the body force vector per unit reference 
volume and the generalized reaction on the kinematic boundary. The time differentiation of 
(27) yields    x u a  , so 
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where 
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and n  and m  are resultants of force and moment respectively: 
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in the domain, 
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in the static boundary, and 
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for the reactions in the kinematic boundary. 

3.4 Weak Form 
Similarly to (52), one can define the internal virtual work as 

  r

r r
intW d 

      , (59) 

where r
   d   is a variation of the generalized strains. Also, 
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The compatibility in the essential boundary must be enforced in a weak statement, in this 
case, the complementary virtual work of the boundary reactions 

   0,
r r
u u

r
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r
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
       q d d q . (61) 

The final weak form is a combination of the principle of virtual work and this weak 
imposition, rendering the variation of a displacement functional 
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  . (62) 

4 LINEAR SHELLS 

4.1 Kinematics 
The shells described in the previous chapter encompass finite displacement and rotations. 

This chapter assumes that, in the effective deformation, such quantities are small. This 
assumption can lead to a consistent linear formulation. 

The displacement of any point in the shell can now be described as 

 o  u a    . (63) 
This statement is equivalent to the linearization of (25) to the first order: 

  Skewe  Q I  . (64) 

The effective back-rotated strains can then be developed as in 
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, (65) 

where 
Tor or or

  
       collects the initial strains and  , ,Skewo o

 Z z . The same results 
arise from expanding r

   and neglecting higher order terms: 
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Any variation may only be done in the effective part of r
 , e.g. 

 r o
    d     . (67) 

The back-rotated effective strain can now be expressed, after some algebra, by 

   e o1r o r r er er rJ    
   e g a    (68) 

where the effective back-rotated cross-sectional strains 
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  , (69) 

were defined. 

4.2 Linear Material 
After the imposition of plane stress, and proper linearization, the material constants are a 

generalized Hooke law, e.g. 
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e e E     . (70) 

or e er er r
  C  . Using E  the Young modulus and   the Poisson’s ratio. 
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The linear relation between the generalized strains and generalized effective stresses (all of 
those in their back-rotated forms) can be expressed by 
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whose components can be obtained through the use of (46), (68), (70) and the chain rule and 
are summarized in 
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4.3 Shallow Shells 
A problem arises with the integrations in (73)-(76) through the thickness. The quantities oJ  

and or
g  vary along 3  and a numerical quadrature along this axis should be avoided. 

Symbolic development for some types of initial mapping proved that, given that 
r h ,e.g., the curvature radius of the initial mapping is much bigger than the thickness of 
the shell, those quantities can be taken as constant and evaluated only in the midsurface. 

This procedure is equivalent to a one point quadrature rule and results yet to be published 
prove that this assumption is valid even for r  not much bigger than h . 
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The resulting expressions for the components ofD  are 
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  , (1.77) 

with oJ  and or
g  evaluated at the midsurface. 

These results can also be applied to approximated initial mappings, in which oz  can be 
approximated, for instance, from a set of points collected from an actual shell model. 

5 APPROXIMATION WITH ELEMENT-FREE GALERKIN (EFG) 
Both the geometrically exact and the linear theory are developed without great 

consideration of the approximation method to be used. Apart from the inclusion of the 
reactions in the essential boundary in the external virtual work and from the weak imposition 
of the compatibility therein (both needed for non-interpolatory approximations such as Moving 
Least Squares), no further observation is made concerning the trial and test spaces. 

For this work, a Meshless Method is chosen: the Element-Free Galerkin, as described in 
Belytschko et al. (1994), which consists of approximating the trial and test spaces with 
Moving Least Squares (computer implementation is actually done with MFLS, as described in 
section 2.2). 

So, gathering the shape functions as follows 
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      Φ I I Ix x x x , (78) 

where 6I  is the identity matrix of order 6  and  i x  is the shape function associated to the 
particle i  evaluated at point x , and defining 
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u   (79) 

the set of nodal parameters, the domain approximation for the displacements, the rotations and 
the virtual counterparts are 
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In the kinematic boundary, the reaction resultants can are interpolated with linear Lagrange 
polynomials. The trial and test spaces for the reactions are then 
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where ux  is a point in the essential border. 
The resulting discretized version of the weak form (62) is  
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As (82) is valid for every variation ,δu δr , it renders the linear system of equations 
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6 NUMERICAL EXAMPLES

6.1 Cantilever beam

Figure 2: Cantilever beam with end load

The simulation of the cantilever depicted in Figure 2 can be done with two different models:
Type 1, depicted in Figure 3, is a plane stress flat shell with the load in its own plane, and 

Type 2, as shown in Figure 4 is a flat plate, also under plane stress assumption, with the load 
acting on a plane normal to the shell.

Figure 3: Cantilever - Model 1

Figure 4: Cantilever - Model 2

The load and material properties are show in Figure 2. In order for the different models to 
be compared, the cross-section was taken square ( 2b  ). The results are compared against 
the solution for an equivalent Timoshenko rod model, so the length was taken sufficiently large 
in comparison to the cross-sectional dimensions ( 20a  ). The model differs from that in the 
Timoshenko rod theory, so results are only for a loose comparison and are given by
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 (84) 

The integration of the weak form is done in the reference configuration using the 250  cell 
structure depicted in Figure 5, each cell with 3  integration points in each direction r

e . 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

ξ
1

ξ 2

Integration Cells

 
Figure 5: Cantilever - Integration cells 

The Moving Least Squares approximation was done with a full bi-quadratic polynomial 
base and the particle support was amplified by 1.5 . Simulations were carried out for 4  
different particle distributions as seen in Figure 6. 
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Figure 6: Cantilever - Particle distribution 

A random noise was introduced in the particle distributions. It improves the solution as 
linear dependencies arising from co-linear particles are minimized. The results, normalized by 
the Timoshenko beam displacement at the load application point are given in Figure 7. 
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Figure 7: Cantilever - Results 

6.2 Flate Plate 
A flat plate with uniform load, as shown in Figure 8 was simulated. 

 
Figure 8: Flat Plate 

The material’s properties are indicated in the picture. The support was considered as to be 
of the simple hard kind, e.g., the displacements in the vertical direction were constrained, and 
so were the rotations normal to the borders. The load was taken to be 46.25 10  times the 
thickness. 

The number of integration cells now varies with the particle distribution, as shown in Figure 
9 for the 36 particles case. 7 different particle distributions were simulated, all with a complete 
4th order polynomial base and support amplification factor 1.75. 
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Figure 9: Flat Plate - Particle distribuiton and Integration cells 

Results are depicted in Figure 10. It’s interesting to note a loss of accuracy in the most 
slender plate. It’s probably due to the fact that, in this meshless method, the approximation 
space obtained with a finer particle distribution doesn’t always contain that generated by a 
coarser distribution, hence, the error can’t be easily assessed. 
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Figure 10: Flat Plate - Results 
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6.3 Cylindrical Shell with Border Moment 

 
Figure 11: Cylindrical Shell 

This example was taken from Campello (2005) where it was approximated with triangular 
finite elements. 

8 different particle distributions and integration cells were used, in the same fashion as the 
previous examples. This time, 5 different thicknesses were simulated. 

 
Figure 12: Cylindrical Shell - Deformed shape (displacements are amplified) 

An example of a deformed shape is given by Figure 12 and the result for the various 
thicknesses studied is in Figure 13. The presence of membrane locking can be seen for the shell 
whose thickness is 410  times the initial curvature. This was easily removed by enlarging the  
polynomial base to a complete 3rd order bi-dimensional one. 
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Figure 13: Cylindrical Shell - Results 

6.4 Pinched Cylinder 
The pinched cylinder analyzed in Simo et al. (1989) is here represented in Figure 14 with 

the geometrical and load parameters. The unitary load corresponds to the full model. The 
discretized model, considering the symmetry, uses a quarter of that. 

 
Figure 14: Pinched Cylinder 

The simulations are carried out in the same fashion as the previous examples, but only for one 
thickness. A convergence study is shown in Figure 15 along with a deformed shape, with 
displacements amplified by 710 . 
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Figure 15: Pinched Cylinder- Convergence and deformed shape

6.5 Pinched Hemispherical Shell

Figure 16: Pinched Hemispherical Shell

The pinched hemispherical shell with a 18° hole example in Figure 16 is also present in 
Simo et al. (1989). It was analyzed with 6 different particle and integration cell distribution,
such as that in Figure 17. Two different views of the deformed shape can be seen in Figure 17.
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Figure 17: Pinched Hemispheric - Particle distribution and convergence
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Figure 18: Pinched Hemispheric - Deformed shape

6.6 Full Hemispherical Shell
The results for the previous example, without the hole on the top can be seen in Figure 19

and the deformed shape in Figure 20.
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Figure 19: Full Hemispherical Shell – Results

Figure 20: Full Hemispherical Shell - Deformed shapes

7 CONCLUSIONS
The Element-Free Galerkin Method can provide smooth results for the structural analysis of 

shells. Actually, the desired smoothness for the displacements (and consequently for the strains 
and stresses) can be imposed using the appropriate weight function. Shell structures seem to be 
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one of the most prominent fields of application of such methods due to the nature of shell 
behavior. This type of approximation combined with the used shell theory allows for the exact 
description of the shell initial configuration. 

The method also proved useful when a necessary improvement of the approximation base. 
The size of the polynomial base can be easily increased. In a FEM approach, a re-meshing 
procedure would have to be at hand for this kind of refinement. 

Some losses can be accounted for as the shape functions aren’t as simple as those used by 
FEM. The integration isn’t exact and the computational cost is raised by a wider connectivity 
(the stiffness matrix is not as sparse as those in FEM). The numerical computation of the shape 
functions is also demanding. 

The linear shell theory derived is consistent and presented in a neatly way. The resulting 
system of equations resembles that of a plate problem, with changes in the constitutive relation 
and a distribution matrix o

 . It’s also suitable for meshless implementation as it maintains the 
main characteristics of the original theory. 

The numerical examples exhibit good convergence to the reference solutions, what validates 
the theory. 
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