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Abstract. The last decades have seen great advances in computational models and in the 

ability to tackle previously intractable problems in mechanics.  Yet, these models normally 

incorporate many variables which are not deterministic, introducing uncertainty in the 

calculated output. The problem of estimating the probability distribution of the output, given 

the probabilistic description of the input, has also received much attention since the 1960’s 

and many computational techniques have now been developed to account for the 

probabilistic nature of the problem.  This paper discusses the integration of analysis and 

reliability assessment, including examples of large Canadian projects and design codification.  

Current objectives in probabilistic methods include the development of performance-based 

design. This paper discusses this topic in the context of earthquake engineering, with an 

application to the performance-based design of a steel pile under seismic excitation.  
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1. INTRODUCTION 

 

The last decades have seen great advances in computational models and in the 

ability to tackle previously intractable problems in mechanics.  The development of 

finite element calculations models, for example, has made it possible to obtain 

solutions for increasingly difficult  problems  in solid or fluid mechanics. Yet, these 

models normally incorporate many variables which are random or non- deterministic, 

introducing uncertainty in the calculated output. The problem of estimating the 

probability distribution of the output, given a probabilistic description of the input, 

has also received attention since the 1960’s and many computational techniques have 

now been developed (Melchers, 1987; Der Kiureghian, 1986; Ditlevsen, 1981).  In 

particular, these techniques have allowed the development of software applicable to 

complex practical problems, expanding the capabilities of the analyses in order to 

obtain solutions in a more realistic setting.  

Why are probabilistic approaches really necessary? Of course, they provide a 

reasoned way of taking uncertainties into account. However, it could be argued that 

older, deterministic design methods, coupled with traditional and experience-based 

“safety factors”, also led to designs that have withstood the challenge of many years 

in service. One only needs to consider the achievement of beautiful designs like the 

1937 Golden Gate bridge in San Francisco. On the other hand, major disasters could 

be attributed to the lack of a proper probabilistic analysis, as was the case for the 

adequacy of the flood protection levees for New Orleans during hurricane Katrina. 

The use of probabilistic methods in engineering does not, per se, improve the safety 

of specific designs, but the safety level achieved is part of the calculation and could 

thus be controlled to a desired target value. The introduction of these methods 

provides a means of achieving a more even distribution of safety as demand 

conditions change from one situation to another. The probabilistic framework also 

embodies the treatment of uncertainties in optimization and decision making in all 

phases of engineering. Also implicit is the advantage of improvements in the 

economy of the designs and a better utilization of materials, along with a fairer 

comparison of different design alternatives. 

Probabilistic problems in engineering are generally stated in terms of the demand 

D on a system and the capacity C to withstand that demand. The function G = C(xc) – 

D(xd),  also called safety margin or limit state or failure or performance function, 

depends on sets of random variables xd and xc associated with, respectively, the 

demand and the capacity. C and D may be explicitly given functions, but usually they 

are only known as the result of discrete numerical calculations using complex models. 

For example, C could implement a material fatigue model while D is the effect from a 

randomly applied stress history.  D could also be the output from a finite element 

model calculation, in which the variables xd  could represent random variables for a 

spatial variation in material properties (stochastic finite elements).  In earthquake 

engineering, C may be the displacement limit for the structure and D the maximum 
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displacement calculated by a nonlinear dynamic analysis for a corresponding input 

ground motion.  

Given this formulation, the probability of system non-performance equals the 

probability of the event G < 0. The calculation of this probability can be achieved by 

simulation procedures (with different levels of efficiency), or by approximate 

approaches like First or Second Order Reliability Methods (FORM or SORM), both 

based on the calculation of a reliability index β (Melchers, 1987; Ditlevsen, 1981).  

These methods have now been implemented in computer programs which are 

commercially available, with the user only being required to provide the definition of 

the problem (that is, the capacity and demand functions). The reliability of a system 

can be calculated either for the event coinciding with the application of the demand 

(as when an earthquake occurs) or over a service life (when the occurrence of the 

demand may itself be uncertain).  When either D or C, or both, are only known as 

discrete results from numerical calculations for specific values of the intervening 

variables (for example, from a finite element or a nonlinear dynamics analysis), then D 

and/or C can be represented by approximating functions in terms of those variables, 

a technique that includes the use of general response surfaces or neural networks 

(Bucher, 1990; Zhang, 2004; Möller, 2003; Möller et al., 2009, 2010a, 2010b; 

Ghalibafian, 2006).  As the approximating functions may not fit the discrete results 

exactly, additional random variables may be introduced to represent the regression 

error.  

Some design characteristics of the system (e.g., geometric dimensions, statistical 

parameters) are usually part of the model for either C or D. Although the reliability 

can be calculated for a system of given characteristics, an important objective in 

probabilistic design is to find values for those parameters so that the corresponding 

probability of non-performance (or Prob(G<0)) be less than a tolerable value. At the 

same time, optimization objectives can be added so that a minimum weight, or 

minimum total cost, are achieved under the required reliability constraints.  

Probabilistic design then involves making full use of our computational tools in the 

context of uncertain inputs, in order to ensure, with required confidence, that the 

performance of the system during its service life be as prescribed. This objective has 

now become known as “performance-based design”, and different techniques for its 

implementation are still being discussed and applied (Wen, 2001; Bertero and 

Bertero,  2002; Möller 2010 ).   

Applications of full probabilistic approaches can now be increasingly found in 

practice. In Canada, they have been applied to different types of important problems, 

as the following examples detail. 

 

1) Hibernia is an oil gravity off-shore platform located in the Atlantic, on the Grand 

Banks off the coast of Newfoundland, on a depth of about 80m (Figure 1). A 

reinforced concrete structure had to be designed to withstand possible collisions with 

icebergs drifting from the north, possibly in an unfavorable sea state.  Collision loads 
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were to be estimated for an annual exceedence probability of 1.0x10-4. Random 

variables were the iceberg size and speed, the sea or wave state, and the crushing 

properties of ice (dependent on the size of the collision area). Models included 

consideration of energy balance during the collision, plus hydrodynamic interaction 

between the waves and the ice mass (Foschi, Isaacson,et al.,1996,1998). 

  

2) Figure 2 shows another example, the Confederation bridge, a 17km structure 

spanning the Northumberland Strait between the Canadian provinces of New 

Brunswick and Prince Edward Island. At this site, the sea freezes in winter and ice 

sheets travel downstream impacting the piers near the surface, with a level arm of 

50m with respect to the sea bottom, Figure 3. Thus, the weight of the pier foundation 

had to be designed to withstand the ice impact without resulting in tilting of the piers 

or foundation sliding at the bottom. A design requirement for this bridge was a 

target reliability index β = 4.25 for the maximum demands in 100 years. 

 

3) Figure 4 shows a new cable-stayed  bridge constructed recently across the 

Fraser river near Vancouver, British Columbia, and Figure 5 shows the new bridge 

across the Pitt river, an important  tributary of the Fraser. Both of these rivers are 

navigable, with flows controlled by seasonal fluctuations and the tides. Of concern 

was the maximum force that could be imposed on the bridge piers as the result of a 

collision with an out-of-control vessel. 

                                       
    Figure 1. Hibernia oil platform                                              Figure 2. Confederation bridge 

 

                                          
Figure 3. Ice impacting with pier, Confederation bridge 
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According to requirements of the Canadian Highway Bridge code, that force must 

be calculated in correspondence with a 1x10-4 annual exceedence probability. 

Random variables involved were the vessel traffic, vessel size, displacement  and 

speed, vessel position within the navigation channel when in distress, the river current  

at different times of the year, and  the effect of the tides (all bridges are located at a 

relatively short distance from the sea). 

 

 

                                  
                             
                                     Figure 4. Golden Ears bridge, British Columbia, 2009 

                                        

 

                            
 
                                              Figure 5. Pitt River bridge, British Columbia, 2010 

 

4) Other applications have involved the simulation of manufacturing processes for 

composites (from wood resources or utilizing carbon fibers), studying the variability 

in the mechanical or geometric properties of the composite as functions of  random 

variables associated with the manufacture (amount of resin used, fiber size, fiber 

orientation, temperature and pressure history, cooling time, etc.).  

Earthquake engineering is a topic that naturally involves large uncertainties, mostly 

associated with the dependence of the demand D on the ground motion. 

Probabilistic approaches have been proposed recently to implement performance-
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based design, and the use of neural networks or response surfaces to represent D at 

different performance levels have been the subject of several recent works (Zhang et 

al., 2004; Möller et al., 2003, 2009), and of other papers at this conference (Möller et 

al., 2010a, 2010b). 

All the previous examples utilized probabilistic approaches and have in common 

that they were not covered by codified calculation procedures. All the applications 

specified just the performance criteria and an accepted probability with which they 

might not be met.  

It is argued sometimes that full probabilistic methods may impose a substantial 

demand on the design engineer, depending on his/her familiarity with reliability 

theory, specialized software and probabilistic problem formulation. Modern design 

codes have attempted to circumvent this apparent difficulty by developing 

procedures that partially achieve the goals of probabilistic design, while maintaining 

a framework similar to the traditional deterministic approaches. Let us now discuss 

this aspect of the problem. 

In design codes, the random variables are represented by fixed “characteristic or 

design” values. Thus, for example, the 5th-percentile of the tensile strength of wood 

may be adopted as the “characteristic strength”, or the acceleration spectrum, for a 

given structural period and with  a 2% exceedence in 50 years, may be adopted to 

represent the “design intensity” of an earthquake.  A deterministic design equation is 

then used to calculate the design parameters. In this equation, as generally shown in 

Eq.(1), the characteristic values are multiplied by factors (“load factors” or “load 

combination factors” for the demands, “resistance factors” for the capacities),  

                                          SRQQD NNNQND     ) ( 21                                                  (1)                         

 

in which:  DN =  effect of the characteristic dead (or permanent) load D; 

D  =  load factor for dead loads; 

    QN1, QN2= effect of the characteristic design live loads Q1 and Q2; 

                   Q =  load factor for live loads; 

                      γ =  live load combination factor; 

φ  =  resistance factor; 

RN  = characteristic resistance; 

S = design parameter (e.g., cross-sectional modulus for bending). 

 

Given the characteristic values and the different factors, Eq.(1) can be used to 

calculate the design parameter S. This calculation, in fact, is not substantially different 

from older, deterministic approaches. The objective of the design code is to permit 

the calculation of S so that its associated reliability, under uncertain loads D, Q1 and 

Q2 , matches a target for the code. The reliability corresponding to the calculated S 

from Eq.(1) can be evaluated with the performance function   

                                            )( 21 QQSRG                                                         (2) 

 

R. FOSCHI, L. QUIROZ, O. MOLLER898

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

The different factors in Eq.(1) are adjusted until  the target reliability is matched. 

However, if the uncertainties in the loads are changed (for example, when the load 

statistics are changed), different factors will be obtained. Thus, since the factors are 

normally meant to cover all design situations, the load and resistance factors must be 

calibrated or optimized  over a number of applications. Obviously, with only a small 

number of optimizing factors, the achieved reliability would vary from application to 

application.  The reliability would remain uncertain for applications outside the range 

used for the calibration. Thus, codified approaches cannot guarantee a target  

reliability and, in this sense, they only partially fulfil the objectives of probability-

based design. If properly calibrated, they can show a tolerable narrow range of 

reliabilities across design situations. To improve the results, codes may introduce 

more factors under different names, for example, “load combination factors”. At the 

moment, not all codes have been calibrated in all countries, and even within a specific 

code there might be sections which have not been calibrated. Earthquake 

engineering is an area in which little calibration has taken place, as the large 

uncertainties involved are not consistent with a small number of factors desired in a 

code design procedure. Earthquake engineering is, therefore, an area in which full 

probabilistic approaches offer a wide range of application possibilities, at the 

structural, geotechnical or soil/structure interaction level.   

To close this introduction, it should be apparent that the results from a 

probabilistic analysis are conditional on the computational models used for either 

capacity or demand.  Although “model error” could be acknowledged by introducing 

additional random variables, the robustness of the approach calls for always using the 

“best” computational tools, rather than simplifications which will require a greater, 

and more uncertain, model error correction.  

 

2. PERFORMANCE-BASED DESIGN IN EARTHQUAKE ENGINEERING 

This section discusses reliability assessment and performance-based design in the 

context of earthquake engineering. As with any other engineering application, the 

problem requires explicit satisfaction of multiple performance criteria, with associated 

levels of confidence over a service life. The structural or geotechnical analysis used 

must reflect the actual behavior in a realistic manner. All the major uncertainties 

involved must be taken into account: the ground motion, the material nonlinearities, 

the hysteretic behavior and energy dissipation of members and connections, and the 

approximate nature of the analytical models used to estimate either the responses or 

the induced damage. Structural reliability analysis must be applied to evaluate the 

probability of non-performance for each of a set of performance or limit state 

functions, related either to collapse or to different damage levels. A discussion of the 

need for a reliable, comprehensive approach to performance-based seismic 

engineering has been offered by Bertero et al. (2002). The probability estimations 

may be carried out by different methods. Direct simulation may be used to estimate 
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the probability of the event G<0 (Monte Carlo trials) but, as the probability of non-

performance in a well-designed structure is generally small, the simulation may entail 

a great number of performance function evaluations, each requiring the execution of 

a nonlinear dynamic analysis. This task could quickly become computationally very 

intensive. Other techniques start by computing conditional probabilities for a fixed 

level of the hazard (for example, a fixed level of the peak ground acceleration). These 

conditional probabilities, called fragilities, are then used to compute the total 

probability by integration over all possible hazard levels.  The implementation of 

approximate methods like First or Second Order Reliabilities may create numerical 

problems as the corresponding algorithms depend on a determination of the 

gradient of the function G, which may not be smooth. 

In order to make more efficient the use of simulations, a method has been 

proposed that implies a functional representation of the nonlinear dynamic results, in 

terms of the intervening variables and design parameters. This representation could 

take the form of:  1) a mathematical function (response surface) adjusted to a 

database of discrete response results (Möller,2003); or 2) a neural network (Zhang et 

al., 2004, Möller et al., 2009) trained with the input-output results from the dynamic 

analysis. In any case, the representation can be used as a substitute for further 

dynamic analyses, simplifying and making more efficient the task of simulation. 

Neural networks are used to represent complex, unknown input-output relationships. 

Here they are used to represent such a relationship between the input variables 

(including the design parameters) and the response outputs obtained from the 

dynamic analysis. This paper presents an application of this method in reliability 

assessment and performance-based design in seismic engineering, using as a case 

study the design of a pile foundation. Other case studies are also presented at this 

conference (Möller et al., 2010a, 2010b).  

In the context of earthquake engineering, the structural response will change every 

time that the accelerogram record of the ground motion is changed. Thus, for a given 

peak ground acceleration, the response will change with the frequency content of the 

record and the duration of the strong motion. Let  X be the vector of random 

variables excluding the record,  d the vector of design parameters and r a nominal 

variable representing the individual record. A response R (for example, maximum drift 

or maximum shear force) will then be a function  

 

                                        ),,( rfR dX                                                         (3) 

 

For fixed combinations of X and d, the responses R are obtained for a set of 

records r, calculating the mean response value ),( dXR and the standard deviation 

),( dXR  over all records. Each of these statistics is then represented by a 

corresponding neural network, for which the input variables are X and d .  

If the distribution of R over the records is assumed to be Lognormal (since one 

would be interested in the absolute value of R), then  
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in which RN  is a Standard Normal variable.    

Performance-based design requires the optimal satisfaction of multiple 

performance objectives, with associated confidence levels. A typical performance 

function is assumed in the form  

 

                                               ),(),( dXdX RRG LIM                                             (5) 

 

in which the response R(X,d) is represented by Eq.(4), implementing the 

corresponding neural networks for R and R . RLIM  is the limiting capacity for the 

response R. This utilization of the neural networks permits a very efficient calculation 

of the probability of failure corresponding to a given vector of design parameters d  

and statistics for X, either by Monte Carlo simulation or by Importance Sampling 

simulation around an “anchor point” in the Standard Normal, uncorrelated variable 

space. An anchor point could be calculated by fitting first a quadratic response 

surface around the mean point (Bucher, 1990), using responses obtained when each 

of the variables, in turn, is set at its mean ± 2 standard deviations. In each case, the 

performance function is evaluated from the neural networks. Using this quadratic 

surface and starting from the mean point, one iteration of FORM yields a first 

approximation for a design point and the corresponding vector joining it with the 

origin (mean point). Subsequently, the anchor point is found by searching along that 

vector direction until the performance function G(X,d) ~ 0.  

The vector X sampled during the simulation must be checked to ensure that it is 

situated in the space enclosed by the bounds of the random variables in the database 

used to develop the neural networks, and the sampling density functions must be 

appropriately censored. Finally, the probability of failure Pf obtained by simulation is 

expressed in terms of a corresponding reliability index β(d) using the correspondence 

 

                                                           Pf=Ф(-β)                                                       (6) 

 

Current earthquake design codes consider only one performance requirement, 

related to life safety and preventing structures from collapse. This criterion has 

proven insufficient, however, since recent experiences have shown that structures 

subjected to moderate earthquakes can sustain levels of damage which, although not 

resulting in collapse, can imply very high costs of repair. Thus, more than one 

performance level should be considered, including serviceability, controlled damage 

and survivability. For serviceability levels under frequent minor earthquakes, the 

structure should remain basically in the elastic range. The deformation, for example, 

Mecánica Computacional Vol XXIX, págs. 893-910 (2010) 901

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

inter-story drift, should be checked for damage levels under occasional, moderate 

earthquakes. In this case, the structure may respond nonlinearly. For survivability 

under rare, severe earthquakes, the structural performance is fully nonlinear and may 

be at the edge of collapse.     

Performance-based design should then be formulated as an optimization problem: 

to find the design parameter vector d by minimizing an objective function (e.g., total 

cost), subject to specific reliability constraints for each of the performance criteria 

considered. If total cost is not minimized, then the optimization could consider only 

the reliability constraints and the  following objective function, 

                                     



ND

j

j

T

j

1

2))(( d                                                (7) 

subject to  

                                                                u
ii

l
i ddd                                                    (8) 

in which 

              ND is the number of performance criteria; 

             T

j     is the target reliability index for performance level j; 

             )(dj  is the calculated reliability index for performance type j , given  the  

                   design parameter vector d;   

              l

id  is the lower bound of the design parameter id ; 

             
u

id  is the upper bound of the design parameter id . 

 

The optimization can be done by any constrained optimization procedure. A 

gradient-free search algorithm (Möller et al., 2009) has been shown to be effective 

and robust.  

Using fragilities to calculate the probabilities of non-performance (conditional on a 

hazard level) leads to the same results that would be obtained with the method 

described here. However, for design optimization, fragilities would have to be 

obtained for different design parameter vectors d. Here, the vector d is part of the 

input for the neural networks and, therefore, the consequences of changes in design 

can be quickly evaluated. The computational work required to obtain all the fragilities 

may be equal to, or larger than, that required to develop the databases to train the 

neural networks. 

 

3 APPLICATION EXAMPLE: STEEL PILE FOUNDATION 

 

Figure 6 shows a pile steel tube, of diameter D, wall thickness t and length L, 

supporting a mass M. The pile is embedded into a sandy soil layer with relative 

density DR . Under earthquake excitation, the mass will displace an amount Δ. Of 

interest is an assessment of the probability with which the displacement Δ ( the 

response of interest) will exceed levels given as fractions of the pile diameter D. That 

is, the performance function G is defined as 
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                           ),,,,,(a - D ),( G rDMTXG RS d                                    (9)                                 

in which 

            λ  = fraction of D defining the limiting displacement; 

            aG = peak ground acceleration; 

            ωS = soil frequency in the Clough-Penzien Power Spectral Density function; 

            T  =  duration of the strong motion part of the accelerogram record; 

            M =  applied mass; 

            DR = soil relative density; 

             r  =  nominal variable indicating the accelerogram record. 

 

The pile has a diameter D = 0.356m, with wall thickness t = 0.10m, and a length L 

= 30m. Yield strength and elastic modulus were assumed deterministic and to have 

nominal values for mild steel (respectively, 250 MPa and 200000 MPa). Twenty 

earthquake records were simulated as stationary processes using a spectral 

representation based on the Clough-Penzien Power Spectrum Density function 

(Clough and Penzien, 1975), an envelope modulation function (Amin and Ang, 1968), 

and twenty different sequences of random phase angles.  

For different combinations of the intervening variables, databases were 

constructed for the mean response Δ and its standard deviation over the twenty 

records. These databases were then used to train corresponding neural networks, as 

previously discussed. Finally, the response Δ in Eq.(9) was represented using the 

format shown in Eq.(4). 

The structural analysis of the pile was done considering the dynamic equilibrium of 

the mass M as a single degree of freedom system. The restoring hysteretic force F(Δ) 

can be calculated using a beam finite element model of the pile, allowing for its 

elasto-plastic behavior, and calculating the deflected shape w. The nonlinear soil 

reactions p(w) shown in Figure 6  can be represented by p-w curves, keeping track of 

the development of gaps between the pile and the surrounding soil. This model 

(Foschi, 2000) depends solely on mechanical properties of the pile and the soil, and 

produces the hysteretic loop for any input excitation, automatically developing the 

pinching characteristics. 
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                                            Figure 6. Pile steel tube under earthquake excitation 

 

The p-w relationship used was (Yan and Byrne, 1992), 
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in which 8.0

R )D( 5.0  , and DR is the soil relative density. The modulus Emax depends 

on the specific weight of the soil and the depth of the soil layer (Yan and Byrne,1992). 

In this work only the relative density was considered to be a random variable. In order 

to explore the importance of the analysis model used, an alternate formulation of the 

hysteretic properties was considered. In this formulation, the response to a prescribed 

pile head cyclic displacement history is obtained first (by calculation or by testing), 

and it is then fitted with a specified format for the hysteretic loop. Many such formats 

are contained in dynamic analysis packages but, although one could obtain a good fit 

of the cyclic response, there is no guarantee that the good representation would also 
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be achieved for any other history or earthquake record. Perhaps the most 

sophisticated approach of this kind is the model commonly known as BWBN (Baber 

et al., 1981, 1985). This is a first-order differential equation, containing 13 parameters. 

The solution of this equation, for a given history, can represent loops with pinching 

and degradation characteristics. The parameters are adjusted to match a given cyclic 

response. Although very versatile, this approach cannot guarantee that the same 

parameters would generate a proper loop for excitations other than the one used for 

their calibration. One of the objectives in this application example is a comparison of 

the two hysteretic formulation approaches, both for reliability assessment as well as 

for performance-based design. 

The pile was subjected to a cyclic displacement history Δ(t) as shown in Figure 7. 

The finite element approach developed a corresponding hysteresis loop as shown in 

Figure 8. This response was used to calibrate the parameters of the BWBN model, 

with the resulting loop shown in Figure 9.  

 

 
Figure 7. Cyclic displacement history                           Figure 8. Calculated loop, cyclic displacement   

                                                                                       history, finite element approach.                                                                                     

                  

 

 

 

 

 

 

 

 

 

 

                      

Figure 9. BWBN-developed loop for cyclic displacement history 

 

Dynamic analyses for the twenty different earthquake records were carried out 

with the BWBN representation of the hysteretic restoring force and, alternatively, 

calculating each time the hysteresis via the finite-element model. In both cases, the 

neural network methodology previously described was applied. Figures 10 and 11 

show, respectively, the degree of agreement between the neural network predictions 
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and the analysis data for the mean and the standard deviation of the response Δ over 

the records . In each figure, σεr is the standard deviation of the relative error. 

Reliability evaluations were carried out for different values of the parameter λ. The 

use of neural networks, as described, facilitates the use of simulations as these 

become very efficient. Table 1 shows the statistical data for the intervening variables, 

and Table 2 the reliability results. 

 

 

 
  Figure 10. Neural network representation,                       Figure 11. Neural network representation, 

                  mean response                                           standard deviation of the response 

 

 

Table 1. Statistical data for the intervening variables 

 

   The statistics for the peak ground acceleration aG correspond the event, and are 

consistent with a design acceleration (475 years return period, or 10% in 50 years) of 

0.31g , assuming that earthquakes have a Poisson arrival rate of 0.2 (on average, one 

every five years). 

 

Variable Distribution Mean Standard 

Deviation 

aG    (m/sec2) Lognormal 1.0 0.6 

ωS    (rad/sec) Normal 4π π 

T    (sec) Normal 12 2 

M   

(kN.sec2/m) 

Normal 150 15 

DR Normal 0.5 0.1 
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Limit definition, 

factor λ 

Reliability index β 

Hysteresis: Finite 

Element 

Hysteresis: BWBN 

0.1 -0.143 0.716 

0.2 1.097 1.724 

0.4 2.509 2.379 

0.6 3.197 2.675 

0.8 3.730 2.892 

1.0 4.243 3.082 

Table 2. Reliability results and comparison between hysteretic models 

 

Table 2 shows that the model used for the hysteretic restoring force has a 

significant influence on the calculated reliability level and that, in this case, while the 

approximating BWBN model provides conservative answers for high λ, the reverse 

occurs at low levels of displacement performance.     

   Finally, for performance-based design, two performance criteria were chosen: a 

displacement level associated with moderate damage level, with λ = 0.40, and 

another associated with more substantial damage, λ = 1.0. For the first criterion, the 

target reliability was β = 2.5, while for the second the target was β = 4.5. The design 

parameter was the mean mass M, that is, the problem is to determine the optimized 

mean value of the applied mass allowing for a coefficient of variation of 0.10. The 

results are shown in Table 3, again comparing results obtained using either of the two 

different hysteretic approaches. It is seen from this Table that the permissible mean 

mass M, for the same set of performance criteria, is substantially influenced by the 

hysteretic model used. 

 

                              Hysteresis: Finite element 

Mean         

Mass 

(kN.sec2/m

) 

Performanc

e 

criterion λ 

Target 

reliability 

β 

Achieved 

reliability 

β 

139.83 0.4 2.5 2.589 

1.0 4.5 4.508 

 Hysteresis: BWBN 

Mean  

Mass 

(kN.sec2/m

) 

Performanc

e 

criterion λ 

Target 

reliability 

β 

Achieved 

reliability 

β 

102.19 0.4 2.5 2.761 

 1.0 4.5 4.420 

Table 3. Performance-based design, results 

Mecánica Computacional Vol XXIX, págs. 893-910 (2010) 907

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

 

4    CONCLUSIONS 

 

A complete study of an engineering problem requires the coupling of analysis 

tools and reliability analysis, to properly consider the uncertainties in the input 

variables and the resulting variability in the output. Coupling of these tools is 

necessary to implement performance-based design, when the system is required to 

meet different performance criteria with specified minimum reliabilities and at a 

minimum weight or cost.  

Many applications of this coupling exist, particularly for large projects with severe 

consequences in the case of non-performance. Modern design codes attempt to 

partially achieve the objectives of a full probabilistic analysis by implementing 

deterministic design equations which incorporate several factors for the load and for 

the resistance. In a properly calibrated code, these factors are adjusted to achieve, on 

average and over a large number of applications, a target reliability which has been 

chosen for the code.  

     Not all codes in all countries have been calibrated on a reliability basis. This 

applies, in particular, to codes for earthquake design. For seismic applications, and 

because of the many uncertainties associated with the ground motion, a full 

probabilistic analysis would provide a general approach to seismic reliability 

estimation and performance-based design. To this end, a straight-forward method 

has been presented. The method is based on the development of response 

databases, using different combinations of the intervening random variables and 

design parameters, combinations which are optimally chosen within the variable 

bounds. These databases are obtained for the mean and for the standard deviation of 

the responses over a set of earthquake records, all normalized to have a unit peak 

acceleration or a unit acceleration response spectrum at a given period. The 

databases are then used to train corresponding neural networks, a strategy that 

permits a very efficient evaluation of reliability and to find optimum design 

parameters satisfying, as best as possible, a set of target reliabilities for the different 

limit states. Neural networks allow the use of importance sampling simulation (even 

Monte Carlo simulation) without a heavy computational effort. This simulation task 

would be very demanding if the responses would need to be calculated, every time, 

with a new dynamic analysis. At the same time, this efficient implementation of 

simulation provides an alternative to methods like FORM which, in dynamics 

problems, sometimes show convergence difficulties. 

 All analysis and reliability results are, of course, conditional on the models used. 

An application example has shown that hysteretic modelling can play a substantial 

role in seismic reliability assessment or performance-based design. It is important 

that the model used for hysteresis be able to adapt to any input ground motion, 

since the use of a model fitted to a response from an experimental cyclic 

displacement history cannot guarantee reliable answers when applied to any other 
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history. This is contrary to the common assumption that hysteresis modelling is not 

important because any uncertainty associated with it is overwhelmed by the 

uncertainty in the ground motion. 
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