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Abstract. Cable stayed masts are used in several engineering applications. In this work, the non-
linear finite element method, using an updated Lagrangian formulation, is used to study the effect of 
initial geometric imperfections on the non-linear vibrations of cable stayed masts subjected to axial 
time dependent loads. The non-linear equations are solved using the Newton-Raphson method 
associated to an arc-length technique and the Newmark method is used to calculate the time responses 
of the system. Validation examples are presented and the influence of initial geometric imperfections 
and cable tensioning is studied when stayed towers are subjected to different types of axial loads. The 
Budianski´s criterion is used to study the loss of stability under sudden and harmonic loads. Obtained 
numerical results show the great influence of both cable tensioning and cable positioning on the non-
linear behavior of the system and could be used as a tool for an analysis of the nonlinear dynamics of 
the structure previous to design. 
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1 INTRODUCTION 
Cable-stayed truss and tube masts and towers are widely used in several engineering areas 

with applications in civil, off-shore, mechanical, telecommunications and aero-space 
engineering. The efficiency of these structures to support axial loads is due to the stay cables 
and their behavior is characterized by large displacements associated with high load bearing 
ratios. The cables must not only have sufficient capacity to carry the dead loads, but must also 
have enough reserve capacity to carry the live loads. As cable-stayed structures show large 
displacements, high non-linearities are associated with their static and dynamic behavior. 
Therefore, the knowledge of their non-linear behavior is of interest to engineers and scientist.  

Due to their efficiency and different engineering applications, the analysis of cable-stayed 
structures has been object of several investigations in the last decades. In Madugula (2002) it 
is possible to obtain a complete revision related to the analysis of towers and stayed masts. 

In this work, only a few papers will be cited. Neves (1990) presented a finite element 
program to study the non-linear static and dynamic behavior of cable-stayed bridges. Using a 
three-dimensional model, he showed that, due to their non-linearity, the cables strongly 
influence the structural response of the system. Kahla (1997), using a three dimensional finite 
element model, studied the non-linear response of cable-stayed towers. The obtained results 
demonstrated that, during the non-linear response, the structure failed due to the compression 
forces generated by the cables. 

Xu et al (1997) proposed a three dimensional finite element model to study the dynamic 
response of the stayed towers of the Tsing Ma bridge. They showed that there is a high 
dynamic interaction between towers and cables which affects the natural frequencies of the 
system. 

Wahba et al (1998) and Madugula et al (1998), using the nonlinear finite element method 
and an analytical model, studied the non-linear static and dynamic response of stayed towers. 
Obtained results showed that the analytical model presents lower displacements if compared 
with those obtained by the finite element method. Experimental models were also studied and 
reliable agreement with the numerical model was observed. 

Kahla (2000) studied the effect of cable failure on the dynamic response of stayed towers 
concluding that, if the failure occurs in certain cables, the chance of failure of the whole 
structure is increased. Millar and Barghian (2000), using two finite element codes, studied the 
static and dynamic response of structures that displays dynamic jumps. They concluded that 
non-linear static problems can be analyzed as dynamic systems without damping. 

Cheng et al. (2002), using an advanced non-linear finite element formulation, studied the 
aerostatic stability of stayed bridges showing the high non-linearity of the response due to 
lateral winds. Chan et al. (2002) performed a second order analysis of imperfect stayed 
columns and showed that the buckling load of the columns can be increased by the pre-
tensioning of the stay cables. Yan-Li et al. (2003), using a discrete model, analyzed the 
vibrations of stayed masts under wind loads, finding a good agreement between experimental 
and numerical results. 

Pasquetti (2003) studied the buckling and vibration characteristics of cable-stayed towers 
using a simplified SDOF model. Freire et al. (2005) studied the non-linear effects of a stayed 
bridge using both linear and non-linear finite elements. The obtained results show that the 
cable curvature increases the non-linearity of the system mainly when large displacements 
generate axial tensions on the cables. Orlando (2006) studied the non-linear dynamics and 
control of a tower-pendulum system under harmonic loads. A detailed parametric analysis of 
the non-linear oscillations showed that a non-linear pendulum absorber can increase or 
decrease the vibration amplitudes of the tower. 
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The post-critical behavior of perfect stayed masts was studied in detail by Saito and Wadee 
(2008) and Carvalho (2008). They showed that the post-critical behavior is strongly 
influenced by the cables and its initial tensioning and, depending on the system geometry, the 
post-critical paths could change completely. 

Using real scale experiments and a finite element modeling, Araujo et al (2008) studied the 
static behavior of stayed masts, looking for the optimal structural geometry. A parametric 
analysis showed that cables increased the critical load and, for small imperfection levels, the 
load bearing capacity of stayed mast is higher than that of the non-stayed mast. 

Recently, Carvalho (2008) and Saito and Wadee (2009a) using the finite element method 
analyzed the dynamic behavior of imperfect stayed structures. They concluded that, 
depending on the load characteristics, the system is imperfection sensitive. Saito and Wadee 
(2009.b) using the finite element method showed that the interactive buckling response of 
stayed masts could lead to a critical load reduction. Using the Budianski criterion, Del Prado 
et al (2010) analyzed the dynamic instability of perfect stayed masts under sudden and 
harmonic loads. The numerical results showed the strong influence of load and cable 
positioning on the critical load of the system.  

In this work, the non-linear finite element method, using an updated Lagrangian 
formulation, is used to study the non-linear vibrations of imperfect cable-stayed masts 
subjected to axial time dependent loads. The non-linear equations are solved using the 
Newton-Raphson method associated to an arc-length technique and the Newmark method is 
used to calculate the time responses of the system.  

Validation examples are presented and the influence of initial geometric imperfections and 
cable tensioning is studied when stayed towers are subjected to different dynamic loads. 
Special attention is given to the influence of geometric imperfections on natural modes and 
natural frequencies and the Budianski´s criterion is used to study the loss of stability under 
sudden and harmonic loads. Obtained numerical results show the great influence of both cable 
tensioning and cable positioning on the non-linear behavior of the system and could be used 
as a tool for an analysis of the nonlinear dynamics of the structure previous to design. 

2 MATHEMATICAL FORMULATION 
The present formulation is based on previous works by Silveira (1995), Galvão (2000), 

Oliveira (2002), Campos Filho (2004) and Carvalho (2008) who implemented finite element 
models to analyze the geometric non-linear behavior of plane structural frames and cable 
system. 

Consider a plane straight beam-column with Young modulus E, area A, and inertia moment 
I and density ρ, as shown in Figure 1. The finite element is limited by nodes 1 and 2. The 
local system coordinates are denoted by x and y and global coordinates by XGL e YGL. For each 
node, the nodal displacement and rotations are denoted by Δui, Δvi, and Δθi with i = 1,2. 

For the cable finite element, it is considered a truss plane element with Young modulus E, 
area A, density ρ and limited by two nodes with local coordinates x and y and global 
coordinates XGL e YGL, as shown in Figure 2. The transversal and axial nodal displacement are 
given by Δui and Δvi with i =1,2, respectively. 

 

Mecánica Computacional Vol XXIX, págs. 647-658 (2010) 649

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
 

 
(a) 

Figure 1: Beam-column finite element. 

 
(b) 

Figure 2: Cable finite element 

Using variational principles and a Lagrangian updated referential, the non-linear dynamic 
equilibrium equations are written as: 
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where M  is the consistent mass matrix, C  is the viscous damping matrix, LK  i the linear 
stiffness matrix, τK  is the initial stress matrix, 1K  and 2Κ  are the non-linear displacement 
dependent matrixes, )(uFi  is the displacement dependent internal force vector, )(tFr  is the 
time dependent load vector, uu &&& ,  and Δu  are the acceleration, velocity and displacement 
vectors respectively, and λ  is a load parameter. 

3 NUMERICAL RESULTS 
Consider a perfect clamped-free column with internal diameter = 0.475 m, external 

diameter = 0.500 m and elasticity modulus E = 1.18e8 kN/m2. The column is clamped at the 
base and supported by two inclined cables with α = 60°, cross-section diameter = 0.018 m, 
elasticity modulus E = 1.0e8 kN/m2 and a pre-tensioning force T = 10 kN. The column is 
subjected to an axial load P and a perturbing moment M as shown in Figure 3(a).  

Figure 3(b) shows the influence of stay cables on the post-critical behavior of an axially 
loaded column and u is the transversal displacement at the top of the column. When no cables 
are considered in the analysis, after the critical load, the system displays a stable post-critical 
path with a small initial curvature. If the two cables are considered, the value of the critical 
load increases more than seven times, but the system displays in this case an unstable post-
buckling behavior with a sharp decrease in the load carrying capacity, being the minimum 
post-critical load, associated with a fold bifurcation, lower than the critical load of the column 
without cables. So, when the column reaches the critical loads it jumps to a post-buckling 
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configuration associated with large displacements. Figure 3(c) shows the post-critical path of 
the cable stayed column as a function of the axial displacement at the top of the column v. So, 
based on the theory of elastic stability, high imperfection sensitivity is expected for this 
structural system. 
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(c) 

Figure 3: Perfect cable-stayed column. (a) Geometric characteristics. (b) Post-critical paths as a function of the 
lateral displacement. (c) Post-critical paths as a function of the vertical displacement. 

Figure 4 displays the initial deformed configuration of the column due to different initial 
cable tensioning. This induces an initial geometric imperfection in the column. In this work 
two different initial geometric imperfections (Case 1 and Case 2) are considered. Table 1 
shows the nodal coordinates corresponding to both imperfection cases. As can be observed, 
the initial imperfections for Case 2 are a little bit higher than Case 1. 

Figure 5(a) shows the variation of the load parameter with the lateral displacement at the 
top of the column, u, while Figure 5(b) shows the variation of the load parameter with the 
vertical displacement, v. When compared with the perfect case (equal cable tensioning) the 
nonlinear equilibrium path shows a rather different behavior. The column looses stability at a 
limit point which is much lower than the critical load of the perfect system. The decrease in 
the critical load is of about 60%. This illustrates the high imperfection sensitivity of this 
structural system and the deleterious effect of asymmetric cable tensioning on the non-linear 
response. 

Comparing the post-critical paths for Cases 1 and 2, it is possible to observe the effect of 
the size of the initial imperfections. The limit point for Case 1 is higher than that for Case 2 
with a reduction of about 11% which means that small variations in the level of imperfections 
leads to a large variation in the load carrying capacity. 
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Table 1: Nodal coordinates of initial geometric imperfections for Cases 1 and 2. 

 Case 1 Case 2 
Node x ( )m  y ( )m  x ( )m  y ( )m  

01 - 0.000 0.000 - 0.000 0.000 
02 - 0.480 9.988 - 0.533 9.987 
03 - 1.724 19.910 - 1.916 19.900 
04 - 3.343 29.777 - 3.714 29.752 
05 - 4.882 39.657 - 5.424 39.619 
06 - 5.903 49.605 - 6.559 49.561 
07 - 6.055 59.603 - 6.728 59.559 
08 - 5.156 69.562 - 5.729 69.513 
09 - 3.232 79.374 - 3.591 79.304 
10 - 0.511 88.996 - 0.568 88.884 
11 - 2.643 98.485 - 2.937 98.317 
12 - 57.735 0.000 - 57.735 0.000 
13 - 57.735 0.000 - 57.735 0.000 

 

Figure 4: Imperfect cable stayed column 

Now consider the perfect column with two stay cables and subjected to a suddenly applied 
axial load P as illustrated in Figure 6(a). Figures 6(b), 6(c) and 6(d) display the time responses 
of the stayed column for increasing values of axial load given as a fraction of the critical static 
axial load Pcr. Zero initial conditions are considered in the analysis. As shown in Figure 6(b), 
for certain values of P, the damped response converge to a pre-buckling static configuration. 
As P increases, see Figures 6(c) and 6(d), the column displays increasing vibration amplitudes 
and jumps to a post-buckling configuration. Figure 6(e) shows the loss of stability of the 
cable-stayed column for increasing values of axial load, using the Budianski’s criterion. For 
this type of load the critical load is P/Pcr ≈ 0.95. 

Now consider the perfect column with two cables and subjected to a harmonic axial load P 
with amplitude Pa and frequency Ω. Figures 7(a), 7(b) and 7(c) show the time response of the 
lateral displacement for increasing values of the axial load amplitude Pa considering a forcing 
frequency equals to the natural frequency of the stayed column (ωo). These time responses 
represent the lateral displacement of the top of the column. 
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(b) 

Figure 4: Comparisons of post critical paths of the perfect and imperfect cable stayed column. (a) Lateral 
displacement. (b) Vertical displacement. 

For small values of the forcing amplitude, the column displays small amplitude lateral 
oscillations. However, in Figure 7(c), for Pa = 2.40 Pcr, the lateral displacement of the column 
grows exponentially, indicating loss of instability of the Mathieu type. Figure 7(d) shows the 
loss of stability curve of the cable-stayed column for increasing values of the amplitude of the 
axial harmonic force for Ω = ωo. Using the Budianski’s criterion, the critical load is Pa = 
2.30 Pcr.  

Figures 8(a), 8(b) and 8(c) show the lateral time responses for increasing values of the 
axial load amplitude Pa considering a forcing frequency equals to two times the natural 
frequency of the stayed column (ωo). The time responses show the variation of the lateral 
displacement at the top of the column. 

For small values of the forcing amplitude, the column displays small amplitude lateral 
oscillations. However, in Figure 8(c), for Pa = 0.80 Pcr, the lateral displacement of the column 
shows large amplitude vibrations. Figure 8(d) shows the loss of stability curve of the cable-
stayed column for increasing values of the amplitude of the axial harmonic force for Ω = 2ωo 
and, according with Budianski’s criterion, the critical load is Pa/Pcr ≈ 0.70. This case 
corresponds to the main parametric instability region. When comparing Figure 7(d) with 
Figure 8(d), it is possible to observe that the dynamic buckling load for Ω = 2ωo is much 
lower than for Ω = ωo. 

Consider now, the cable stayed column with both Case 1 and Case 2 initial imperfections 
levels. Figure 9 display the loss of stability curves, using the Budianski’s criterion, with the 
column under sudden axial load for Case 1 and Case 2. When comparing Figure 9(a) and 9(b) 
with Figure 6(e), the effect of initial imperfections on the load capacity is clearly observed. 
For Case 1 the instability load is P = 0.0126 Pcr and for Case 2 is P = 0.002 Pcr. As can be 
verified, there is a strong reduction on the dynamic buckling load due to increasing initial 
imperfections. 

Now, the effect of harmonic loads on imperfect stayed column is considered. Figure 10 
shows the Budianski’s curve for the imperfect column under harmonic axial load with Ω = ωo. 
For Case 1 the instability load is Pa = 0.02 Pcr and for Case 2 is Pa = 0.0085 Pcr. Again, 
comparing these values with those of the perfect column, a high imperfection sensitivity is 
observed. 
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(e) 

Figure 6: Dynamic instability of perfect cable stayed column under sudden axial load. (a) Geometric 
characteristics. (b) Time response for P = 0.92Pcr. (c) Time response for P = 0.96Pcr. (d) Time response for 

P = 0.97Pcr. (e) Budianski curve for column under sudden axial load. 

Figure 11 display the Budianski’s curve for imperfect column under harmonic axial load 
with Ω = 2ωo. As the load increases the column maximum displacement grows gradually and, 
at a critical value, the displacement exhibits an exponential growth, indicating loss of 
stability. For Case 1 the critical load is Pa = 0.035 Pcr and for Case 2 the critical load is 
Pa = 0.026 Pcr. Again these critical values are much smaller than those for perfect column 
showing the deleterious influence of geometrical initial imperfections on the load carrying 
capacity of the tower. 
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(d) 

Figure 7: Dynamic instability of perfect cable stayed column under harmonic axial load with Ω = ωo. (a) Time 
response for Pa = 1.40Pcr. (b) Time response for Pa = 2.20Pcr. (c) Time response for Pa = 2.40Pcr. (d) Budianski 

curve for column under harmonic load with Ω = ωo. 
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(c) 

Figure 8: Dynamic instability of perfect cable stayed column under harmonic axial load with Ω = 2ωo. (a) Time 
response for Pa = 0.50Pcr. (b) Time response for Pa = 0.70Pcr. (c) Time response for Pa = 0.80Pcr. (d) Budianski 

curve for column under harmonic load with Ω = 2ωo. 
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(b) 

Figure 9: Dynamic instability curves of imperfect cable stayed column under sudden axial load. (a) Budianski’s 
curve for Case 1. (b) Budianski’s curve for Case 2. 
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Figure 10: Budianski’s curves for imperfect stayed column under harmonic load with Ω = ωo. (a) Case 1. (b) 
Case 2. 
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Figure 11: Budianski’s curves for imperfect stayed column under harmonic load with Ω = 2ωo. (a) Case 1. (b) 
Case 2. 
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4 CONCLUSIONS 
In this work, the non-linear finite element method, using an updated Lagrangian 

formulation, is employed to study the non-linear vibrations of perfect and imperfect cable-
stayed masts subjected to axial time dependent loads. The non-linear equations are solved 
using the Newton-Raphson method associated to an arc-length technique and the Newmark 
method is used to calculate the time responses of the system. 

Using the Budianski´s criterion, the loss of stability under sudden and harmonic loads is 
also analyzed. As observed, the behavior of the system is highly influenced by cable 
tensioning, load characteristics and imperfection levels which generate lower or higher 
instability loads. Then numerical results show the great influence of both cable tensioning and 
initial geometric imperfections on the non-linear behavior and stability of the system. 
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