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Abstract. Fundamental solutions for bending of orthotropic thick platesareobtained using Hörmander
operator and Radon transform. So, they do not have a closed form and numerical integration is neces-
sary to compute fundamental solutions in each field point. In this paper an analysis of the fundamental
solution for orthotropic thick plate is presented. Integration aspects are taking into account. It is dis-
cussed different approaches in order to carry out thenumerical integration in afast and accurateway. An
analysis of computer cost is presented and someresults arecompared with literature.
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1 INTRODUCTION

In the case of laminates composite, the difference between the properties elastic fiber and
matrix, results in most applications, in a high ratio between the modulus of elasticity in the
direction of the fibers and the modulus of shear in the transverse direction. Therefore, the defor-
mation due to shear can be significant even in thin plates. Thus, theories that take into account
the transverse shear deformation are more suitable for modeling. The first paper on the boundary
element analysis of thick Reissner plates was introduced byWeeën(1982), who employed the
Hörmander method for the derivation of the fundamental solution. Barcellos and Silva(1989)
used similar formulations to treat Mindlin’s model. After the original works ofWeeën(1982),
many references have reported the application of boundary elements to bending analysis of
thick plates, most of them using the Reissner model as, for example,Karam and Telles(1988),
Long et al.(1988), Katsikadelis and Yotis(1993), Yan(1995), andRashed et al.(1997). A field
decomposition was presented byPalermo Jr.(2003) to obtain a boundary element formula-
tion for the classical model (Kirchhoff plates) from that used for the Reissner-Mindlin one.
As we can see, a large number of articles with the analysis of isotropic plates can be found
in literature. However, only few works can be found with the analysis of orthotropic plates.
Wang and Huang(1991) presented a boundary element method of moderately thick orthotropic
plates. InWang and Schweizerhof(1996) the previous formulation was extended to laminated
composites. This work presents a boundary element formulation for orthotropic thick plates. It
uses the fundamental solution proposed byWang and Huang(1991) that takes into account the
effects of shear deformation and was derived by means of Hörmander operator and the Radom
transform. Domain integrals which come from transversal applied loads are exactly transformed
into boundary integrals by a radial integration technique and is used the Telles transformation
(Telles, 1987) for treat singular or nearly singular integrals. Some numerical examples concer-
ning orthotropic plate bending problems are analyzed with the BEM.

2 DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

Equations of equilibrium for the plate are given by:

Mαβ,β −Qα = 0,

Qα,α + q = 0, (1)

whereq is the distributed transverse load per unit area in thex3 direction.Mαβ are the moments
and,Qα are the shear forces that relate displacements and slopes by:

Mαβ = Dαβ(Uα,β + Uβ,α) + CαβUγ,γ ,

Qα = Cα(U3,α + Uα), (2)

whereUα are the rotations andU3 is the deflection in the thickness direction. Throughout the
formulations Greek indices take values of 1 and 2, and Latin indices 1, 2 and 3.

The generalized Navier equations can be formed by substituting the values of the constants
into the equilibrium equations (1) and (1) to give:

LijUj + bi = 0, (3)
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wherebi represents 0, 0,q, respectively,Lij is the generalized Navier differential operator. The
values of the constants are found to be:

C12 = C21 = 0, C11 = D11νyx, C22 = D22νxy,

D11 =
Exh

3

12(1−νxyνyx)
, D22 =

Eyh
3
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, D66 =
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3

12
,

D11νyx = D22νxy, C1 = Gzxkh, C2 = Gzykh,

(5)

whereEx andEy are elastic moduli;νxy andνyx are Poisson ratios;Gxy, Gzx, andGzy are shear
moduli;h is the thickness of the plate, andk = 5/6.

3 FUNDAMENTAL SOLUTIONS

The fundamental solutions of the orthotropic thick plate taking into account the transverse
shear deformation are a set of particular solutions of the differential Eq. (3) under a unit con-
centrated load, i.e., the solutions satisfy the following inhomogeneous differential equations:

Ladj
ij U∗

kj(ζ, x) = −δ(ζ, x)δki, (6)

in which δ(ζ, x) denotes the Dirac delta function,ζ represents the source point,x is a field
point, andLadj

ij is the adjoint operator (seeWang and Huang(1991)). Following Hörmander’s
operator method, the solutions of Eq. (3) can be written as:

U∗

ij(ζ, x) =
co Ladj

ji φ(ζ, x), (7)

whereφ(ζ, x) is a unknown scalar function andcoLadj
ji is the cofactor matrix of the operatorLadj

ji

that is given by:
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The following symbols have been introduced:
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(9)

Now, the potentialφ(ζ, x) can be evaluated as follows:

det[coLadj
αβ ]φ(ζ, x) = −δ(ζ, x). (10)

By the above procedure, the derivation of the fundamental solution of Eq. (6) is reduced to
that of Eq. (10). As soon as the solution of Eq. (10) is obtained, substituting it into Eq. (7) and
by differentiation we can get the solutions of Eq. (6). Eq. (10) is a sixth order partial differential
equation. Using the plane wave decomposition method, the partial differential Eq. (10) can be
reduced to an ordinary differential equation, which simplifies the treatment of the problem. We
first expandδ(ζ, x) into a plane wave (see, for example,Wang and Huang(1991)):

δ(ζ, x) = −
1

4π2

∫ 2π

0

| ω1(x− ζ) + ω
2
(y − η) |−2 dθ, (11)

in which(ω1, ω2) are the coordinates of a point on the unit circle, i.e.,ω1 = cos(θ), ω2 = sin(θ),
(x, y) and(ζ, η) are the coordinates of a field point and a source point, respectively. Similarly,
φ(ζ, x) can be written as:

φ(ζ, x) =

∫ 2π

0

ϕ(ρ)dθ, (12)

whereρ = ω1(x− ζ) + ω2(y − η), ϕ(ρ) is a function depending only onρ.
By substituting Eq. (11) and Eq. (12) into Eq. (10), and considering differential relationship

∂
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p2 = b2/a2.
The solution of Eq. (10) is now reduced to solve the ordinary differential Eq. (13). After

four times integration of Eq. (13) and leaving out the constants of integration, we obtain:

d2ϕ(ρ)

dρ2
− p2ϕ(ρ) = −

1

8π2a2
p2 log | ρ | . (14)

The solution of Eq. (14) can be written as follows:

ϕ(ρ) = f1(ρ) exp(pρ) + f2(ρ) exp(−pρ). (15)
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By the method of variation of parameters, the coefficientsf1(ρ) andf2(ρ) can be obtained.
By substitutingf1(ρ) andf2(ρ) into Eq. (15), we obtain:

ϕ(ρ) =
1

8π2p4a2

[

p2ρ2 log | ρ | +2 log | ρ | +3 + exp(pρ)

∫

∞

ρ

exp(−pσ)

σ
dσ+

− exp(−pρ)

∫ ρ

−∞

exp(pσ)

σ
dσ

]

. (16)

Substituting Eq. (16) into Eq. (12) and integrating, we can obtain the functionΦ(ζ, x). The
generalized displacement and boundary tractions can be expressed in the following forms:

U∗

ij(ζ, x) =

∫ 2π

0

Ũij(ρ)dθ,

P ∗

ij(ζ, x) =

∫ 2π

0

P̃ij(ρ)dθ. (17)

Details of the implementation of equations (17) can be found inWang and Huang(1991).

3.1 Integration of fundamental solutions

It can be seen in equations (17) that, in order to obtain fundamental solutionsU∗

ij andP ∗

ij,
it is necessary to integratẽUij and P̃ij. As its is carried out numerically, the way in which
this integrals are computed is a key point in the performanceof the boundary element code.
Figures1 to 6 show the behaviour of kernels̃Uij andP̃ij, considering as source pointζ = 0.5,
η = 0, and as field pointx = 0 andy = 0.0094. The material properties areEL = 20.0485
GPa;ET = 6.0039 GPa;GLT = 0.5 GPa;GTT = 0.2 GPa;νLT = 0.0417; h = 0.25 m, and
componentes of normal vector aren1 = −1 andn2 = 0.
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Figures1 to 6 show that all kernels are symmetric in relation toθ0 = arctan
(

−x−ζ

y−η

)

. So,

it is necessary to carried out integration just in half of theinterval [0, 2π]. On the other hand,
it can be seen that all kernels are functions that are very difficult to integrate because some of
them present singular behaviour nearθ0 and oscillaions in the integration interval. Although
these graphics are for a specific problem, similar behaviouris found in other problems.
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1 2 3 4 5 6 7 8
−10

−5

0

5

P̃
1
1

θ

Figure 4:P̃11

1 2 3 4 5 6 7 8
−10

−8

−6

−4

−2

0

2

4

6

8

10

P̃
1
2

θ

Figure 5:P̃12

1 2 3 4 5 6 7 8
−8

−6

−4

−2

0

2

4

6

8

10
x 10

−3

P̃
2
2

θ

Figure 6:P̃22

In this work, two approaches are used to compute integrals ofequation (17). In the first one,
standard Gauss point quadrature is used. In second, Telles transformation is used in order to
concentrate integration points near singularity. A brief description of Telles transformation is
given in the next section.

4 TELLES TRANSFORMATION

Telles(1987) introduce an efficient mean of computing singular or nearlysingular integrals
found in two-dimensional, axisymmetric and three-dimensional boundary element applications.
Emphasis is given to a new third degree polynomial transformation which was found greatly to
improve the accuracy of Gaussian quadrature schemes withinthe near-singularity range. The
procedure can easily be implemented into boundary element codes and presents the important
feature of being self-adaptive, i.e., it produces a variable that depends on the minimum distance
from the source point to the element. The self-adaptivenessof the scheme also makes it inactive
when not useful (large source distances) which makes it verysafe for general usage.

Consider the integral:

I =

∫ 1

−1

f(η)dη, (18)

in whichf(η) is singular at a point̄η.
The idea is to transform the coordinatesη to γ where the jacobiandη

dγ
vanishes at the point̄η

wheref(η) is singular.
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In this article, it is choosen a third-degree relation:

η(γ) = aγ3 + bγ2 + cγ + d, (19)

such that the following requirements are met:

d2η

dγ2
|η = 0,

dη

dγ
|η = 0,

η(1) = 1, (20)

η(−1) = −1.

Thus, expression becomes (18)

I =

∫ 1

−1

f{[(γ − γ̄)3 + γ̄(γ̄2 + 3)]/(1 + 3γ̄2)}3(γ − γ̄2)/(1 + 3γ̄2)dγ, (21)

whereγ̄ is simply the value ofγ which satisfiesη(γ̄) = η̄; this parameter can be calculated by:

γ̄ = 3

√

(η̄η∗ + |η∗|) + 3

√

(η̄η∗ − |η∗|) + η, (22)

andη∗ = η̄2 − 1.

5 BOUNDARY INTEGRAL EQUATIONS

The integral equation can be derived by considering the integral representation of the gover-
ning Eq.(1) via the following integral identity:

∫

Ω

[(Mαβ,β −Qα)U
∗

α + (Qα,α + q)U∗

3 ]dΩ = 0, (23)

whereU∗

i (i = α, 3) are the weighting functions. Integrating by parts (applying Green’s second
identity) and making use of the algebraic relationships, itgives:

Uj(ζ) +

∫

Γ

P ∗

ij(ζ, x)Uj(x)dΓ =

∫

Γ

U∗

ij(ζ, x)Pj(x)dΓ +

∫

Ω

q(x)U∗

i3(ζ, x)dΩ. (24)

By taking the pointζ to the boundary at the positionζ ∈ Γ, Eq. (24) can be written as:

cij(ζ)Uj(ζ) +

∫

Γ

− P ∗

ij(ζ, x)Uj(x)dΓ =

∫

Γ

U∗

ij(ζ, x)Pj(x)dΓ +

∫

Ω

q(x)U∗

i3(ζ, x)dΩ, (25)

where
∫

− denotes a Cauchy Principal Value integral,ζ, x ∈ Γ are source point and field point,
respectively. The value ofcij(x) is equal toδij/2 whenx is located on a smooth boundary.
Equation (25) represents three integral equations, two (i = α = 1, 2) for rotations and one
(i = 3) for deflection. The last integral on the right hand side of equation (25), that is a
domain integral, is transformed into a boundary integral using the procedures presented by
Albuquerque et al.(2006).
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6 MODELING SYMMETRIC CROSS-PLY LAMINATES

Although the formulation presented in this paper is for single layer orthotropic material,
symmetric crossply laminates can be also modeled using equivalent global stiffness constants.
The bending stiffiness matrix of a laminate composite is given by:

D =
∑

Qk(t
3
k − t3k−1), (26)

where
Qk = T−1Q(T−1)−1, (27)

Q =





Q11 Q12 0
Q12 Q22 0
0 0 Q66



 , (28)

and

Q11 = EL/(1− νLTνTL), Q22 = ET/(1− νLTνTL),
Q66 = GLT , Q16 = Q26 = 0,
Q12 = νTLEL/(1− νLTνTL) = νLTE2/(1− νLTνTL).

(29)

The inverse ofD is theS matrix given by:

S = D−1 =
12

h3





1/E∗

L −ν21/E
∗

T 0
−ν12/E

∗

L 1/E∗

T 0
0 0 1/G∗

LT



 , (30)

whereE∗

L, E∗

T , νLT , νTL andG∗

LT are the equivalent material properties of the symmetric cross
ply laminates,t is total thickeness of the laminate.

From equation (30) we can obtain:

E∗

L = 1/S11,

E∗

T = 1/S22,

G∗

LT = 1/S33,

ν∗

LT = −S12E
∗

L. (31)

7 NUMERICAL RESULTS

To validate the procedures implemented and to assess the accuracy of solutions, consider a
square plate of simply supported boundary with five layers[0o/90o/00/90o/00] subjected to a
sinusoidally distributed loadg = go sin(

πx
a
) sin(πy

b
) and,a/t = 10, a/t = 20 anda/t = 100.

The material constants areEL = 25 GPa,ET = 1 GPa,GLT = 0.5 GPa,GTT = 0.2 GPa,
νLT = 0.25. Results are compared withGhosh and Dey(1992) e Pagano and Hatfield(1972),
as shown in Table (1). The laminate is discretized into two discontinuous quadratic elements
per side. Wherêw = wπ4Q/(12gotS

4) andQ = 4GLT +{EL+ET (1+2νLT )}/(1− νLTνTL).
The displacement at the central point of the plate is shown inTable1. In this table,ŵT is

the solution obtained by Telles Transformation with 20 integration points; ref1. is the result of
Pagano and Hatfield(1972); ref2. is the result ofGhosh and Dey(1992); ŵg1 is the solution
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computed by standard Gauss Quadrature with 20 integration points andŵg2 is the solution
computed by standard Gauss Quadrature with 80 integration points.

We can see that there is a good agreement among results from literature, displacements
computed using standard Gauss quadrature with 80 integration points, and Telles transformation
with 20 integration points. On the other hand, the agreementof the displacement obtained by
standard Gauss quadrature using 20 integration points is very poor.

We can conclude that the use of Telles transformation strongly reduces the amount of inte-
gration points necessary to obtain accurate results.

S = a/t ŵT ŵ(ref1.) ŵ(ref2.) ŵg1 ŵg2

10 1.42 1.57 1.42 1.49 1.43
20 1.11 1.15 1.10 3.35 1.14
100 1.01 1.01 1.01 0.59 -0.11

Table 1: Center deflection of the orthotropic thick square plate of simply supported boundary with five layers.

8 CONCLUSIONS

This paper presented a boundary element formulation for orthotropic thick plates. The fun-
damental solution was derived by means of Hörmander operator and the Radom transform. Ker-
nels of fundamental solutions were integrated by standard Gauss quadrature and Telles trans-
formation. It has been shown that the use of Telles tranformation strongly reduces the amount
of integration points necessary to obtain accurate results.
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