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Abstract. We present a method to process embedded smooth surfaces using sets of points alone. The
goal is to perform calculations on general point-set surfaces avoiding any global parameterization. We
achieve this aim by approximating the point-set surface as an overlapping set of smooth local parametric
descriptions. We combine three ingredients: (1) the automatic detection of the nonlinear local geometric
structure of the surface by statistical learning methods, (2) the local parameterization of the surface using
smooth meshfree (here maximum-entropy) approximants, and (3) patching together the local representa-
tions by means of a partition of unity.

Mesh-based methods can deal with surfaces of complex topology, since they rely on the element-level
parameterizations, but cannot handle high-dimensional manifolds, whereas previous meshfree methods
for thin shells consider a global parametric domain, which seriously limits the kinds of surfaces that can
be treated.

We present the implementation of the method in the context of Kirchhoff-Love shells, but it is appli-
cable to other calculations on manifolds in any dimension. With the smooth maximum-entropy approx-
imants, this fourth-order partial differential equation is treated directly. We exemplify the flexibility of
the proposed approach dealing with large deformations and surfaces of complex geometry.
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1 INTRODUCTION

Over the last years, there has been a growing interest in the computer graphics community on
point-based surface processing, which presents attractive features as compared to conventional
mesh-based processing (Alexa et al., 2001; Pauly, 2003). In mesh-based methods, the mesh
serves two useful purposes: it describes the geometry of the surface, and the elements provide
local parametric spaces where the shape functions and the local parameterizations of the surface
can be defined, and where the required calculations on the surface can be performed, e.g. for
thin shell analysis. In these methods, the mesh generation can be difficult, they are not natural
for point-based data, and they seem unpractical for embedded manifolds in high dimensional
spaces. On the other hand, in the absence of a mesh, the notion of a surface defined from a
set of scattered nodes becomes difficult to grasp. In particular, as noted in Levin (2003), a
fundamental difficulty in defining basis functions and performing calculations on an embedded
surface, as compared to open sets in Euclidean space, is the absence in general of a single
parametric domain. Note carefully that in meshfree analysis, the basis functions are generally
defined in physical space, which serves as parametric space as well.

In the computer graphics literature, Levoy and Whitted (1985) pioneered using points as
primitives for geometric modeling and rendering of surfaces. Existing methods for describing
a surface from a set of scattered points are generally based on implicit representations of the
surface (Hoppe et al., 1992; Ohtake et al., 2003). Moving Least Squares (MLS) surfaces are a
noteworthy example of point-based implicit surface representation, where the surface is defined
as the set of fixed points of suitable projections (Levin, 2003, 1998). This idea has been very
successful in the computer graphics community for rendering, either up or down sampling, and
manipulating point-set models, see e.g. (Alexa et al., 2001; Pauly, 2003; Alexa et al., 2003;
Amenta and Kil, 2004; Alexa et al., 2004). Despite the common themes and challenges, these
developments have remained largely unconnected to the computational mechanics community.
In this field, meshfree methods have been applied to thin-shell analysis, and the difficulty of
defining an appropriate parametric space has been overcome by considering either a support
mesh or very simple surfaces admitting a single parametric space (Krysl and Belytschko, 1996;
Noguchi et al., 2000; Chen and Wang, 2006; Rabczuk et al., 2007).

Here, we extend the method proposed by Millan et al. (2010b) to perform numerical calcu-
lations on smooth manifolds described by scattered points. In our previous work, the method
results from combining three ingredients. Firstly, the local geometric structure of the manifold
is detected from the node set using weighted Principal Component Analysis (wPCA) which
identifies the hyperplane closest to the points in a given neighborhood that we call patch. This
plane is then used as the local parametric space to construct the meshfree maximum-entropy
(max-ent) basis functions (Arroyo and Ortiz, 2006; Cyron et al., 2009) and the local smooth
parameterization of the manifold. Secondly, the smooth parameterization in each patch can be
realized with a variety of methods, from other mesh-free methods such as MLS approximants
to mesh-based methods such as subdivision finite elements. In the latter case, no global mesh
is required. Here the local max-ent approximants (Arroyo and Ortiz, 2006) are chosen, due to
their smoothness, robustness, and relative ease of quadrature relative to other meshfree approx-
imants. Finally, the different local parameterizations are then glued together with a Partition
of Unity (PU) defined in the ambient space, which consequently is also a PU in the embedded
manifold. Specifically, functionals defined on the surface are readily split into local contribu-
tions, each involving a single local parameterization. This method avoids any global parametric
domain, required in previous meshfree methods, which greatly expands its range of applicabil-
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ity. Even though we exercise here the method for surfaces in R3, it is applicable to perform
calculations on embedded manifolds in any space dimension, unlike mesh-based methods.

In the present paper we make use of the novel nonlinear dimension reduction methodology
Modified Local Linear Embedding (MLLE see Zhang and Wang (2007)) instead of wPCA.
The advantage of nonlinear dimension reduction techniques is that they allow us to consider
challenging point-set manifolds in an efficient and robust fashion.

The outline of the paper is as follows. Section 2 describes the proposed methodology for
point-set manifold processing. Next, Section 3, provides a short account of the Kirchhoff–Love
shell theory. Throughout the present work we confine our attention to the theory of shells under
static loading. Numerical experiments to evaluate the capability of the method are presented in
Section 4. Some remarks and conclusions are collected in Section 5.

2 MANIFOLD DESCRIPTION FROM SCATTERED POINTS

We consider a smooth d−manifold M embedded in RD, d ≤ D. Our aim is to obtain a
numerical representation ofM, and make computations on it.

Let P = {P 1,P 2, . . . ,PN} ⊂ RD be a set of control points representingM. We consider
another set of geometric markers, Q = {Q1,Q2, . . . ,QM}, typically a subset of P but not
necessarily. For simplicity, we will denote the points in P and its associated objects with a
lower case subindex, e.g. P a, for a = 1, 2, . . . , N , and the geometric markers in Q and its
associated objects with an upper case subindex, e.g. QA, for A = 1, 2, . . . ,M .

We partition these geometric markers into L groups on the basis of proximity (Metis domain
decomposition with a k-NN graph). We represent these groups of geometric markers with index
sets Iκ, κ = 1, · · · , L with ∪Lκ=1Iκ = {1, 2, . . . ,M} and Iκ∩Iι = ∅, and use Greek subindices
to refer to entities associated with these groups of markers. As it will become clear below,
there is a one-to-one correspondence between these groups of geometric markers and the local
parameterizations of the surface, which we call patches.

We consider a Shepard partition of unity associated with the geometric markers. Consider a
set of non-negative reals {βA}A=1,2,...,M associated with each point in Q. We define the Shepard
partition of unity with Gaussian weight associated to the set Q as the functions wA : RD → R

for A = 1, 2, . . . ,M given by

wA(x) =
exp(−βA |x−QA|

2)∑M
B=1 exp(−βB |x−QB|

2)
. (1)

For efficiency, and given the fast decay of the Gaussian functions, these functions are numeri-
cally treated as compactly supported.

We aggregate these partition of unity functions by patches, yielding a coarser set of partition
of unity functions

ψκ(x) =
∑
A∈Iκ

wA(x). (2)

These functions form a partition of unity in RD, and consequently also inM. We finally con-
sider the index sets of all control points influencing each patch,Jκ, with∪Lκ=1Jκ = {1, 2, . . . , N},
but now Jκ∩Jι 6= ∅ to provide overlap between the local descriptions. Roughly speaking, these
sets are {a | P a ∈ supψκ}, slightly enlarged so that the patch parameterization is smooth on
the boundary of the support of ψκ.
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2.1 Local manifold learning

We process the points Pκ = {P a}a∈Jκ with MLLE. The outcome is a nonlinear model
reduction mapping

Rκ :Pκ −→ Rd

P a 7−→ ξa
(3)

The reduced node set Ξκ = {ξa}a∈Jκ ∈ Rd captures the right dimensionality and local
geometry of the original set of points, even if these lie on a curved manifold, provided the
manifold is sufficiently sampled. This mapping tries to be as isometric as possible. If metric
distortions are too large, then the partitions can be made smaller.

2.2 Local parameterization

The outcome of Rκ provides a convenient parametric space for the embedded manifold.
Suppose we have smooth approximants pa(ξ) associated to the point set Ξκ on a subset Aκ of
Rd, here the convex hull of the reduced node set conv Ξκ. We locally parameterize the manifold
in this patch as

ϕκ : Rd ⊃ conv Ξκ −→RD

ξ 7−→
∑
a∈Jκ

pa(ξ)P a
(4)

The image of Aκ = conv Ξκ through the parameterization ϕκ,Mκ, is a local approximation
of the manifold.

2.3 Partition of unity to evaluate integrals onM

A partition of unity is a classical technique to patch together local constructions on a man-
ifold do Carmo (1976). Consider now the integral of a scalar function f over a manifoldM,
f :M→ R. This function can also depend on other fields, as in a functional over the manifold
or its associated weak form. Then we have the following identity∫

M
f(x) dM =

L∑
κ=1

∫
M
ψκ(x) f(x) dM. (5)

Combining the partition of unity with the local parameterization of the κ-th patch. we can
approximate numerically integrals over the manifoldM described by a set of scattered points
as ∫

M
f(x) dM'

L∑
κ=1

∫
Aκ

ψκ(ϕκ(ξ)) f(ϕκ(ξ)) Jκ(ξ) dξ (6)

where Aκ is the parametric space associated to the κ−th patch, and Jκ =
√

det [(Dϕκ)
TDϕκ]

is the Jacobian determinant of the parameterization. In this way, similarly to finite element
methods, we have split the integral into local contributions which can be evaluated using local
parameterizations.

The last integral can be subsequently approximated by numerical quadrature on the local
parametric space. Here, we use Gauss quadrature on a support triangulation defined over Ξκ.
The integrand often does not depend explicitly on x, and we express f in terms of ξ directly.
This is not the case for the partition of unity functions, which are defined on the ambient space
RD.
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3 THIN-SHELL MODEL

In this section, we review the mechanics of thin shells (Cirak et al., 2000; Cirak and Ortiz,
2001), based on the geometrically exact formulation in Simo and Fox (1989); Simo et al. (1989).
Here we restrict our attention to the Kirchhoff–Love theory of shells, i.e. we neglect the shearing
and stretching deformation normal to the shell mid-surface. In this theory, the shell director
remains normal to the mid-surface during the deformation.

We follow the usual convention for Latin and Greek indices (i.e. i = 1, 2, 3; α = 1, 2),
a comma denotes partial differentiation, subscripts refer to covariant components, and super-
scripts denote contravariant components.

3.1 Kinematics of the shell

We next describe the kinematics of a thin-shell body S ⊂ in three-space. We assume that
this body can be described by the pair (ϕ, t), where the mapping ϕ defines the shell middle
surface, Ω, and t is a field of unit vectors (a field of directors). We assume the thickness h of the
shell to be uniform for simplicity, and also we assume that the change in shell thickness after
deformation is negligible. Then, the thin shell body S is given by

S =

{
x ∈ R3| x = ϕ(ξα) + ξ t(ξα), −h

2
≤ ξ ≤ h

2
, (ξ1, ξ2) ∈ A

}
, (7)

where A ⊂ R2 is the parametric space for the middle surface. Hence, we view a configuration
x as a mapping from a parametric domain A × [−h/2, h/2] into R3. The parametric domain
is described by the coordinates {ξ1, ξ2, ξ3} (where we identify ξ = ξ3), whose corresponding
dual basis is {Ei}. The area element of the middle surface can be computed as dΩ = j̄ dξ1dξ2,
where j̄ =

∥∥ϕ,1 ×ϕ,2∥∥. The tangent map of a given configuration Tx can be computed from
the convective basis vectors gi as

Tx =
∂x

∂ξi
⊗Ei = gi ⊗Ei,

with gα = ∂x
∂ξα = ϕ,α + ξ t,α and g3 = ∂x

∂ξ
= t. The covariant components of the metric tensor

in convected coordinates are given by gij = gi · gj .
Hereinafter, subscript 0 denotes quantities in the reference configuration, for instance ϕ0 is

a point on the reference middle surface. A deformation mapping is a mapping from a reference
body into R3, x ◦ x−1

0 . Consequently, the deformation gradient is F = Tx (Tx0)−1, and the
Jacobian is J = det(F ) = j/j0, where j = det(Tx) = g3 · (g1 × g2).

The shell director in the reference configuration t0 coincides with the normal to the unde-
formed middle surface of the shell and hence has the properties

t0 =
ϕ0,1 ×ϕ0,2

j̄0

, ϕ0,α · t0 = 0, |t0| = 1, t0 · t0,α = 0.

In general, the director in the deformed configuration of the shell, t, is allowed to be an arbitrary
vector field over Ω = x(A × {0}).

The local shell deformations can be characterized by the Green–Lagrange strain tensor. Since
the convected components of the metric tensor coincide with the components of (Tx)TTx in the
basis associated with {ξi}, the Green–Lagrange strain tensor can be expressed as the difference
between the metric tensors on the deformed and undeformed configurations of the shell, i.e.

Eij =
1

2
(gij − g0ij) =

1

2
(x,i · x,j − x0,i · x0,j).
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Plugging the basic kinematic ansatz x = ϕ(ξα) + ξ t(ξα) into the above expression, and group-
ing terms, we obtain

Eij = εij + ξ ρij + (ξ)2 ϑij, (8)

which admits the following interpretation in terms of the symmetric tensors εij , ρij and ϑij:

• The membrane strain tensor εαβ = 1
2
(ϕ,α · ϕ,β − ϕ0,α · ϕ,β), which lives on the middle

surface, measures the in-plane deformation of the surface; the components εα3 = 1
2
ϕ,α · t

measure the shearing of the director t0; and the component ε33 = 1
2
(t · t − 1) measures

the stretching of the director t0.

• The bending or change in curvature of the shell is measured by the tensor ραβ = ϕ,α ·t,β−
ϕ0,α·t0,β , and ρα3 = 1

2
t,α·tmeasures the shearing originated from the director elongation;

the in-plane tensor ϑαβ = 1
2
(t,α · t,β − t0,α · t0,β) is exclusively related to changes of the

middle surface directors. The rest of the components vanish, ρ33 = ϑ3i = ϑi3 = 0.

3.2 Kirchhoff–Love hypothesis

In the remainder of this section we restrict our attention to the Kirchhoff–Love theory of
thin shells, i.e. we constrain the deformed director t to coincide with the unit normal of the
deformed middle surface of the shell, i.e.

t =
ϕ,1 ×ϕ,2

j̄
, ϕ,α · t = 0, |t| = 1, t · t,α = 0.

Consequently, the theory can be formulated exclusively in terms of the shell middle surface.
We introduce its first and second fundamental forms expressed in convected components

aαβ = ϕ,α ·ϕ,β,
καβ = ϕ,α · t,β = −ϕ,αβ · t.

Here we have identified the director with the normal. With the Kirchhoff–Love hypothesis, the
only remaining non-zero components of the Green–Lagrange strain tensor are

Eαβ = 1
2
(aαβ − a0αβ) + ξ(καβ − κ0αβ) + (ξ)2

2
(t,α · t,β − t0,α · t0,β)

= εαβ + ξ ραβ + (ξ)2 ϑαβ.
(9)

3.3 Equilibrium configuration of thin shells

The potential energy of an elastic shell body with internal energy densityW can be expressed
in terms of the displacement u = ϕ − ϕ0 of a material point on the shell midsurface by the
functional

Π[u] =

∫
S0

W (u) dV0 + Πext[u],

where Πext is the potential energy of the external loads. For concreteness, we consider an
isotropic Kirchhoff–St. Venant elastic material, with an internal energy density expressed as
(Ciarlet, 2000)

W =
1

2
CijklEijEkl,

where Cijkl are the contravariant components of the elasticity tensor.
For thin shell bodies, the Green-Lagrange tensor components are commonly retained up to

first order in h, see Eq. (9), and the effect of curvature on the configuration Jacobian away
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from the middle surface is neglected, that is j0/j̄0 = 1 (see Simo and Fox (1989); Simo et al.
(1989)). Assuming that the elasticity tensor does not vary trough the thickness, the internal
energy density can be integrated through-the-thickness, resulting in an internal energy density
per unit area

W =
1

2

∫ h/2

−h/2
CαβγδEαβEγδ

j0

j̄0

dξ ' 1

2
Cαβγδ

(
hεαβεγδ +

h3

12
ραβργδ

)
,

with

Cαβγδ =
E

(1− ν2)

[
νaαβ0 aγδ0 +

1

2
(1− ν)

(
aαγ0 aβδ0 + aαδ0 a

βγ
0

)]
,

where aαγ0 (a0)γβ = δαβ , E is the Young’s modulus, and ν the Poisson’s ratio. Thus, the internal
potential energy can be written as an integral over the reference middle surface

Πint[u] =

∫
Ω0

W(u) dΩ0,

and the external potential becomes

Πext[u] = −
∫

Ω0

q · u dΩ0 −
∫
∂Ω0

h · u d`0,

where q is the external body load per unit area, h the forces per unit length applied on the
boundary of the middle surface, and d`0 is the line element of the boundary of the middle
surface.

Following Simo and Fox (1989), we introduce the elastic constitutive relations between the
shell stresses and the strains as

nαβ =
∂W
∂εαβ

= h Cαβγδεγδ,

mαβ =
∂W
∂ραβ

=
h3

12
Cαβγδργδ,

where nαβ is the effective membrane stress and mαβ is the effective bending stress, which can
be interpreted as force and moment resultants. Further, by recourse to the Voigt’s notation, we
obtain the following convenient expressions

n =

 n11

n22

n12

 = hCε, m =

 m11

m22

m12

 =
h3

12
Cρ, ε =

 ε11

ε22

2ε12

 , ρ =

 ρ11

ρ22

2ρ12

 ,

where the matrix C is given by the expression

C =
E

1− ν2

 (a11
0 )2 νa11

0 a
22
0 + (1− ν)(a12

0 )2 a11
0 a

12
0

(a22
0 )2 a22

0 a
12
0

symm 1
2

[(1− ν)a11
0 a

22
0 − (1 + ν)(a12

0 )2]

 .

Finally, with the above definitions, we can write the principle of virtual work in terms of inte-
grals over the parametric space A as follows

0 = δΠ[u, δu] =

∫
A

(δε · n+ δρ ·m) j̄0 dξ
1dξ2 + δΠext[δu]. (10)
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3.4 Galerkin discretization

We consider now the discrete equilibrium equations for surfaces numerically represented
with the procedure described before, in terms of a set of nodes P = {P a}, a = 1, ..., N , and a
set of L patches identified with the marker points Q = {QA}, A = 1, ...,M .

Let ϕ0κ be a configuration mapping for the middle surface from a specific patch κ, defined
over the parametric space Aκ

ϕ0κ(ξ) =
∑
a∈Jκ

pa(ξ) P a, (11)

as described in Section 2.2. We represent the displacement field in a given subdomain κ as

uκ(ξ) =
∑
a∈Jκ

pa(ξ) ua. (12)

Virtual displacements are represented likewise. With the strategy presented in Section 2.3, we
can split the integrals in the principle of virtual work into patch contributions, e.g.

δΠ[u, δu] =
L∑
κ=1

∫
Aκ

[(δε · n+ δρ ·m) j̄0]κ (ψκ ◦ϕ0) dξ1dξ2 + δΠext[δu]. (13)

Here, [·]κ means that the expression within the brackets is evaluated with the κ-th patch approx-
imation of the undeformed middle surface, the displacement field, and the virtual displacement
field.

Introduction of discretization from Eq. (12) into the weak form in Eq. (13) yields a semi-
discrete system of equations of the form

faint = faext, (14)

where faint and faext are the internal and external force array, respectively. Details about that
expressions are indicated in the work of Millan et al. (2010a).

4 NUMERICAL EXAMPLES

4.1 Point indentation of a spherical cap

This numerical experiment mimics the simple experiment of indenting a plastic bottle (Vaziri
and Mahadevan, 2008). It is modeled as a spherical shell cap subject to a concentrated apex
load. When the deformation reaches a magnitude comparable to the shell thickness the response
becomes nonlinear, and the deformed configuration moves through polyhedral shapes, starting
in a triangle (see Fig. 1). Material have Young’s modulus E = 109, and Poisson ratio ν = 0.3,
the thickness of the shell is h = 0.005.

4.2 Pullout of a bunny

This example illustrates the ability of the method to deal with shells of complex geometry,
defined by a set of points alone, without the need for a global surface mesh. The quality of the
node and marker sets should be sufficiently good and adapted to complex geometric features,
here the ears. Material parameters have been selected as E = 107, and ν = 0.3, while the
thickness of the thin shell is h = 0.005. Fig. 2 shows a sketch of the classical Stanford bunny
being pulled by a pair of forces, and also the deformed geometry is portrayed.
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Figure 1: Page layout

5 CONCLUSIONS

We have extended the methodology proposed by Millan et al. (2010b) for processing d-
dimensional point-set manifolds embedded in RD, which avoids a global parameterization or
a mesh. We have developed a method that dramatically reduce the number of patches (i.e. the
number of local parameterizations and partition of unity functions) relative to the number of
nodes. With the previous method, which uses wPCA, the density of patches was limited by the
geometric features of the surface, in that the projections should not distort too much the node
geometry.

We have applied the method to the Kirchhoff-Love thin shell analysis. The proposed method
significantly extends the applicability of meshfree methods to thin-shell analysis, in that it lib-
erates such methods from the burden of requiring a single parametric space, or imposing cum-
bersome patching conditions between meshfree macro-elements. This feature is illustrated by
an example of a shell of complex geometry.
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Figure 2: Page layout
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