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Abstract. The nonlinear planar response of a cantilever rotating slender beam to a principal parametric 
resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an 
integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and 
modal damping. A composite linear elastic material is considered and the cross-section properties are 
assumed to be constant given the assumption of small strains. The beam is subjected to a harmonic 
transverse load in the presence of internal resonance. The internal resonance can be activated for a 
range of the beam rotating speed, where the second natural frequency is approximately three times the 
first natural frequency. The method of multiple scales method is used to derive four-first ordinary 
differential equations that govern the evolution of the amplitude and phase of the response. These 
equations are used to determine the steady state responses and their stability. Amplitude and phase 
modulation equations as well as external force–response and frequency–response curves are obtained. 
Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in 
the instability regions of the periodic solutions. 

 

Mecánica Computacional Vol XXIX, págs. 1203-1224 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

1 INTRODUCTION 

Vibrations of rotating blades or beams have been a subject of constant research interest 
since they are applied in the design of helicopter blades, turbopropeller blades, wind-turbine 
blades and robotic arms. The most simplified representation of a rotating beam is a one-
dimensional Euler-Bernoulli model. A uniform rotating beam of doubly symmetric cross-
section is a special case (no torsional motion: i.e., out-of-plane (flapping) vibration and in-
plane (lead-lag) vibration are uncoupled). Owing to the stiffening effect of the centrifugal 
tension, one can expect the natural frequencies to increase with an increase in the speed of 
rotation. In several publications a cantilever beam under rotating speed has been considered 
and approximate methods such as Rayleigh-Ritz, Galerkin, finite element methods, etc., has 
been used to derive natural frequencies (Schilhansl, 1958; Wang et al. 1976; Leissa, 1981; 
Hodges and Rutkowski, 1981). However, the nonlinear dynamic analysis of rotating beam is 
rather rare in the literature (Pesheck et al. 2002a and b; Apiwattanalunggarn et al. 2003; 
Turhan and Bulut, 2009). Systematic procedures have been developed to obtain reduced-order 
models (ROMs) via nonlinear normal modes (NNMs) that are based on invariant manifolds in 
the state space of nonlinear systems (Shaw and Pierre 1993, 1994; Shaw et al., 1999). These 
procedures initially used asymptotic series to approximate the geometry of the invariant 
manifold and have been used to study the nonlinear rotating Euler–Bernoulli beam (Pesheck 
et al., 2002a). Pesheck et al. 2002b, employed a numerically-based Galerkin approach to 
obtain the geometry of the NNM invariant manifolds out to large amplitudes. These 
procedures can be applied to more general nonlinearities over wider amplitude ranges, and 
have been applied to study the vibrations of a rotating Euler–Bernoulli beam (Pesheck et al., 
2001). Apiwattanalunggarn et al. (2003) presented a nonlinear one-dimensional finite-element 
model representing the axial and transverse motions of a cantilevered rotating beam, which is 
reduced to a single nonlinear normal mode using invariant manifold techniques. They used 
their approach to study the dynamic characteristics of the finite element model over a wide 
range of vibration amplitudes. As it can be note, the interest of most of works about nonlinear 
dynamic of rotating beams are focus on the reduced-order model as the invariant manifold 
solution. Turhan and Bulut (2009) investigated the in plane nonlinear vibrations of a rotating 
beam via single- and two-degree-of-freedom models obtained through Galerkin discretization. 
They performed a perturbation analyses on single- and two-degree-of-freedom models to 
obtain amplitude dependent natural frequencies and frequency responses. In the last four 
references, the computational cost associated with generating the manifold solution and the 
efficiency of the resultant model was mainly analyzed. 

From the review of literature, it is found that the study of internal resonance in the area of 
cantilever rotating slender beam subjected to a harmonic transverse load has not yet been 
explored so far. The nonlinear modal interaction or the internal resonance in the system 
arising out of commensurable relationships of frequencies, in presence of parametric 
excitation due to periodic load can have possible influence on system behavior, which needs 
to be studied.  

In the present paper, we analyze the nonlinear planar vibration of a rotating cantilever 
beam with harmonic transverse load in the presence of internal resonance. The model is based 
on one-dimensional Euler-Bernoulli formulation where the geometric cubic nonlinear terms 
are included in the equation of motion due to midline stretching of the beam. The linear 
frequencies of the system are dependent on the rotation speed and this effect is used to 
activate the internal resonance. For a particular rotation speed the second natural frequency is 
approximately three times the first natural frequency and hence the first and second modes 
may interact due to a three-one internal resonance. Principal parametric resonance of first 
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mode considering internal resonance is analyzed here. Principal parametric resonance of 
second mode in presence of 3:1 internal resonance is not considered here due to lack of space 
and is studied in another paper. For a comprehensive review of nonlinear modal interactions, 
we refer the reader to Nayfeh and Mook (1979), Nayfeh and Balachandran (1989), and 
Nayfeh (1996). 

The method of multiple scales (MMS) is used to attack directly the governing nonlinear 
partial differential equation of motion of the beam and reduced the problem to sets of first-
order nonlinear modulation equations in terms of the complex modes of the beam. These 
modulation equations are numerically analyzed for stability and bifurcations of trivial and 
nontrivial solutions. Bifurcation diagrams representing system responses with variation of 
parameters like amplitude and frequency of the lateral excitation load, frequency detuning of 
internal resonances and damping are computed with the help of a continuation algorithm 
(Nayfeh and Balachandran, 1995). The trivial state stability plots are presented. The 
modulation equations are also numerically integrated to obtain the dynamic solutions 
periodic, quasiperiodic and chaotic responses for typical system parameters. 

For the principal parametric resonance of first mode, the influence of internal resonance is 
illustrated in the frequency and amplitude responses. The system is shown to have Hopf 
bifurcations and saddle node bifurcations for different parameter values. The influence of 
intensity of transverse load amplitude and frequency detuning for internal resonance on the 
strength of nonlinear modal interaction are illustrated. The system is shown to exhibit 
dynamic solutions like periodic and quasiperiodic responses for typical range of parameter 
values. 

2. NON-LINEAR EQUATIONS OF MOTION 

We consider the dynamic response of a rotating box beam subjected to harmonic 
transverse loads (see Figure 1). The origin of the beam coordinate system (x, y, z) is located at 
the blade root at an offset R0 from the rotation axis fixed in space. R0 denotes the radius of the 
hub (considered to be rigid) in which the blade or beam is mounted and which rotates about 
its polar axis through the origin 0. We assume that the motion is planar and the cross sections 
remains plane during transverse bending. The laminate stacking sequence is assumed to be 
symmetric and balanced (Barbero, 1999). A doubly symmetric cross-section box-beam is 
used and so out-of-plane (flapping) and in-plane (lead-lag) vibration are uncoupled. 
Neglecting rotary inertia and the transverse shear, the non-linear equations of motion of a 
rotating beam yields (Machado et al. 2007; Librescu, 2006):  

( ) 2
0A u N A R x u 0ρ ρ′− − + + Ω = ,                                                 (1) 

( )   ( ) cos( )ivEI v N v A v F x tρ ϖ′′− + = ,                                             (2) 

where N is axial beam force,  

21N EA u v
2

⎛ ⎞′ ′= +⎜ ⎟
⎝ ⎠

,                                                                                   (3) 

Ω is the beam rotation speed, ρA is the mass per unit length, EA and EI are the axial and 
flexural rigidity, ϖ is the excitation frequency, and F(x) describes the spatial distribution of 
the applied transverse harmonic load. Overdots indicate differentiation with respect to time 
and primes with respect to the axial co-ordinate. 
If the inertial effects along the longitudinal direction are neglected and considering the radius 
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of the hub R0 = 0, by the direct integration the Eq. (1) in conjunction with the boundary 
condition of zero axial load at the free end, then 

 .
2

2 xN A cte
2

ρ= − Ω +                                                                   (4) 

Substituting Eq. (3) into Eq. (4), one obtains  

 
2

2 21 A xu v cte 0
2 EA 2

ρ′ ′+ + Ω − = ,                                                   (5) 

where the integration constant denoted as ε0(t) can be evaluated by taking the average value 
on both sides of Eq. (5) along the beam length L:  

( ) dx  
L

2 2 2L 0
0

0

u u 1 At v L
L 2L 6 EA

ρε − ′= + + Ω∫ ,                                                   (6) 

Substituting Eq. (3) into Eq. (2) and then from Eqs. (5) and (6) for u´ and from the differenced 
Eq. (4) for u´´ in the modified Eq. (2), the following equation of transversal motion yields: 

  dx ( ) cos( )
2 2L

iv 2 2 2L 0

0

u u 1 A LA v EI v EA v x v A v x F x t
L 2L 2EA 3

ρρ ρ ϖ
⎡ ⎤⎛ ⎞− Ω′ ′′ ′+ − + + − + Ω =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦∫ .    

(7) 

In this case, for a rotating cantilever beam, supposing that the left end is fixed, that is, u0 = 0, 
from Eq. (5) the axial force along the bean length for any time is  

( )( , )  

 dx.

2
2

0

2 L
2 2 2L

0

xN x t EA t A
2

EAu A L EAx v
L 2 3 2L

ε ρ

ρ

= − Ω

⎛ ⎞
′= + Ω − +⎜ ⎟

⎝ ⎠ ∫
                                 (8) 

Taking Eq. (8) into consideration, Eq. (7) can be concisely rewritten as 

( )  , ( ) cos( )iv 2A v EI v N x t v A v x F x tρ ρ ϖ′′ ′+ − + Ω = .                                  (9) 

To eliminate the spatial dependence we introduce an approximation in Eq. (9) considering the 
average value of the axial and centrifugal force along the beam: 

  dx ( )cos( )
L

iv 2 2

0

EA LA v EI v Nv v v A v F x t
2L 2

ρ ρ ϖ′′ ′′ ′ ′+ − − + Ω =∫ .                        (10) 

Notice that 

 ( )   2 2
0 L

A EAN N 0 L u
6 L

ρ
= − Ω = ,                                                         (11) 

where N0(0) is the tensile axial force applied to the originally rectilinear beam at its right end 
in time t = 0.  

( )   2 2
0 L

EA AN 0 u L
L 6

ρ
= + Ω .                                                         (12) 
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On the other hand, the cantilever boundary conditions demand that 

    and       at ,
  and      at .

v 0 v 0 x 0
v 0 v 0 x L

′= = =
′′ ′′′= = =

                                                         (13) 

Finally, introducing a nondimensional quantity for x* = x / L, substituting this relationship in 
Eqs. (10) and (13), adding damping μ, and dropping the asterisk the expressions can be 
conveniently rewritten as 

 dx cos( )
1

iv 2

0
v v 2 v v v v v f tα μ χ γ λ ϖ′′ ′′ ′ ′+ + − − + =∫ ,                                       (14) 

    and       at ,

  and      at ,

v 0 v 0 x 0

v 0 v 0 x 1

′= = =

′′ ′′′= = =
                                                         (15) 

where 

( ),    = ,  = ,   = ,     .
  

2

4 2 4

EI N EA F xf
A L A L 2 AL 2 A

α χ γ λ
ρ ρ ρ ρ

Ω
= =                        (16) 

X

Z

�

L

h

Y

R0
0 x,u

y,v
z

 
Figure 1. A schematic description of the rotating box beam. 

2 METHOD OF ANALISIS 

The present system of rotating cantilever beam is analyzed in the form of a first-order 
uniform expansion through the MMS applied directly to the partial differential Eq. (14) and 
the associated boundary conditions Eq. (15). The direct perturbation technique has been used 
considering its advantage over the discretization perturbation technique (Nayfeh el al. 1992; 
Nayfeh, 1996). Though the direct perturbation method and the discretization-perturbation 
method, both for linear and nonlinear systems, yield identical results for infinite modes, the 
former gives better results for finite mode truncation if a higher order perturbation scheme 
were used. For lower order perturbation schemes, as adopted in the present case, both 
methods yield identical results. But the choice of orthogonal basis functions for the 
discretization-perturbation equation might not be so straightforward for some involved cases 
and a transformation of equation to a convenient form for orthogonalizing the modes may be 
needed. In such a case, employing the direct perturbation method would be more 
straightforward, even though the algebra might be more involved. 

We seek an approximate solution to this weakly nonlinear distributed parameter system in 
the form of a first-order uniform expansion and introduce the time scale Tn = εnt, n = 0,1,2,... 
The time derivatives are 
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...,   ..., ,     0,1,2,....
2

2
0 1 0 0 1 n2

n

d dD D D 2 D D D n
dt dt T

ε ε ∂
= + + = + + = =

∂
              (17) 

A small parameter ε is introduced by ordering the linear damping and load amplitude as 
, f fμ εμ ε= = . Moreover, the displacement v(x,t) are expanded as: 

( ) ( ) ( ), , , , , ...1 0 1 2 0 1v x t v T T x v T T xε= + +                                         (18) 

Substituting Eqs. (17) and (18) into Eqs. (14) and (15) and equating coefficients of like 
powers of ε on both sides, we obtain 

 
Order ε0 :              

2 iv
0 1 1 1 1D v v v v 0α χ λ′′ ′+ − + =                                                                                            (19) 

 ,          at ,1 1v 0 v 0 x 0′= = =                                                                                             (20)  

,          at .1 1v 0 v 0 x 1′′ ′′′= = =                                                                                             (21) 

Order ε1 :              

 ( ) dx cos( )
1

2 iv 2
0 2 2 2 2 0 1 1 0 1 1 1

0
D v v v v 2D D v 2 x D v v v f tα χ λ μ γ ϖ′′ ′ ′′ ′+ − + = − − − +∫              (22)     

,          at ,2 2v 0 v 0 x 0′= = =                                                                                             (23)  

,          at .2 2v 0 v 0 x 1′′ ′′′= = =                                                                                             (24) 

The solution to the first-order perturbation Eqs. (19-21) can be expressed as   
i( , , ) ( ) ( ) ,  m 0T

1 0 1 m m 1
m 1

v T T x x A T e ccωφ
∞

=

= +∑                                         (25) 

where φm(x) are the mode shapes, ωm are the natural frequencies and cc stands for complex 
conjugate. The mode shapes φm(x) for the specified cantilever boundary conditions are 
calculated as 

{( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

4 m 3 m 2 m 1m 4 m

2 m 3m 1m 4 m

1m 3m 2 m 4 m

x x 2 2 2
m 2m 1m 4m 1m 2m 4m 4m 1m 2m

x 2 2 2
3m 1m 4m 1m 3m 4m 4m 1m 3m

x 2 2 2
3m 2m 4m 2m 3m 4m 4m 2m 3m

x e e e e e

e e e e

e e e e

β β β β β

β β β β

β β β β

φ β β β β β β β β β

β β β β β β β β β

β β β β β β β β β

⎡ ⎤= + − − + − + −⎣ ⎦

⎡ ⎤+ − − − − −⎣ ⎦

⎡+ − − + − + −⎣ }
( ) ( ) ( )

2 m

1m 3m

2
2m

2 2
1m 3m 1m 2m 3m 3m 1m 2m

e

e e

β

β β

β

β β β β β β β β

⎤ ⎡−⎦ ⎣

⎤− + − + − ⎦

   

(26) 

where βim are the eigenvalues which satisfy the relation 
4 2 2
im im im m 0αβ χβ λβ ω− + − = ,            i = 1,2,3,4                                   (27) 

and the characteristic equation 
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( )
( )
( )

( )( )

( )( )

( )( ) .

2 n 3n 1n 4 n

1n 3n 2 n 4 n

1n 2 n 3n 4 n

2 2 2 2
2n 3n 1m 4m 2n 3n 1n 4n

2 2 2 2
1n 3n 2m 4m 1n 3n 2n 4n

2 2 2 2
1n 2n 3m 4m 1n 2n 3n 4n

e e

e e

e e 0

β β β β

β β β β

β β β β

β β β β β β β β

β β β β β β β β

β β β β β β β β

+ +

+ +

+ +

− − +

+ − − − −

+ − − + =

                    (28) 

The linear natural frequencies of the cantilever beam vary with the rotation speed for different 
modes for variation of parameters like flexural stiffness and beam mass. For specific 
combinations of system parameters, the lower natural frequencies can be commensurable, 
leading to internal resonance in the system and nonlinear interaction between the associated 
modes. We analyze the specific case of two mode interaction corresponding to particular 
system parameters.  

A three-to-one internal resonance ω2 ≅ 3ω1  is considered for a range of rotation beam 
speed and it is assumed that there is no other commensurable frequency relationship with 
higher modes. The second natural frequency and three times the first natural frequency are 
plotted as functions of Ω in Figure 2. A three-to-one internal resonance is possible for a 
certain range of rotation speeds. The internal resonance is perfectly tuned when Ω is 326.82 
rpm. The beam geometrical characteristics used are: L = 15 m, h = 0.3 m, b = 0.7 m, e = 0.05 
m. The analyzed material is graphite-epoxy whose properties are E1 = 144 GPa, E2 = 9.65 
GPa, G12 = 4.14 GPa, G13=4.14 GPa, G23 = 3.45 GPa, ν12 = 0.3, ν13  =  0.3, ν23 = 0.5, for a 
sequence of lamination {45/-45/-45/45}. In this case, ρA= 138.9 Kg/m and EI = 9.81 107 
Nm2. 
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Figure 2. Variations of three times the first ω1 and second ω2 natural frequencies with the rotation speed Ω. 

In this work, principal parametric resonance of first mode considering internal resonance is 
analyzed, involving the first two modes. Since none of these first two modes is in internal 
resonance with any other mode of the beam, all other modes except the directly or indirectly 
excited first or second mode decay with time due to the presence of damping and the first two 
modes will contribute to the long term system response (Nayfeh, 1996). Hence we can replace 
Eq. (25) by 

( ) ( ) ( ) ( ) ( ), , ,1 0 2 0i T i T
1 0 1 1 1 1 2 1 2v T T x A T x e A T x e ccω ωφ φ= + +                         (29) 

where cc. stands for the complex conjugate of the preceding terms and Ai are the unknown 
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complex-valued functions. In order to investigate the system response under internal and 
external resonance conditions, two detuning parameters σi are introduced: 

3 ,    .2 1 1 1 2ω ω ε σ ϖ ω ε σ= + = +                                                 (30) 

Substituting Eqs. (29) and (30) to find the solution of Eq. (21), we get 

( ) ( ) ( ) ( )3, ,  ,1 0 1 1 1 0 1 21 0 i T T i T Ti T2 iv
0 2 2 2 2 1 1 2 1

1D v v v v T x e T x e f e cc NST
2

ω σ ω σωα χ λ + +′′ ′+ − + = Γ + Γ + + +   

(31)     

where the terms Γm are defined in Appendix. NST stands for terms that do not produce 
secular or small divisor terms. As the homogeneous part of Eq. (31) with its associated 
boundary conditions has a nontrivial solution, the corresponding nonhomogeneous problem 
has a solution only if a solvability condition is satisfied (Nayfeh and Mook, 1979). This 
requires the right-hand side of Eq. (31) to be orthogonal to every solution of the adjoint 
homogeneous problem, which leads to the following complex variable modulation equations 
for the amplitude and phase 

( ) ( ) 12 8 8 0,
2

1 1 2 1i T i T2
1 1 1 1 11 1 1 12 2 2 1 2 1 1i A A A A A A A A A e f eσ σμ γ γ δ′ + + + + − =                 (32)     

( ) ( )2 8 8 0,1 1i T3
2 2 2 2 21 1 1 22 2 2 2 1i A A A A A A A A e σμ γ γ δ −′ + + + + =                           (33)     

where prime denotes differentiation with respect to the slow time T1 and μm, γm, δm and f1 are 
defined in Appendix. Overbar indicates complex conjugate. The terms in the above equations 
involving the internal frequency detuning parameter σ1 are the contributions of internal 
resonance in the system. 
Introducing a Cartesian coordinates Eq. (34), the following amplitude and phase Eqs. (35-38) 
are finally obtained: 

( ) ( ) i1             , .
2

k 1T
k k 1 k 1A p T iq T e k 1 2ν= − =⎡ ⎤⎣ ⎦                                    (34) 

( ) ( ) ( ) ,2 2 2 2 2 2
1 1 1 1 1 11 1 1 1 12 1 2 2 1 1 1 2 2 1 1p p q q p q q p q 2 p q p q p qμ ν γ γ δ ⎡ ⎤′ = − − + + + + − − +⎣ ⎦           (35) 

( ) ( ) ( ) 12 ,
2

2 2 2 2 2 2
1 1 1 1 1 11 1 1 1 12 1 2 2 1 1 1 2 2 1 1 1q q p p p q p p q p q q p p q fμ ν γ γ δ ⎡ ⎤′ = − + − + − + − + − +⎣ ⎦  

 (36)                             

( ) ( ) ( ) ,2 2 2 2 2 2
2 2 2 2 2 21 2 1 1 22 2 2 2 2 1 1 1p p q q p q q p q q 3 p qμ ν γ γ δ′ = − − + + + + + −                               (37) 

( ) ( ) ( ) ,2 2 2 2 2 2
2 2 2 2 2 21 2 1 1 22 2 2 2 2 1 1 1q q p p p q p p q p 3q pμ ν γ γ δ′ = − + − + − + + −                             (38) 

where  

,         31 2 2 2 1ν σ ν σ σ= = −                                                                       (39) 

and the prime indicates the derivative with respect to T1. 
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3 RESULTS AND DISCUSSION 

For the analysis of the rotating beam subjected to principal parametric resonance of the 
first mode (i.e., ϖ ≅ ω1) in presence of 3:1 internal resonance, system parameters are taken as 
mentioned earlier corresponding to the commensurable natural frequencies of the first and 
second mode of the system. There are no modal interactions involving other modes. The 
specific value of the rotating speed used for the study is Ω = 326.82 rpm for which ω1 = 5.45 
Hz and ω2 = 16.35 Hz. The corresponding nonlinear interaction coefficients (defined in Eqs. 
(33 and 34)), for the specified rotating speed are: γ11 = 1.317, γ12 = 721.387, γ21 = -95.691, γ22 

= -2256.731, δ1 = -47.841 and δ2 = 1.956. 

3.1 Steady-state motions and stability 

The equilibrium solutions of Eqs. (35-38) correspond to periodic motions of the beam. 
Steady-state solutions are determined by zeroing pi´= qi´= 0 the right-hand members of the 
modulation Eqs. (35-38) and solving the non-linear system. Stability analysis is then 
performed by analyzing the eigenvalues of the Jacobian matrix of the non-linear equations 
calculated at the fixed points. Amplitude-load curves are reported in Figures 3a and 3b, for 
external forces in a perfect resonance condition (σ2 = 0) and for a small value of the external 
detuning parameter σ2 = 0.2, respectively, considering damping d1 = d2 = 0.05 and internal 
detuning parameter σ1 = 0.04. The amplitudes a1 and a2 are obtained by means of the 
following expression: 

            , .2 2
i i ia p q i 1 2= + =                                                     (40) 

In the case of σ2 = 0.2 (Figure 3b), the modal solution branch alternatively loses and regains 
stability due to the presence of some saddle-nodes bifurcations.  
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Figure 3. Amplitude-load curves: (a) Perfect external resonance σ2 = 0; (b) External detuning parameter σ2 = 

0.2. Thick line: stable solutions; dashed line: unstable solutions. 
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The frequency-response curves are shown in Figures 4a and b, for an internal and external 
resonance condition. The modal amplitude ai curves are obtained in function of the external 
detuning parameter σ2. In this case, the forcing amplitude is f1 = 0.05, modal damping di = 
0.05 and internal detuning parameter σ1= 0.04. The response curve corresponding to the first 
amplitude shows a noticeable hardening-spring type behavior (Figure 4a). The amplitude of 
the indirectly excited second mode is smaller in comparison with the first mode (Figure 4b). 
In the Figure 4, solid (dotted) lines denote stable (unstable) equilibrium solutions and thin 
solid lines denote unstable foci. 
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Figure 4. Frequency-response curves for: (a) first and (b) second modes, when f1 = 0.05, σ1 = 0.04 and di = 0.05. 

Solid (dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable foci. 

The response curves exhibit an interesting behavior due to saddle-node bifurcations (where 
one of the corresponding eigenvalues crosses the imaginary axis along the real axis from the 
left- to the right-half plane) and Hopf bifurcations (where one pair of complex conjugate 
eigenvalues crosses the imaginary axis transversely from the left to the right-half plane). As 
σ2 increases from a small value, the solution increases in amplitude and loses stability via a 
Hopf bifurcation at σ2 = -0.4545 (H1) and regains its stability via a reverse Hopf bifurcation at 
σ2 = -0.3307 (H2). Then, the response jumps to another branches of stable equilibrium 
solutions (jump effect), depending on the initial conditions. The dynamics solutions that 
emerge from this bifurcation will be analyzed in the next section.  There is an unstable 
solution happening between two saddle-node bifurcations SN1 and SN2 (σ2 = -0.3307 and σ2 = 
-0.3516). The reduction in amplitude of the first mode represents an increased in the second 
mode amplitude. Increasing σ2 beyond SN2, the stable solution grows again in amplitude until 
arriving to a saddle-node bifurcation SN3 (σ2 =0.2378), resulting in a jump of the response to 
another branches of solutions. The new stable branch is left bounded by a saddle-node 
bifurcation SN4 (σ2 =0.1454).  
When the modal damping is reduced di = 0.025, the influence of this effect is shown in 
Figures 5a and b, conserving the same forcing amplitude and internal detuning parameter 
values that the previous model. The frequency-response curves are similar to the previous 
case, and the modal amplitudes are larger. However, it can be seen that the influence of the 
first mode on the second mode response is smaller in the neighborhood of the Hopf 
bifurcation H1 and the saddle-node SN2.     
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Figure 5. Frequency-response curves for: (a) first and (b) second modes, when f1 = 0.05, σ1 = 0.04 and di = 

0.025. Solid (dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable 
foci. 

The influence of the load amplitude parameter f1 is on the frequency-response is analyzed in 
Figures 6a, b, c, d, e and f, where the modal damping considered is di = 0.05 and when the 
internal detuning parameter is far from the perfect resonance condition σ1 = 4. When f1 = 0.1 
(Figures 6a and b), the frequency-response curves are similar to the previous case. However, 
for large values of σ2 the stable equilibrium solution loses stability via a Hopf bifurcation at 
σ2 = 0.7318 (H3) and regains its stability via a reverse Hopf bifurcation at σ2 = 0.7834 (H4). 
The frequency-response curves for a forcing load f1 = 0.05 is shown in Figures 6c and d, and 
for f1 = 0.025 in Figures 6e and f. The amplitude of the second mode keeps almost the same 
when the load is reduced. However, as f1 decreased, the dynamic behavior of the beam 
becomes more complicated and the hardening-spring curvature is also declining. 

3.2 Dynamic solutions 

According to the Hopf bifurcation theorem, small limit cycles are born as a result of the 
Hopf bifurcation. The born limit cycles are stable if the bifurcation is supercritical and 
unstable if the bifurcation is subcritical. Cycle-limit of the modulation equations correspond 
to aperiodic responses of the beam. In Figure 7, a schematic bifurcation diagrams for the 
orbits of the modulation Eqs. (35-38) in the neighborhood of the unstable foci when f1 = 
0.05, σ1 = 0.04 and di = 0.05 (see Figure 4). The software XPP-AUTO (Doedel, 1997) is used 
to obtain the dynamic solutions that emerge from H1. It is observed that a stable small limit 
cycle born due to the supercritical Hopf bifurcation at H1 (σ2 = -0.4545). Then, as σ2  

increases, the cycle limit grows and loses stability through a cyclic-fold bifurcation at CF1 (σ2 
= -0.4451). Consequently, the two-period quasiperiod response of the beam jumps to another 
two-period quasiperiod response. 

On the other hand, as σ2 decreases past the supercritical Hopf bifurcation H2 (σ2 = -
0.3307), the equilibrium solutions loses stability and gives way to a small-amplitude limit 
cycle. As the parameter σ2 is reduced, the cycle limit loses and recovers stability through two 
cyclic-fold bifurcation CF4 and CF3 (σ2 = -0.3471 and σ2 = -0.5063, respectively). It is 
noticeable that subcritical instability exists. For example, between the interval CF3 < σ2  <  H2 
and CF2 < σ2  <  H1 the beam response may be periodic or two-periodic quasiperiodic motion, 
depending on the initial conditions. When H1 < σ2  <  CF1 the beam response is a two period 
quasiperiodic motion.   
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Figure 6. Frequency-response curves for the first and second modes when di = 0.05 and σ1 = 4; (a,b) f1 = 0.1, 

(c,d) f1 = 0.05, (e,f) f1 = 0.025. Solid (dotted) lines denote stable (unstable) equilibrium solutions and thin solid 
lines denote unstable foci. 

As it was mention in the previous section, the dynamic behavior of the beam becomes more 
complicated for an internal detuning parameter σ1 = 4 and for small values of the forcing 
amplitude f1. The dynamic solutions for the case of f1 =0.05 and di = 0.05 are analyzed 
(according to the Figure 6b of frequency-response curves). In this case, there are four Hopf 
bifurcations, where H1 (σ2 = -0.1284) and H4 (σ2 = 0.7989) correspond to supercritical Hopf 
bifurcation, while H2 (σ2 = 0.34056) and H3 (σ2 = 0.6437) correspond to supercritical Hopf 
bifurcation. As σ2 increases from the left Hopf bifurcation H1, six branches of solutions are 
found in the neighborhood of H1. 
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Figure 7. Schematic bifurcation diagrams illustrating the relative location of bifurcations, which limit cycle 

encounters between the Hopf bifurcation points when di = 0.05, σ1 =0.0 4 and f1 = 0.05. H = Hopf and 
CF = cycle-fold bifurcation. 

A schematic diagram of these branches is shown in Figure 8. It is noticeable that multiple 
attractors coexist between these branches. The relative sizes of branches of cycles limit in the 
neighborhood of the Hopf bifurcation H1 are: -0.1284 < σ2  < -0.08 on branch I, -0.1421 < σ2  
< -0.14068 on branch II, -0.1571 < σ2  < -0.1564 on branch III,  -0.1716 < σ2  < -0.17113  on 
branch IV, -0.1863 < σ2  < -0.18598 on branch V,  -0.2035 < σ2  <  -0.20324 on branch VI. 
 

H1�2

PD

PDII

I

II
CF

PDIII

III
CF

PDIV

IV
CF

PDV

V
CF

PDVI

VI
CF  

Figure 8. A schematic of the dynamic solutions found in the neighborhood of the Hopf bifurcation H1, when di = 
0.05, σ1 = 4 and f1 =0.05.  H = Hopf bifurcation, CF = cycle-fold bifurcation and PD = period-doubling 

bifurcation. 

In the first branch, a small limit cycle born as a result of the supercritical Hopf bifurcation H1. 
Two-dimensional projections of the phase portraits of the limit cycle onto the p1-p2 plane at 
various pre and post-period-doubling bifurcation points are shown in Figures 9a-f. The 
period-one limit cycle (Figure 9a and b) grows and deforms and remains stable until a period-
doubling bifurcation occurs PD2 (σ2 = -0.12470). Then it undergoes a sequence of period 
doubling bifurcations DP4 (σ2 = -0.12428190), DP8 (σ2 = -0.12420501), DP16 (σ2 = -
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0.12419385), culminating in a chaotic attractor as shown in Figure 10a (σ2 = -0.12415). As σ2 
decreases slightly, the chaotic attractor increases in size and collides with its basin boundary, 
resulting in the destruction of the chaotic attractor and its basin boundary in a boundary crisis. 
As a result, the beam response jumps to a far away attractor, as it can be seen in the time 
history of p1 in Figure 10b. 
Two-dimensional projections of the phase portraits of the limit cycle found on branch II of 
Figure 8 are shown in Figure 11a. As σ2 is increases, the limit cycle of period-1 grows and 
deforms and remains stable until a period-doubling bifurcation occurs. Then it undergoes a 
sequence of period doubling bifurcations, period-2 and period-4 (see Figure 11b and c), 
culminating in a chaotic attractor as shown in Figure 11d. The chaotic attractor keeps stable in 
size to σ2 = -0.14068, after that value the response of the beam jumps to a periodic solution. 
The same dynamic behavior is observed in all the others branches. For example, period-
doubling bifurcation occurs from the cycle limit which is found on branch III. Figures 12 a, b, 
c and d, show the two-dimensional projections of the phase portraits of the limit cycles onto 
the p1-p2 plane corresponding to different values of the internal detuning parameter σ2. The 
chaotic attractor found in this branch disappear when σ2 = - 0.1564 and the beam response 
jumps to a periodic solution, as in the previous branch.  
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Figure 9. Two-dimensional projections of the phase portraits of the limit cycle found on branch I onto the p1-p2 
plane, when di = 0.05, σ1 = 4, f1 =0.05 and σ2 = (a) -0.1283 (p-1), σ2 = (b) -0.1248 (p-1), σ2 = (c) -0.1245 (p-2), 

σ2 = (d) -0.12424 (p-4), σ2 = (e) -0.12420 (p-8) and σ2 = (d) -0.12419 (p-16). 
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Figure 10. Attractor chaotic found in branch I, (a) two-dimensional projection of the phase portrait onto the p1-

p2 plane for σ2  = -0.12415, and (b) time history of p1 after a crisis had occurred for σ2  = -0.10215. 
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Figure 11. Two-dimensional projections of the phase portraits of the limit cycle found on branch II onto the p1-

p2 plane, when σ2 = (a) -0.141819 (p-1), σ2 = (b) -0.140955 (p-2), σ2 = (c) -0.14075 (p-4), σ2 = (d) -0.1473 
(attractor). 

The limit cycle of period-1 corresponding to branch IV is shown in Figure 13a. As σ2 is 
increases, period doubling bifurcations are also found on this branch. The limit cycles of 
period-2 and 4 are shown in Figure 13b and c. The chaotic attractor found at σ2 = -0.17117 is 
shown in Figure 13d, and it remains alive until σ2 = -0.17113.  
A cycle-fold bifurcation occurs at the left end of the branch V (see Figure 8), whereas a one 
supercritical period-doubling bifurcation appears to the right when the σ2 is increases. The 
limit cycles calculated on this branch are shown in Figure 14a, b and c. A chaotic attractor is 
found at σ2 = -0.186001 (Figure 14d) and it is valid until the beam response jumps to a 
periodic solution when σ2 is increased to -0.18598. As in the previous branches, the two-
dimensional projections of the phase portraits of the limit cycle found on the last branch VI of 
Figure 8 are shown in Figure 15a, b and c. The chaotic attractor size found on this branch is a 
little larger in comparison with those found on the others branches.  
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Figure 12. Two-dimensional projections of the phase portraits of the limit cycle found on branch III onto the p1-

p2 plane, when σ2 = (a) -0.156966 (p-1), σ2 = (b) -0.15655 (p-2), σ2 = (c) -0.156465 (p-4), σ2 = (d) -0.15646 
(attractor). 
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Figure 13. Two-dimensional projections of the phase portraits of the limit cycle found on branch IV onto the p1-
p2 plane, when σ2 = (a) -0.171515 (p-1), σ2 = (b) -0.1712011 (p-2), σ2 = (c) -0.171189 (p-4), σ2 = (d) -0.17117 

(attractor). 
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Figure 14. Two-dimensional projections of the phase portraits of the limit cycle found on branch V onto the p1-
p2 plane, when σ2 = (a) -0.1862268 (p-1), σ2 = (b) -0.1862264 (p-2), σ2 = (c) -0.1860081 (p-4), σ2 = (d) -

0.186001 (attractor). 
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Figure 15. Two-dimensional projections of the phase portraits of the limit cycle found on branch VI onto the p1-

p2 plane, when σ2 = (a) -0.2033020 (p-1), σ2 = (b) -0.20331951 (p-2), σ2 = (c) -0.203270 (p-4), σ2 = (d) -
0.203250 (attractor). 

On the other hand, there is another supercritical Hopf bifurcation denoted as H4 (σ2 = 

0.7989) in the frequency-response of Figure 8. In this case, when σ2 decreases from the right 
Hopf bifurcation H4, two branches of solutions are found in the neighborhood of H4. A 
schematic diagram of these branches is shown in Figure 16. It is supposed that some attractors 
can coexist as in the previous case. The relative sizes of branches of cycles limit in the 
neighborhood of the Hopf bifurcation H4 are: 0.795 < σ2  < 0.7984 on branch I, and 0.1421 < 
σ2  < -0.14068 on branch II. 
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Figure 16. A schematic of the dynamic solutions found in the neighborhood of the Hopf bifurcation H4, when di 

= 0.05, σ1 = 4 and f1 =0.05.  H = Hopf bifurcation and PD= period-doubling bifurcation. 

In Figure 17a, it is shown a two-dimensional projection of the phase portrait of the limit 
cycle born as decreases σ2 past H4 on branch I. As σ2 decreases further, the limit cycle grows 
and deforms as shown in Figure 17b. Then, the deformed limit cycle undergoes a sequence of 
supercritical period-doubling bifurcations, leading to chaos. Figures 17c, d and e, shown the 
representative period-2, period-4 and period-8 limit cycles. The representative chaotic 
attractor at σ2 = 0.79637 is shown in Figure 16f.  Decreasing σ2 the beam response jumps 
from the large chaotic amplitude to a small periodic solution when σ2 = - 0.795. 
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Figure 17. Two-dimensional projections of the phase portraits of the limit cycle found on branch I onto the p1-p2 

plane, from H4, when σ2 = (a) 0.7986741 (p-1), σ2 = (b) 0.797558 (p-1), σ2 = (c) 0.7965944 (p-2), σ2 = (d) 
0.796467 (p-4), σ2 = (e) 0.79638778 (p-8), σ2 = (f) 0.79637 (attractor). 
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Figure 18. Two-dimensional projections of the phase portraits of the limit cycles found to the right side on 

branch II onto the p1-p2 plane, when σ2 = (a) 0.76319 (p-1), σ2 = (b) 0.7653290 (p-2), σ2 = (c) 0.7658692 (p-4), 
σ2 = (d) 0.76596581 (p-8). 

Two sequences of supercritical period-doubling bifurcations are found on branch II, 
corresponding to σ2 = 0.74399 to the left and σ2 = 0.7636 to the right of the schematic Figure 
16. Two-dimensional projections of the phase portraits of the limit cycle onto the p1-p2 plane 
at pre period-doubling bifurcation right point, stated with (a) in Figure 16, is shown in Figure 
18a. As σ2 increases, the limit cycle undergoes a sequence of supercritical period-doubling 
bifurcations, leading to chaos. Some of the limit cycles of period-2, -4 and -8 are shown in 
Figure 18b, c and d, respectively. On the left side of the branch II, a period-1 limit cycle is 
shown in Figure 19a corresponding to the σ2 setting state with (b) in Figure 16. As σ2 
decreases, the limit cycle found a supercritical period-doubling bifurcation. Then the period-2 
cycle limit (see Figure 19 b) remains stable until it encounters a cycle fold bifurcation at σ2 = 
0.742966895.   
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Figure 19. Two-dimensional projections of the phase portraits of the limit cycles found to the left side on branch 

II when σ2 = (a) 0.744328 (p-1), σ2 = (b) 0.7429668 (p-2).  
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4 CONCLUSIONS 

The nonlinear planar response of a cantilever rotating box beam to a principal parametric 
resonance of its first flexural mode is investigated. The beam is subjected to a harmonic 
transverse load in the presence of internal resonance. The internal resonance can be activated 
for a range of the beam rotating speed, where the second natural frequency is approximately 
three times the first natural frequency. Geometric cubic nonlinear terms are included in the 
equation of motion due to midline stretching of the beam. The material is considered to be 
linear elastic and the cross-section properties are assumed to be constant given the assumption 
of small strains. 
By means of the method of multiple scales applied directly on the partial-differential equation 
four first-order nonlinear ordinary-differential equations were derived, describing the 
modulation of the amplitudes and phases of the interacting modes. The resonant behavior is 
illustrated by frequency-response and amplitude-load curves for a sequence of lamination of 
{45/-45/-45/45}. The curves are generated using a pseudo arclength continuation scheme. 
Calculating the eigenvalues of the Jacobian matrix, the stability of these responses is 
assessed. The frequency-response curves exhibit a hardening type behavior. When the 
excitation frequency is slowly varied, the response may undergo saddle-node and Hopf 
bifurcations. On the other hand, when the internal detuning parameter is varied from its 
perfect condition, the frequency-response curves exhibit a more complex behavior. It was 
shown that this effect is also influenced by the decrease of the load amplitude parameter 
value. In this case, it was found that the modulation equations posses complex dynamics, 
including supercritical period-doubling bifurcation, the coexistence of multiple attractors, and 
various jump responses driven by cyclic-fold bifurcation, subcritical period-doubling 
bifurcations, and boundary crises. The limit cycle solutions of the modulation equations may 
undergo a sequence of period-doubling bifurcations, culminating in chaos. The chaotic 
attractors may undergo attracting-merging and boundary crises. 
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APPENDIX 

 The terms used in the Eqs. (31), (32) amd (33) are defined as:  
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