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Abstract. An imperfect composite plate equipped with piezoelecteimiators is investigated. Geomet-
ric nonlinear effects are considered only in the prebugkliegime such that higher order strain energy
terms can be disregarded. The actuators are used to achieg®als: to optimize buckling loads under
uncertain loadings via stress stiffening effects and toliamate the plate prebuckling response through
application of piezoelectric bending moments. A strategyroposed where the piezoelectric membrane
forces and bending moments are separated by proper saleftimltages imposed on symmetrically
bonded piezoelectric patches. Piezoelectric forces andents are then used separately to optimize
buckling loads and to improve prebuckling response.
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1 INTRODUCTION

Smart or intelligent structures can be very useful whenmesto the design of systems with
superior performance. Their advantage over passive stegtesides in the fact that they can
adapt or adjust in response to the applied loadings in oadpetform according to stringent
design requirements. Active materials are essential ®istruture to adapt. Sensors monitor
the structure behavior and actuators apply correctiveegrdisplacements or deformations. A
control system is usually in charge of processing the ingi& dollected by the sensors and
feeding the result back to the actuators.

Piezoelectric materials were much in evidence especialtiie '‘80s Crawley and de Luis
1987 and '90s Reddy 1997 when a large number of applications could be envisioneun fr
damping to active noise suppression, through sophisticgtelications such as the morphing
wing. Its relatively low cost, small size and good charast&r frequency response indicated
that piezoelectric materials would be an attractive adBve over traditional actuators. How-
ever, much of what was preached in relation to piezoeleotaterials has proved of limited
applicability. Today there is a return of piezoelectric er&tls to scientific and technological
scenario, but within a more realistic context.

On the other hand, the processing power of computers hasaised considerably since the
'90s, allowing the analysis of complex structures of conmgasaterials using the finite element
method (FEM). In addition, there was an improvement in atgors specifically designed for
solving static and dynamic, linear and nonlinear probleppgning up some new possibilities
for research which consider piezoelectric and highly noedr effects together. Among these
new possibilities, there is, for instance, the numericalwdation (using FEM) of composite
structures subjected to large displacements and smalirdafmns, where the linear regime of
the material remains valid and the nonlinearities are &ohtb those of geometric nature.

In atime were costs and environment impact must be redueadstnof lightweight compos-
ite structures is becoming indispensable. Minimizatiomaiss, however, implies in reduced
stiffness or higher flexibility what leads to larger disgatents and rotations and evetually to
nonlinear behavior. Hence, accurate modes to predict meenliresponse of composite struc-
tures are increasingly necessary. A coupled buckling astbpokling analysis of composite
plate with piezoelectric actuators was presente¥émelis and Saravanq2004. Their work
addresses the nonlinear response of smart plates whenwgmady piezoelectric membrane
forces and bending moments, whose nonlinear governingieqsare numerically solved. A
correlated work byRabinovitch(2005 investigates the geometrical nonlinear response of com-
posite smart plates. Initial imperfections in both papert cited are only included through
application of small disturbance forces to perturb the ldguim path of otherwise perfect
structures. Moreover, stress stiffening effects are mattéd at all.

Buckling enhancement of structures equipped with pieobtetepatches has been profusely
investigatedChandrashenkhara and BatHi893 Meressi and Padet®993 For exampleCor-
reia et al. (2005 used simulated annealing to obtain the optimal locatioactfiators and op-
timal fiber orientations to maximize buckling loads of smasiposite plates. Their work is
however limited to the linear regime and only linearizedmjad buckling loads are evaluated.

The proposal of this paper is to employ piezoelectric achgab control or correct the equi-
librium path of imperfect composite plates. The piezoeiedffect is used in two ways: (i) the
piezoelectric stress stiffening effect maximizes the tingkload in the presence of uncertain
loadings, and (ii) the piezoelectric bending moment aauatorrects the equilibrium path. It
is shown that mechanisms (i) and (ii) are entwined, i.e.higber the buckling load, the easier



it is for the control to correct the equilibrium path. Thered, the importance of maximizing
the buckling load is utmost. The strategy proposed is implaed by splitting the voltages)
applied to the active patches into two componentsand¢,,, ¢ 5 produces membrane forces
whereasp,, produces bending moments. Is is shown that the proposeditg®hsimultane-
ously increases buckling loads and ameliorates initialerfgztion effects.

557 2 PROBLEM FORMULATION

The composite smart plate considered contains patcheepbglectric actuators symmet-
rically bonded to its top and bottom surfaces. The matheralatoundation describing the
electromechanical behavior of the laminated plate is basellindlin plate theory since the
thickness is assumed small. A perfect the piezoelectrichgatare assumed to be perfect ca-
pacitors with constant electric field in the transverseddios, leading to voltages that vary
linearly through the thickness of these patches.

A rectangular composite plate with one pair of piezoelegtatches attached is depicted in
Fig. 1. The bottom patch is not shown.

z

Figure 1: Basic configuration

Equation () gives the constitutive equations, assuming polarizagilemg thez direction
(perpendicular to the plate).

o =Ce—e'E, d=ee+¢E, (1)

whereo is a vector of stresses, is the ply stiffness matrixe are the strains including linear,
nonlinear and imperfection componenggs the electro-mechanical coupling matri,is the
electric field,d is the electric displacement, agds the permitivitty matrix. All matrices and
vectors in Eq. 1) related to thestructuralcoordinate system. Thus, the proper coordinate trans-
formations of principal to strcutural coordinate systeragehalready been made. Equatid (
applies to both composite and piezoelectric materials. W¢he electro-mechanical coupling is
not present, i.e., in a purely composite layer, matrecasd§ are zeroed.

The system total potential energy is given by:

1 1
H:—/ETEdV——/dTEdV—W, (2)
2 v 2 Jv

whereV is the entire domain including composite and piezoelectraterials, andV is the
work of external forcesV,,o, Ny, Nzyo. The in-plane strain vectar can be split into four
components as given in Eq.3)( membrane straing,, curvature, nonlinear von Karman



strainse,y and geometric imperfections. The transverse shear strampsare not affected by
electro-mechanical effects and do not possess nonlineapa@oeents if moderate rotations are
considered.
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wherey, andy, are the traditional rotations included in Mindlin theoryagtic displacements

at point (x,y,z) are given byi(z,y, z) = u(z,y) + 29, (z,y), 0(,y, 2) = v(2,y) + 2, (7, y)
andw(z, vy, z) = w(z,y). Hence, within the scope of Mindlin theory, EQ) feduces to

o = QG - e,Eza T = 6577 dz = (e/)TG + gzzEza (4)

whereo = { o, 0y Ty 3, Q is the in-plane ply stiffness matrix in the structural coor-
dinate systeme = { €,; € Yay }1, € = { ez ey 0}, E, is the electric field per-
pendicular to the plater = { 7.. 7,. }7, Qg is the transverse ply stiffness matrix in the
structural coordinate system,= { v.. 7,. }*, andd, is the electric displacement. Transfor-
mation of the coordinate system yieldsprovided it is assumed that; = e3;, what is valid
for transversely isotropic piezoelectric materislige, 1972).

Manipulation of Eq. 2) is facilitated if matricesA, B, D, andA g and vectorsN,,, M,, are
defined as

h/2 o
(A,B,D) =/ (1,2,2*)Qdz

h/2
2
Ay = Q.d-
—h/2
h/2
(N,,M,) = //(1,z)e’Ezdz, (5)
—h/2

whereh is the total laminate thickness. Notice that the piezodlepatches contribute to the
stiffness matrice#\, B, D and As. Also, vectorsN,, andM,, are nonzero only if there are
piezoelectric layers present in the laminate.

Consistent with the perfect capacitor assumptibn,= ¢/t, where¢ is voltage and is
thickness. When there are two piezoelectric patches, arteatached to the to@) and one
to the bottom B) of the plate surfaces, the electric fiels are ¢/t and¢g/ts. In practice
tr = tp = t which allows¢r and¢p to be written aspr = on + ¢y andop = dn — O,
respectively. In this situation Eg5¢) simplifies to

N, =2e¢on, M,=¢€(h—1t)pun. (6)
Introducing Egs. J) and @) into (2) yields
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The last integral can be neglected in the prebuckling regifheis, Eq. ) can be modified
by using Egs. %) and @) and computation of the work teri to

1 &' [A B)J e L[ r

/ﬂ(eN 1 €)(Aey + Bk — N,)dS2 — /

€N, dQ — / k"M, d—
Q

Q
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where( is the planery domain of the plate and is the unit vector normal td, the boundary
of Q2. In practical configuration the laminate is symmetric réaglin B = 0. Moreover, if olny

actuation is admittedj and¢,, are prescribed, such that the integral reflecting electrécgy

(fifth integral in Eq. {)) is not subject to variation and can be eliminated. Theeefo

1 1 1
II= —/ OTAeon+—/nTD&dQ+—/’7TAS’7dQ+
2 Ja 2 Ja 2 Ja
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Q

Q

/(]\/vxxo7 ny()) . ﬁudf — /(nyo, NyyO) . ﬁvdf (9)
r r

Observe that, according to Eg6)( N, andM,, depend only oy, and¢,,, respectively.
Thus,¢y related solely to piezoelectric membrane forces wheggaselated solely to piezo-
electric bending moments. The dependancipfindM,, with the voltages applied to the top
and bottom piezoelectric is now clearly established.

Making the first variation ofl equal to zero results in the governing equilibrium equation
which are only weakly coupled in the displacement degredseetlom. Notice tha¢, is the
only strain component that depends on displacemenis, € ande* depend onw, ¢, .
Closer observation of Eq9) shows that the fourth integral involves bathande”. The fourth
integral describes precisely the stress stiffening esteStiffening effects may result from two
sources: (i) the conventional mechanical stre®égrelated to the application of external forces
Nzz0, Nyyo, Nayo, and (i) piezoelectric residual stresses duéxlt@ = Ae¢y — N,. However,
the residual stress@if are nonzero only when the plate is constrained from movirtgeny
plane, what is often a configuration of practical relevamcesal structures attached to primary
structural components or to the ground. One objective sflurk is to use piezoelectric stress
stiffening to increase structural stiffness thereby iasieg buckling loads. For that purpose,
term(Ae, — N,) must be nonzero and must be retained in the bending equaiewertheless,
it is neglected in the membrane equation since it carrieddorentaly terms that are of third
order in the displacements and their derivatives with ressiger andy.



The structural problemlIl = 0 may now be split into two uncoupled problems:

1
Iy = 5 / GgAeon - / EOTdiQ - /(NacacOa Naiyo) - iudl’ — /(nym Nyyo) - ivdl,
Q Q r r

1 1
I, — 5/KTD’QdQ+§/VTASVdQ+/(€N+€*)T(NO+Ng)dQ—/ k! M,d2. (10)
Q Q Q Q

The membrane probledily = 0 is solved after specification @fy, N0, Nyyo and N,y.
Its solution gives the piezoelectric residual stre51§§s Numerically the membrane problem
is solved in two steps: (i) voltagesy are applied ande is computed and (ii) external forces
Nzz0, Nyyo, Nyyo are applied and mechanical stresbgsare computed. Onc Z’f andlN, are
computed the bending probledfil,; = 0 can be solved admitting that voltageg are known.

3 FINITEELEMENT FORMULATION

Unfortunately, Eq. 10) does not admit closed form solution. Even when traditiamna}
formly distributed loading$V,..o, N,,0, V2,0 are applied the piezoelectric pacthes locally change
the plate stiffness what obliterates the possibility oflgai@al solution to the membrane prob-
lem. Therefore, the problena$l, = 0 anddll,; = 0 must be numerically solved.

A finite element code was specially written to solve for theagncomposite plate under
investigation. It employs biquadratic Lagrange elementaterpolate five degrees of freedom:
u, v, w, Y, andy,. Interpolation of the voltages is unnecessary becauiseconstant within
an elementw*(x, y) are known geometric imperfections unaffected by the \ianat operator
).

Real structures are subjected to several mechanical Icas @¢hich, in a preliminary stage,
may be approximated by linear combinations of conventiandgbrm distrubuted loadings cor-
responding to normal compression in thandy directions and shear. The linear combinations
are determined by assigning load rati®sto each admissible mechanical loading. In the smart
composite plate considered three load ratios extst: for mechanical loadv,,, i, for me-
chanical loadV,, and R,, for mechanical loadV,,,. This particular description of loadings
is presented bge Faria(200]). The load ratios may vary reflecting uncertainty in the &apl
mechanical loadings. By fixing load rations a nondimenditoading parameteh, specifies
the magnitude such th&, is expressed as

Np=—X Y NoR;, (11)
=1

wheren is the number of loading cases alg; is the buckling load associated with loading
when it is applied individually, i.e., wheR;, = 1.0, Ry, = Ry, = ... = R, 1 = Riy1 = ... =
R, = 0andoy = ¢ = 0 (no piezoelectric charges).

A network with many pairs of active patches may be placed theshost plate. Two voltages
are associated to pajr ¢; andg,,,. In order to computed the piezoelectric residual stresses
the number of membrane problems to be solved is equal to th&uof pairs of patches.
Making ¢n; = 1 V andg,; = 0V, all the other patches maintained at 0 V, results in redidu
stresseijfj can be computed. Given the linearity of the membrane piezt&t problem, if
a general voltage; is applied, then it will result in residual stressijg. Assumingm



pairs of patches simultaneously energized, the total uas&tresses will be

NI =Y énNE. (12)
j=1
Discretization of Eq. 10b) can now be conducted. Taldgresents the continuous terms of
561 Eq. (LOb) and their discretized counterparts.
| Continuous | Discrete |
[("Dk +~4"Asv)dQ | q"Kq
[ €A Nod q'Kaq
J (€)' Ngd qTISGq*
fe%Nng qTEGq
f(e*)TNfdQ q"Keq*
fFLTMde qTf]wj

Table 1: Continuous vs. discretized terms

Matrix K is the stiffness matrix that also includes stiffness ctntions from the piezoelec-
tric patches. Vectaog is the displacement vector. Vecigt is the vector of initial imperfections.
Matrix K is the traditional geometric stiffness matrix. Matl&; is the geometric stiffness
matrix associated with piezoelectric residual stressestichl that matrice& and K, are
in fact associated with mechanical loadingnd voltagej respectively such that the complete
bending problem can be written as

<K + Z on; K — X Z RiKGi> q=

j=1 i=1

— (Z ¢NjKGj> q’+ Ao (Z RiKGi> q+ Z Ot (13)
=1 i=1 j=1

4 BUCKLING OPTIMIZATION AND PREBUCKLING ENHANCEMENT

The displacements of the plate are givendyy Equation L3) shows that even smaN,
induces displacementgs The prebuckling enhancement consists in makjiag small as possi-
ble, preferably identically zero, through application loé foroper voltages,,;. However, this
is usually unfeasible in practical application since thenber of displacement degrees of free-
dom contained irg is usually far greater tham, the number of pairs of piezoelectric patches
attached to the plate. Moreover, matix+ Z}”:l oniKai — o Yo, RiKg; is almost singular
in the imminence of buckling, meaning tlgagrows without bounds.

Given the practical constraints on forciqg= 0 two other strategies are proposed to enhance
prebuckling. First, the buckling load can be maximizedjf; are carefully selected such that
matrix K + Z;.”:l ngNjKGj — oy, RiKg; yields larger),. Second, seleet,,; to minimize
somehow the right hand side of EQ.3]. Each strategy will be explored in the following.



4.1 Buckling load maximization

The traditional buckling eigenproblem can be extractethfiey. (L3):

<K +) oniKa — A RZ-KGi> a=0, (14)
j=1 i=1

where now\ is the buckling load and is the buckling mode. When the load rati@sare main-
tained fixed the maximurik can be found by changingy;. Usual optimization techniques may
be used to obtain the optimal valuesqf,. Nonetheless, a much more efficient optimization
method can be employed stemming from the fact that the figtlimg load \; must be concave
with respect tap; as will be proven.

If one fixesR;'s then it is possible to definK; = Y | R;K;. Additionally, if the ¢y ;’s
are also fixed the eigenproblem in Eql4) can be solved for the critical buckling load
Varying ¢n;’s new values for\,; are obtained. Thus, continously varying;;’s the stability
surface depicted in Fig2a for the most general situation is generated. Fig@brélustrates the
one-dimensional case. Vectornormal to the stability surface at poifit can be seen in Fi@
as well as hyperplang tangent to the stability surface.

A

stability
surface

Ak

(b)

Wi
Figure 2: Stability surface

A point infinitesimally close to poinC' can be obtained through perturbationggf; into
én; + 0dN; + 6%pn; + ..., which, in turn, result in perturbations iy of the form\; + d\; +
6%\ + ... and inq of the formq + dq + ¢*q + .... When perturbations iny;, A; andq are
introduced in EQ. 14) it becomes

m

K + Z(¢Nj + 5¢Nj + 52¢Nj + ...)KG]‘ - ()\1 + 5/\1 + 52)\1 + )KG X
j=1
(q+dq+d°q+..)=0. (15)
The zero, first and second order eigenproblems are given by
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(K + Z onKaj — )\1KG> q=0,

j=1

<Z 5¢NjKGj — 5)\1KG> q-+ (K + Z¢NjKGj — )\1KG> 0q =0,

J=1 J=1

(Z 52 on;Kaj — 52)\1KG> q-+ (Z SN Kaj — 5)\1KG> Sq+

j=1 j=1

(K + Z ¢NjKGj - )\1Kg> 52(21 = 0. (16)

j=1

The multiplication of Eq. 16a) byq’ from the left yields the equation of the hyperplahe
defined in thep 1P no...0 N A SPace and given by EqLT) below

A"Kaq+ > éni(q"Keiq) — Mi(q"Keq) = 0. (17)

j=1

while the multiplication of Eq. 16b) by q” from the left and using Eq.l16a) leads to

sp'n =0, (18)

where

6p=1{ d¢n1 0pn2 ... ObNm SN }T,
5°p ={ Pon1 Podna ... PdNm P\ }T’

n={q"Kaq q’Keq .. 4d'Ksena —q'Keq }7. (19)

Geometrically, Eq. 18) proves that vecton is normal to the stability surface. Thus, plahe
is tangent to the stability surface sintés normal tog according to Eqg.17). Notice that the\
component ofi has a negative sign. When the first critical buckling loadadsitiveq’ K q is
positive. Thus, the. component ofi, —q? Kq, is negative as illustrated in Fig. In the case
when the first critical buckling load is negativg, K q must also be negative andy’ Kq is
positive.

Multiplication of Eq. (L6c) by q” from the left and using Eql16a) leads to

qT <Z 52¢NjKGj — 52/\1Kg> q + qT (Z 5¢NjKGj — 5)\1Kg> 5q = 0. (20)

j=1 j=1

and by multiplying Eq. 16b) by éq” from the left and recalling that all matrices involved are
symmetric leads to

q’ (Z 66N Kaj — 5A1KG> 6q = —6q" (K +)  onKas - AlKG> 6q. (21)

Jj=1 J=1



The substitution of Eq.21) into Eq. @0) yields

—5*M(a"Keaq) + Y 6% (a" Kga) —5q” <K +>  onKaj — )\1KG> oq=10. (22)

J=1 J=1

while the substitution of Eqs16b) and (9c) into Eq. €2) leads to

j=1

where the inequality sign holds siné€ + Z;”:l on;Ka; — MK is positive semi-definite.
Equation 23) shows that the second order tangent vector to the stabilitiaces?p and the
normal vectomn are oriented in the same direction. This can be visualizédgn2. Therefore,
from the differential geometry argument presented, it isobaded that the stability surface is
concave with respect to the origin of the¢n2...¢ N A Space. The concavity of the stability
surface is of utmost importance when it comes to buckling lmaximization.

The maximum); is sought through the variation of the involved;;'s. However, due
to physical limitations, the values @fy; are bounded by the breakdown voltage such that
Pmin; < On; < dmaxj. The concavity of the stability surface implies that there anly
three possibilities for its orientation as shown in Figa-3c. Eitherd\;/0¢y;(¢émim,;) and
OA1/0¢n;j(Pmax,j) have the same sign (Fig8a and3b) or they have opposite signs (Figc).
Notice that these derivatives can be readily computed by

O\ _ qTKqu
oon;  q'Keq'

(24)

/
o\
)

/

T ,
Gmin,j Imaxj Gminjj Imaxj %in,j Fmaxj
(a) (b) (c)

Figure 3: Stability surface orientation

ol

In the first two cases the maximum must be associated with one of the vertices of the
envelope defined by the inequalitiesi,; < ¢on; < dmax,; Wherej = 1,2, ..., m. For a three-
dimensional case this envelope is shown in Fg. Observe that in generaly,i,; 7# Omink
and ¢max; # Pmaxk. POINtSV;, ... Vg, are those that must be checked and the maximum
associated with these eight points is the solution to thigcalibuckling load maximization
problem. On the other hand, if stability surface orientai®such as depicted in Figc then
a conventional optimization method must be used to obtamthximum)\;. However, given
the concavity of the stability surface, its convergenceeisainly very quick.

The preceding analysis assumed that the load r&ti@se maintained fixed. However, in real
situations, a structure may be subject to several load chsey its operation and, therefore,
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Figure 4: \oltage envelope

there is variation or uncertainty associated with the I@dobs. Inde Faria(200]) a technique
is proposed to handle the lack of specificatiorRinthat can be employed in the present inves-
tigation. A reformulation of the optimization problem attais given in Eq. 25)

max min A1 (¢ny, 12:). (25)
Firstly, the worst\; is obtained for all possible ranges Bf. Secondly, the technique just
described is used to obtain the best;.

4.2 Mitigation of initial imperfections

The procedure presented in the preceding subsection iscgtevide the besk;. However,
the deleterious effects of initial imperfections has ndtlyeen addressed. The left-hand side
of Eq. (13) can be optimized for maximumy,. If the right-hand side of Eq. 1Q) is made
identically zero then the resulting displacement figid zero. Nevertheless, zeroing the right-
hand side is not feasible in practice because the numbergrtéeg of freedom present @
exceeds the number of voltages ; that can be appropriately selected.

The voltage® y; are assumed to have been selected by the optimization praceescribed
previously, i.e., the optimization problem posed in EQ5)(has been solved, to obtain the
optimal solutiongy; and R;. Hence, voltages,,; are the only available degrees of freedom
for use in ameliorating the effects of the imperfections.

A better understanding of the behavior of the force termearem the right-hand side of Eq.
(13) is gained ifg is spanned in the eigenvectors basis. Given that the bucklgenproblem
has been already resolved, it is plausible to assume thabthesponding eigenpaikg, qx, k =
1,2,...,n, are available, where, is the problem dimension or the total number of displacement
degrees of freedom. Hence

nx
Q=) aq, (26)
s

whereqa,, are coefficients to be determined. Substitution of &) (nto (13) and multiplication



by qf from the left leads to

1 - W . m
ap = - Ke; A R, K - Kl
7 (@l Kean) (=) " [ (Z - Gf) o (Z G) 4 ;Wf Mﬂ]

(27)

whereKq = > | RiKg;.

Eg. @7) is the germane for the geometric imperfection mitigatioacedure. The term
(A — Ao) in the denominator causes unbounded growtl,08s A\, — A.. Therefore, the
most critical of alla,, is preciselya;, which relates to the first buckling mode, singereaches
A first as it increases. Given that the entire right-hand sfdego (13) cannot be made zero
simultaneously, the second best procedure is to make ibgotmal toq;,, i.e., to force the
numerator in Eq. 47) equal to zero. This condition yields one linear algebrajaation in
®m;'S. Thus, if there aren pairs of actuators, in principle it is possible to enforge= a; =
.. = a,, = 0 resulting inm linear algebraic equations to be solved. In practice thisgss is
not so straightforward because there are restrictionssegbony,,; by the breakdown voltages.
These restrictions can be relaxed if the actuators are yyaitioned over the host plate.

There are two sources of uncertainty in the proposed proeetiiwas assumed that the load
ratios i;’s are known from the maximization of the critical bucklingad \,, but it is possible
they vary. Since voltages,,; were selected based on the walsts, the variation of the load
ratios destroys the orthogonality condition imposed betwg and the right-hand side of Eq.
(13). Even if the orthogonality is destroyed, the robust optetion procedure proposed in Eq.
(25) guarantees that; increases when thg;’s vary which, again, works in favor of mitigation
of the imperfection effects.

5 NUMERICAL RESULTS

The physical properties and geometric parameters giveraln I will be used in the nu-
merical simulations. The plate is 40 cr130 cm with the larger side along theaxis. One
pair of 4 cmx 3 cm piezoelectric actuators is used. It is located at théecerf the plate and
aligned with the plates edges as shown in Fig. Two laminates are considered: cross-ply
laminate[0/90]s and [+45]s with four layers of 0.15 mm thickness each. The thickness of
the piezoelectric actuators (top and bottom) is 0.05 mm. potieg field of 1000 V/mm is
assumed.

| Property | G1195N| T300/5208|
Young modulust;; (GPa) 63.0 154.5
Young modulusty, (GPa) 63.0 11.13
Poisson ratia/;» 0.3 0.304
Shear modulué:, = G135 (GPa) 24.2 6.98
Shear moduluéro; (GPa) 24.2 3.36
Piezoelectric constamt; (N/V m) 17.6 -
Piezoelectric constamty (N/V m) 17.6 -
Depoling fieldEyax (V/imm) 1000 -

Table 2: Physical properties

Boundary conditions are imposed for three problems asvislloFirstly, the piezoelectric
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problem given by Eq. 10a) is solved withN,,o = Ny, = N, = 0 with the boundary
conditions being: = v = 0 along the four edges of the plates. The piezoelectric patotracts
the plate when energized with a negative. The edges will react by creating traction residual
forceijj that stiffen the plate. On the other hand, a positixeinduces compressivis j}, an
undesirable development since it softens the plate. S&cahd mechanical problem given by
Eqg. (10a) is solved withN, # 0 andN,, = 0 with boundary conditions imposed on onlyand
v. Thirdly, the bending problem given by EqlQb) is solved by imposing simply supported
conditions onw, v, andz, along the four edges.

The mesh used has 2020 biquadratic elements. The piezoelectric actuators acerad
with four elements as shown in Fig.

Figure 5: Mesh

The first measure to enhance prebuckling behavior is toaseréhe buckling load by proper
choice of¢y against the load ratioB;. Three types of traditional loadings are applied: (i) uni-
form compressive loading along thedirection (\,.) (ii) uniform compressive loading along
they direction ¢\,,) and (iii) uniform shearX,,). The actuator voltage is varied within the lim-
its of the depoling field, i.e., -50 ¥ ¢ < +50 V. Fig. 6 presents the curves obtained for the
[0/90]s and [£45]s laminates. The\,, curve overlays the,, curve. A varies almost linearly
with ¢ but a small concavity can be observed\ify. These curves have been normalized for
the case whew,y = 0 V leading to buckling loads of 329.4 N/m direction), 185.3 N/my
direction), 598.5 N/m (shear) for the/90]s laminate and 549.7 N/mx(direction), 312.9 N/m
(y direction), 1685.9 N/m (shear) for the45]¢ laminate. Buckling occurs under no mechani-
cal loading for some value @fy > +50 V for all types of loading. This conclusion is intuitive;
compressive residual stresses arise when positive val@geapplied impairing buckling be-
havior. The maximum,,, A, and)\,, are associated with = -50 V. It can be observed that
the[+45]¢ laminate is less sensitive to variationsgig. This is evidence that sensitivity toy
is associated with the laminate lay-up. THel5]s laminate will suffer from buckling due to
residual stresses only for a valued§ substantially above +50 V.

From Fig.6 it is clear that a situation like that shown in Fi8a is encountered and the best
strategy is simply to seleety = -50 V. However, this voltage corresponds to the breakdown
voltage of the piezoelectric film meaning that ng, can be applied without destroying the
polarization of the piezoceramic. If geometric imperfens exist then it may be desirable
to apply somep,, # 0 V. In order to investigate this possibility a cubic pattefrgeometric
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Figure 6: The variation of buckling load with voltage forféifent laminates

imperfections is adopted as:

w*(z,y) = 16,#% (1—2) {Hﬁx <1—%“7>} % (1—%) {1+5y <1—%y)} (28)

wherea andb are the plate side lengths € 40 cm,b = 30 cm),u is @a nondimensional parameter
that controls the amplitude ant, 3, are nondimensional parameters that control the degree of
anti-symmetry in the pattern. Notice that symmetry is iraglwith respect to the plate center.
Since four layers of 0.15 mm are useéd= 0.6 mm in Eq. 28). According to this pattern
w*(a/2,b/2) = ph > 0. Hence, negative,, should be applied to attenuate the imperfections.
In the simulations that folloy = 0.5.

The corresponding results for the case when the degreeiefyantnetry, as given by param-
etersg, andg,, is null, are depicted in Figsl and8 for the [0/90]s and the[£+45]¢ laminates,
respectively. These curves display the maximum absoldte the transverse displacement
|w| over the plate as a function of the loading paramggeFigs. 7a andda refer to\,, loading,
Figs. 7b and8b refer to),, loading, and Figs7c and8c refer to),, loading.

The plots presented in all cases can be compared to the scesmare there is no actuation,
i.e., whenpy = ¢, =0 V. In this no actuation casey;,x rapidly grows as\, increases. Notice
that when), = 0 generallywyax # 0. This is explained by Eq.18) whose right-hand side
contains two terms that are nonzero even whge= 0. In all situations making = -50 V is
highly effective although in some cases a blend with+# 0 proves to be more efficient such as
in Figs. 7c and8c for higher values of\,. A degree of anti-symmetry is introduced by making
B, = B, = 5in Eq. @28). Now Figs.9 and10are plotted for thg0/90]s and[+45]s laminates
respectively.

The most striking observation is that when anti-symmetrgrissent in the imperfections
pattern the strategy of applying,, is not as effective. On the contrary, Fig8c and10c
show that makingpy = 0 V and ¢,, = -50 V impairs the prebuckling response. It seems
therefore that the best action is to make as high as possible while maintainigg; = 0 V.
This, however, is a hasty conclusion. Note that only one&adotus affixed to the center of
the plate. This particular location is best suited for syrriim@mperfection patterns. If anti-
symmetric patterns exist then it would be more efficient teeha network of actuators. This
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Figure 7:[0/90]s laminated plate, = 3, = 0

is possess the interesting problem: how can the locatiopgeabelectric patches be optimally
selected to enhance prebuckling and remain insensitivotoary imperfection patterns?

6 CONCLUSIONS

Two techniques have been proposed: one to maximize bucklads of smart composite
plates through piezoelectric residual stress stiffeniffigces and another to enhance the pre-
buckling response when initial geometric imperfectiores@esent by eliminating contributions
of the first buckling modes. Moreover, it is shown that thetbbesults are obtained when both
strategies are employed in combination.

For the sake of demonstration only one pair of active patbaedeen used. In real applica-
tions a network of patches can be used. This would certamlyditer since more patches allow
one to induce residual stresses in regions where they areatffiestive and it would also allow
more freedom to alleviate the effects of a number of impéidagatterns. This is a practical
concern since imperfections may be randomly distributedmmg that each particular plate
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Figure 8:[+45]¢ laminated platej, = 5, =0

fabricated has its own optimal location of active patches.

¢ has been held constant throughout the simulations. Howtneebest procedure is cer-
tainly to increase),; as)\, increases. This conclusion is obvious from Figsl0. One simple
strategy would be to makeg,, proportional to)\,. However, the most effective is to use sensors
that are able to detect the plate response and to have alsygtem commanding the actuators
according to the sensors data.

Uncoupling the membrane and bending problems is a key toubeess of the techniques
proposed. In general imperfect smart shells the situasiondre complex since the uncoupling
cannot be done. In this case the full nonlinear problem massdived considering simul-
taneously all degrees of freedom (membrane and bendingg. pfdper nonlinear numerical
methods, such as Newton-Raphson, must then be called upon.
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